[1] Felipe J Colón-González, Maquins Odhiambo Sewe, Henrik Tompkins, Adrian M.and Sjödin, Alejandro Casallas, Joacim Rocklöv, Cyril Caminade, and Rachel Lowe, July 2021. Projecting the risk of mosquito-borne diseases in a warmer and more populated world: A multi-model, multi-scenario intercomparison modelling study. The Lancet Planetary Health, 5(7):e404--e414. [ DOI ]
[2] Alizée Chemison, Gilles Ramstein, Adrian M. Tompkins, Dimitri Defrance, Guigone Camus, Margaux Charra, and Cyril Caminade, June 2021. Impact of an accelerated melting of Greenland on malaria distribution over Africa. Nature Communications, 12(1):3971. [ DOI ]
[3] Muhammad Adnan Abid, Fred Kucharski, Franco Molteni, In-Sik Kang, Adrian M. Tompkins, and Mansour Almazroui, February 2021. Separating the Indian and Pacific Ocean Impacts on the Euro-Atlantic Response to ENSO and Its Transition from Early to Late Winter. Journal of Climate, 34(4):1531--1548. [ DOI ]
[4] Adrian M. Tompkins and Addisu G. Semie, 2021. Impact of a mixed ocean layer and the diurnal cycle on convective aggregation. Journal of Advances in Modeling Earth Systems, n/a(n/a):e2020MS002186. [ DOI ]


[1] Maria Chara Karypidou, Vasiliki Almpanidou, Adrian M. Tompkins, Antonios D. Mazaris, Sandra Gewehr, Spiros Mourelatos, and Eleni Katragkou, December 2020. Projected shifts in the distribution of malaria vectors due to climate change. Climatic Change, 163(4):2117--2133. [ DOI ]
[2] Edmund I. Yamba, Adrian M. Tompkins, Andreas H. Fink, Volker Ermert, Mbouna D. Amelie, Leonard K. Amekudzi, and Olivier J. T. Briët, June 2020. Monthly Entomological Inoculation Rate Data for Studying the Seasonality of Malaria Transmission in Africa. Data, 5(2):31. [ DOI ]
[3] S. Bony, A. Semie, R. J. Kramer, B. Soden, A. M. Tompkins, and K. A. Emanuel, 2020. Observed Modulation of the Tropical Radiation Budget by Deep Convective Organization and Lower-Tropospheric Stability. AGU Advances, 1(3):e2019AV000155. [ DOI ]


[1] Rosalind Cornforth, Douglas J. Parker, Mariane Diop-Kane, Andreas H. Fink, Jean-Philippe Lafore, Arlene Laing, Ernest Afiesimama, Jim Caughey, Aida Diongue-Niang, Abdou Kassimou, Peter Lamb, Benjamin Lamptey, Zilore Mumba, Ifeanyi Nnodu, Jerome Omotosho, Steve Palmer, Patrick Parrish, Leon-Guy Razafindrakoto, Wassila Thiaw, Chris Thorncroft, and Adrian Tompkins, November 2019. The First Forecasters' Handbook for West Africa. Bulletin of the American Meteorological Society, 100(11):2343--2351. [ DOI ]
[2] Amelie D. Mbouna, Adrian M. Tompkins, Andre Lenouo, Ernest O. Asare, Edmund I. Yamba, and Clement Tchawoua, November 2019. Modelled and observed mean and seasonal relationships between climate, population density and malaria indicators in Cameroon. Malaria Journal, 18(1):359. [ DOI ]
[3] G. McGlynn, J. Lejju, C. Dalton, S.D. Mooney, N.L. Rose, A.M. Tompkins, W. Bannister, and D. Taylor, 2019. Remotely-driven environmental changes in a global biodiversity hotspot: Evidence from the Albertine Rift, central Africa. Journal of Biogeography, page https://doi.org/10.1111/jbi.13643.
[4] A. M. Tompkins, F. J. Colón-González, F. Di Giuseppe, and D. B. Namanya, 2019. Dynamical malaria forecasts are skillful at regional and local scales in Uganda up to four months ahead. GeoHealth, 3:https://doi.org/10.1029/2018GH000157.


[1] Anton Beljaars, Gianpaolo Balsamo, Peter Bechtold, Alessio Bozzo, Richard Forbes, Robin J Hogan, Martin Koehler, Jean-Jacques Morcrette, A. M. Tompkins, Pedro Viterbo, and Nils Wedi, 2018. The numerics of physical parametrization in the ECMWF model. frontiers, 6:doi:10.3389/feart.2018.00137.
[2] A. M. Tompkins and M. C. Thomson, 2018. Uncertainty in malaria simulations due to initial condition, climate and malaria model parameter settings investigated using a constrained genetic algorithm. Plos One, 13:10.1371/journal.pone.0200638.
[3] A. M. Tompkins, Rachel Lowe, Hannah Nissan, Nadége Martiny, Pascal Roucou, Madeleine C. Thomson, and Tetsuo Nakazawa, 2018. Predicting climate impacts on health at sub-seasonal to seasonal timescales. In A. W. Robertson and F. Vitart, editors, The Gap between Weather and Climate Forecasting: Sub-Seasonal to Seasonal Prediction, page 9780128117149. Elsevier.


[1] A. M. Tompkins, Mariá Inés Ortiz de Zárate, and coauthors, 2017. The Climate-system Historical Forecast Project: Providing open access to seasonal forecast ensembles from centers around the globe. Bull. Amer. Meteor. Soc., pages https://doi.org/10.1175/BAMS--D--16--0209.1.
[2] A. M. Tompkins and Addisu G. Semie, 2017. Organization of tropical convection in low vertical wind shears: Role of updraft entrainment. J. Adv. Mod. Earth Sys., page http://dx.doi.org/10.1002/2016MS000802. [ DOI ]


[1] E. Asare, A. M. Tompkins, and A. Bomblies, 2016. Evaluation of a simple puddle breeding site model for malaria vectors using high resolution explicit surface hydrology simulations. PLoS ONE, 11:http://dx.doi.org/10.1371/journal.pone.0150626.
[2] Ernest O. Asare, A. M. Tompkins, Leonard K. Amekudzi, and Volker. Ermert, 2016. A breeding site model for regional, dynamical malaria simulations evaluated using in situ temporary ponds observations. Geospat Health, 11:DOI:10.4081/gh.2016.390.
[3] Ernest O. Asare, A. M. Tompkins, Leonard K Amekudzi, Volker. Ermert, and Schuster R, 2016. Mosquito breeding site water temperature observations and simulations towards improved vector-borne disease models for Africa. Geospat Health, 11:DOI:10.4081/gh.2016.391.
[4] F. J. Colón-González, A. M. Tompkins, R. Biondi, J. P. Bizimana, and D. B. Namanya, 2016. Assessing the effects of air temperature and rainfall on malaria incidence: An epidemiological study across Rwanda and Uganda. Geospat Health, 1:DOI: 10.4081/gh.2016.379.
[5] S. Kienberger, L. Morper-Busch, M. HAgenlocher, A. P. Morse, A. M.  Tompkins, and D. M. Taylor, 2016. Healthy futures atlas: A publicly available resource for evaluating climate change risks on water-related and vector-borne disease in eastern Africa. In J.Shumake-Guillemot and L.Fernandez-Montoya, editors, Climate Services for Health: Case Studies of Enhancing Decision Support for Climate Risk Management and Adaptation., pages 142--143. WHO/WMO Geneva.
[6] J. Leedale, A. M. Tompkins, C. Caminade, A. E. Jones, G. Nikulin, and A. P. Morse, 2016. Projecting malaria hazard from climate change in eastern Africa using large ensembles to estimate uncertainty. Geospat Health, 11:DOI: 10.4081/gh.2016.393.
[7] R. Lowe, G. Mantilla, P. Ceccato, M. S. Carvalho, C. Barcellos, and A. M. Tompkins, 2016. Training a new generation of professionals to use climate information in public health decision-making. In J.Shumake-Guillemot and L.Fernandez-Montoya, editors, Climate Services for Health: Case Studies of Enhancing Decision Support for Climate Risk Management and Adaptation., pages 54--55. WHO/WMO Geneva.
[8] A. M. Tompkins and N. McCreesh, 2016. Migration statistics relevant for malaria transmission in Senegal derived from mobile phone data and used in an agent-based migration model. Geospat. Health, 11:doi:10.4081/gh.2016.408.
[9] A. M. Tompkins, L. Larsen, N. McCreesh, and D. M. Taylor, 2016. To what extent does climate explain variations in reported malaria cases in early 20th century Uganda? Geospat. Health, 11:10.4081/gh.2016.407.
[10] A. M. Tompkins, F. Di Giuseppe, F. J. Coloń-González, and D. B. Namanya, 2016. A planned operational malaria early warning system for Uganda provides useful district-scale predictions up to 4 months ahead. In J.Shumake-Guillemot and L.Fernandez-Montoya, editors, Climate Services for Health: Case Studies of Enhancing Decision Support for Climate Risk Management and Adaptation, pages 130--131. WHO/WMO Geneva.
[11] A. M. Tompkins and L. Caporaso, 2016. Assessment of malaria transmission changes in Africa due to the climate impact of land use change using CMIP5 earth system models. Geospat. Health, 11:doi:10.4081/gh.2016.380.


[1] J.-P. Bell, A. M. Tompkins, C. Bouka-Biona, and I. Seidou Sanda, 2015. A process-based investigation into the impact of the Congo basin deforestation on surface climate. J. Geophys. Res., 120:10.1002/2014JD022586.
[2] Christoph Dyroff, Andreas Zahn, Emanuel Christner, Richard Forbes, A. M. Tompkins, and Peter F. J. van Velthoven, 2015. Comparison of ECMWF analysis and forecast humidity data to CARIBIC upper troposphere and lower stratosphere observations. Q. J. R. Meteorol. Soc., 141:833--844.
[3] F. Di Giuseppe and A. M. Tompkins, 2015. Generalizing cloud overlap treatment to include the effect of wind shear. J. Atmos. Sci., 72:2865--2876.
[4] S. Li, A. M. Tompkins, E. Lin, and H. Ju, 2015. Simulating the impact of flooding on wheat yield - Case study in East China. Ag. For. Meteo., 216:221--231.
[5] A. M. Tompkins, L. Caporaso, R. Biondi, and J.-P. Bell, 2015. A generalized deforestation and land-use change scenario generator for use in climate modelling studies. Plos One, 10:doi: 10.1371/journal.pone.0136154.
[6] A. M. Tompkins and F. Di Giuseppe, 2015. Potential predictability of malaria using ECMWF monthly and seasonal climate forecasts in Africa. J. Appl. Meteor. Clim, 54:521--540.
[7] A. M. Tompkins and F. Di Giuseppe, 2015. An interpretation of cloud overlap statistics. J. Atmos. Sci., 72:2877--2889.


[1] C. Caminade, S. Kovats, J. Rocklov, A. M. Tompkins, A. P. Morse, F. J. Colón-González, H. Stenlund, P. Martens, and S. J. Lloyd, 2014. Impact of climate change on global malaria distribution. Proc Nat Acad Sci, 111(9):3286--3291.
[2] Franziska Piontek, Christoph Müller, Thomas AM Pugh, Douglas B Clark, Delphine Deryng, Joshua Elliott, Felipe de Jesus Colón González, Martina Flörke, Christian Folberth, Wietse Franssen, others, and Tompkins A. M, 2014. Multisectoral climate impact hotspots in a warming world. Proc Nat Acad Sci, page doi:10.1073/pnas.1222471110.


[1] F. Di Giuseppe, A. M. Tompkins, and F. Molteni, 2013. A rainfall calibration methodology for impacts modelling based on spatial mapping. Q. J. R. Meteorol. Soc., page doi: 10.1002/qj.2019.
[2] R. Lowe, J. Chirombo, and A. M. Tompkins, 2013. Relative importance of climatic, geographic and socio-economic determinants of malaria in Malawi. Malar J, 12(1):doi:10.1186/1475--2875--12--416.
[3] A. M. Tompkins and V. Ermert, 2013. A regional-scale, high resolution dynamical malaria model that accounts for population density, climate and surface hydrology. Malaria Journal, 12:doi:10.1186/1475--2875--12--65.


[1] G. T. Diro, S. A. Rauscher, F. Giorgi, and A. M. Tompkins, 2012. Sensitivity of seasonal climate and diurnal precipitation over Central America to land and sea surface schemes in RegCM4. Climate Res., 2:31--48.
[2] G. T. Diro, A. M. Tompkins, and X. Bi, 2012. Dynamical downscaling of ECMWF Ensemble seasonal forecasts over East Africa with RegCM3. J. Geophys. Res., 117(D16):doi: 10.1029/2011JD016997.
[3] S. Li and A. M. Tompkins, 2012. Effect of temporal and spatial scales of weather data on crop yield forecasts. Climate Res., 55:65--78.
[4] A. M. Tompkins and A. A. Adebiyi, 2012. Using CloudSat cloud retrievals to differentiate satellite-derived rainfall products over West Africa. J. Hydrometeor., 13:1810--1816.
[5] A. M. Tompkins, D. J. Parker, S. Danour, L. Amekudzi, C. L. Bain, A. Dominguez, M. W. Douglas, A. H. Fink, D. I. F. Grimes, M. Hobby, P Knippertz, P. J. Lamb, K. J. Nicklin, and C. Yorke, 2012. The Ewiem Nimdie summer school series in Ghana: Capacity building in meteorological education and research, lessons learned, and future prospects. Bull. Amer. Meteor. Soc., 93:595--601.


[1] W. T. Chen, C. P. Woods, J. L. F. Li, D. E. Waliser, J. D. Chern, W. K. Tao, J. H. Jiang, and A. M. Tompkins, 2011. Partitioning CloudSat ice water content for comparison with upper tropospheric ice in global atmospheric models. J. Geophys. Res., 116:D19206,doi:10.1029/2010JD015179.
[2] L. Feudale and A. M. Tompkins, 2011. A simple bias correction technique for modeled monsoon precipitation applied to West Africa. Geophys. Res. Lett., 38(3):L03803.
[3] A.H. Fink, A. Agustí-Panareda, D. J. Parker, J. P. Lafore, J. B. Ngamini, E. Afiesimama, A. Beljaars, O. Bock, M. Christoph, F. Didé, C. Faccani, N. Fourrie, F. Karbou, J. Polcher, Z. Mumba, M. Nuret, S. Pohle, F. Rabier, A. M. Tompkins, and G. Wilson, 2011. Operational meteorology in West Africa: Observational networks, weather analysis and forecasting. Atmos. Sci. Letters, 12:135--141.


[1] D. Bouniol, A. Protat, J. Delanoė, J. Pelon, J. M. Piriou, F. Bouyssel, A. M. Tompkins, D. R. Wilson, Y. Morille, M. Haeffelin, E. J. O'Connor, R. J. Hogan, A. J. Illingworth, D. P. Donovan, and H. K. Baltink, 2010. Using Continuous Ground-Based Radar and Lidar Measurements for Evaluating the Representation of Clouds in Four Operational Models. J. Appl. Meteor. Clim, 49:1971--1991.
[2] A. Couhert, T. Schneider, J. Li, D. E. Waliser, and A. M. Tompkins, 2010. The maintenance of the relative humidity in the subtropical free-troposphere. J. Climate, 23:390--403.
[3] T. Jung, G. Balsamo, P. Bechtold, A. Beljaars, M. Köhler, M. Miller, J.-J. Morcrette, A. Orr, M. J. Rodwell, and A. M. Tompkins, 2010. The ECMWF Model Climate: Recent progress through improved physical parametrizations. Q. J. R. Meteorol. Soc., 136:1145--1160.
[4] A. M. Tompkins and L. Feudale, 2010. West Africa monsoon seasonal precipitation forecasts in ECMWF System 3 with a focus on the AMMA SOP. Wea. and Forecasting, 25:768--788.


[1] A. Agusti-Panareda, D. Vasiljevic, A. Beljaars, O. Bock, F. Guichard, M. Nuret, A. Garcia-Mendez, E. Andersson, P. Bechtold, A. Fink, H. Hersbach, J.P. Lafore, Ngamini J.B, Parker D.J, J.L. Redelsperger, and A. M. Tompkins, 2009. Radiosonde humidity bias correction over the West African region for the special AMMA reanalysis at ECMWF. Q. J. R. Meteorol. Soc., 135:595--617.
[2] S. Fueglistaler, B. Legras, A. Beljaars, J.-J. Morcrette, A. Simmons, and A. M. Tompkins, 2009. The diabatic heat budget of the upper troposphere and lower/mid stratosphere in ECMWF reanalyses. Q. J. R. Meteorol. Soc., 135(638):21--37.
[3] X. Jiang, D. E. Waliser, W. S. Olson, W. K. Tao, T. S. L'Ecuyer, J. L. Li, B. Tian, Y. L. Yung, A. M. Tompkins, S. E. Lang, and Grecu M, 2009. Vertical Heating Structures Associated with the MJO as Characterized by TRMM Estimates, ECMWF Reanalyses and Forecasts: A Case Study during 199899 Winter. J. Geophys. Res., 22:6001--6020.
[4] F. Kucharski, A. Bracco, J. H. Yoo, A. M. Tompkins, L. Feudale, P. Ruti, and A. Del'Aquila, 2009. A simple Gill-Matsuno-type mechanism explains the Tropical Atlantic influence on African and Indian monsoon rainfall. Q. J. R. Meteorol. Soc., 135:569--579.
[5] J. L. F. Li, J. Teixeira, D. Waliser, C. Woods, D. G. Vane, J. Bacmeister, J. Chern, S. B. Wen, W. K. Tao, S. Cardoso, and A. M. Tompkins., 2009. A Comparison of Cloud Vertical Structure between CloudSat, ECMWF Analysis and two Climate Prediction Models along the GPCI transect over the Northeastern Tropical Pacific. Geophys. Res. Lett., 36:submitted.
[6] J.-J. Morcrette, O. Boucher, and coauthors incl Tompkins A. M, 2009. Aerosol analysis and forecast in the ECMWF Integrated Forecast System: Forward modelling. J. Geophys. Res., 114:doi:10.1029/2008JD011235.
[7] A. M. Tompkins and F. Di Giuseppe, 2009. Cloud radiative interactions and their uncertainty in climate models. In Paul Williams and Tim Palmer, editors, Stochastic Physics and Climate Models, pages 327--374. Cambridge University Press, UK.
[8] D. E. Waliser, F. Li, C. Woods, R. Austin, J. Bacmeister, J. Chern, A. Del Genio, J. Jiang, Z. Kuang, H. Meng, P. Minnis, S. Platnick, W. B. Rossow, G. Stephens, S. Sun-Mack/Langley, W. K. Tao, A. M. Tompkins, D. Vane, C. Walker, and D. Wu, 2009. Cloud ice: A climate model challenge with signs and expectations of progress. J. Geophys. Res., 114:D00A21, doi:10.1029/2008JD010015.


[1] J.L.F. Li, D. Waliser, C. Woods, J. Teixeira, J. Bacmeister, J. Chern, BW Shen, A. M. Tompkins, W.-K. Tao, and M. Köhler, 2008. Comparisons of satellites liquid water estimates to ECMWF and GMAO analyses, 20th century IPCC AR4 climate simulations, and GCM simulations. Geophys. Res. Lett., 35:L08701, doi: 10.1029/2006GL029022.
[2] MJ Schwartz, A Lambert, GL Manney, WG Read, NJ Livesey, L Froidevaux, CO Ao, PF Bernath, CD Boone, RE Cofield, and coauthors including Tompkins A. M, 2008. Validation of the Aura Microwave Limb Sounder temperature and geopotential height measurements. J. Geophys. Res., 113:D04105, doi:10.1029/2007JD008783.
[3] A. M. Tompkins and J. Berner, 2008. A stochastic convective approach to account for model uncertainty due to unresolved humidity variability. J. Geophys. Res., 113:doi:10.1029/2007JD009284.
[4] C. P. Woods, J.-L. Li, D. E. Waliser, and A. M. Tompkins, 2008. Partitioning Cloudsat ice water content for comparison with upper-tropospheric cloud ice in global atmospheric models. Geophys. Res. Lett., 000:submitted.


[1] E. Andersson, E. Holm, P. Bauer, A. Beljaars, G. A. Kelly, A. McNally, A. J. Simmons, J.-N. Thepaut, and A. M. Tompkins, 2007. Analysis and forecast impact of the main humidity observing systems. Bull. Amer. Meteor. Soc., 88:1473--1485.
[2] A. J. Illingworth, R. J. Hogan, and coauthors including Tompkins A. M, 2007. Cloudnet - Continuous evaluation of cloud profiles in seven operational models using groundbased observations. Bull. Amer. Meteor. Soc., 88:883--898.
[3] J. L. Li, J. H. Jiang, D. E. Waliser, and A. M. Tompkins, 2007. Assessing consistency between EOS MLS and ECMWF analyzed and forecast estimates of Cloud Ice. Geophys. Res. Lett., 34:L08701, doi: 10.1029/2006GL029022.
[4] A. M. Tompkins and F. Di Giuseppe, 2007. Generalizing cloud overlap treatment to include solar zenith angle effects on cloud geometry. J. Atmos. Sci., 64:2116--2125.
[5] A. M. Tompkins, K. Gierens, and G. Rädel, 2007. Ice supersaturation in the ECMWF integrated forcast system. Q. J. R. Meteorol. Soc., 133:53--63.
[6] F. Vitart, S. Woolnough, M. A. Balmaseda, and A. M. Tompkins, 2007. Monthly Forecast of the MaddenJulian Oscillation Using a Coupled GCM. Mon. Wea. Rev., 135:2700--2715.


[1] T. Jung, L. Ferranti, and A. M. Tompkins, 2006. Response to the summer 2003 Mediterranean SST anomalies over Europe and Africa. J. Climate, 19:5439--5454.
[2] H. Su, D. E. Waliser, J. H. Jiang, J. Li, W. G. Read, J. W. Waters, and A. M. Tompkins, 2006. Relationships of upper tropospheric water vapor, clouds and SST: MLS observations. Geophys. Res. Lett., 33:doi:10.1029/2006GL027582.


[1] E. Andersson, P. Bauer, A. Beljaars, F. Chevallier, E. Holm, M. Janisková, P. Kallberg, G. Kelly, P. Lopez, A. McNally, E. Moreau, A. Simmons, J.-N. Thepaut, and A. M. Tompkins, 2005. Assimilation and modeling of the atmospheric hydrological cycle in the ECMWF forecasting system. Bull. Amer. Meteor. Soc., 86:387--402.
[2] F. Di Giuseppe and A. M. Tompkins, 2005. Impact of cloud cover on solar radiative biases in deep convective regimes. J. Atmos. Sci., 62:1989--2000.
[3] T. Jung, A. M. Tompkins, and M. J. Rodwell, 2005. Some Aspects of Systematic Error in the ECMWF Model. Atmos. Sci. Lett., 6:133--139.
[4] J.-L. Li, D. E. Waliser, J. H. Jiang, D. L. Wu, W. Read, J. W. Waters, A. M. Tompkins, L. J. Donner, J.-D. Chern, W.-K. Tao, R. Atlas, Y. Gu, K. N. Liou, A. Del Genio, M. Khairoutdinov, and A. Gettelman, 2005. Comparisons of EOS MLS cloud ice measurements with ECMWF analyses and GCM simulations: Initial results. Geophys. Res. Lett., 32:L18710, doi:10.1029/2005GL023788.
[5] D. J. Parker, R. R. Burton, A. Diongue, R. J. Ellis, M. Felton, C. M. Taylor, C. D. Thorncroft, P. Bessemoulin, and A. M. Tompkins, 2005. The diurnal cycle of the West African monsoon circulation. Q. J. R. Meteorol. Soc., 131:2839--2860.
[6] A. M. Tompkins, A. Diongue, D. J. Parker, and C. D. Thorncroft, 2005. African easterly jet in the ECMWF integrated forecast system: 4D-Var analysis. Q. J. R. Meteorol. Soc., 131.
[7] A. M. Tompkins, C. Cardinali, J.-J. Morcrette, and M. Rodwell, 2005. Influence of aerosol climatology on forecasts of the African easterly jet. Geophys. Res. Lett., 32:L10801, doi:10.1029/2004GL022189.


[1] F. Chevallier, P. Lopez, A. M. Tompkins, M. Janisková, and E. Moreau, 2004. The capability of 4D-Var systems to assimilate cloud-affected satellite infrared radiances. Q. J. R. Meteorol. Soc., 130:917--932.
[2] E. Moreau, P. Lopez, P. Bauer, A. M. Tompkins, M. Janisková, and F. Chevallier, 2004. Rainfall versus microwave brightness temperature assimilation: A comparison of 1D-Var results using TMI and SSM/I observations. Q. J. R. Meteorol. Soc., 130:827--852.
[3] A. N. Ross, A. M. Tompkins, and D. J. Parker, 2004. Simple Models of the Role of Surface Fluxes in Convective Cold Pool Evolution. J. Atmos. Sci., 61:1582--1595.
[4] A. M. Tompkins and M. Janisková, 2004. A cloud scheme for data assimiliation: Description and initial tests. Q. J. R. Meteorol. Soc., 130:2495--2518.


[1] F. Di Giuseppe and A. M. Tompkins, 2003. Effect of spatial organisation on solar radiative transfer in three-dimensional idealized stratocumulus cloud fields. J. Atmos. Sci., 60:1774--1794.
[2] F. Di Giuseppe and A. M. Tompkins, 2003. Three dimensional radiative transfer in tropical deep convective clouds. J. Geophys. Res., 108:10.1029/2003JD003392.
[3] C. D. Thorncroft, D. J. Parker, R. R. Burton, M. Diop, J. H. Hayers, H. Barjat, R. Dumelow, D. R. Kindred, N. M. Price, C. M. Taylor, and A. M.  Tompkins, 2003. The JET2000 project: Aircraft observations of the African easterly jet and African easterly waves. Bull. Amer. Meteor. Soc., 84:337--351.
[4] A. M. Tompkins and F. Di Giuseppe, 2003. Solar radiative biases in deep convective regimes: Possible implications for dynamical feedback. Q. J. R. Meteorol. Soc., 129:1721--1730.
[5] A. M. Tompkins, 2003. Impact of temperature and total water variability on cloud cover assessed using aircraft data. Q. J. R. Meteorol. Soc., 129:2151--2170.


[1] A. M. Tompkins, 2002. A prognostic parameterization for the subgrid-scale variability of water vapor and clouds in large-scale models and its use to diagnose cloud cover. J. Atmos. Sci., 59:1917--1942.


[1] A. M. Tompkins, 2001. On the relationship between tropical convection and sea surface temperature. J. Climate, 14:633--637.
[2] A. M. Tompkins, 2001. Organization of tropical convection in low vertical wind shears: The role of cold pools. J. Atmos. Sci., 58:1650--1672.
[3] A. M. Tompkins, 2001. Organization of tropical convection in low vertical wind shears: The role of water vapor. J. Atmos. Sci., 58:529--545.


[1] A. M. Tompkins and K. A. Emanuel, 2000. The vertical resolution sensitivity of simulated equilibrium temperature and water vapour profiles. Q. J. R. Meteorol. Soc., 126:1219--1238.
[2] A. M. Tompkins, 2000. The impact of dimensionality on long-term cloud resolving model simulations. Mon. Wea. Rev., 128:1521--1535.


[1] A. M. Tompkins and G. C. Craig, 1999. Sensitivity of tropical convection to sea surface temperature in the absence of large-scale flow. J. Climate, 12:462--476.


[1] A. M. Tompkins and G. C. Craig, 1998. Time-scales of adjustment to radiative-convective equilibrium in the tropical atmosphere. Q. J. R. Meteorol. Soc., 124:2693--2713.
[2] A. M. Tompkins and G. C. Craig, 1998. Radiative-convective equilibrium in a three-dimensional cloud ensemble model. Q. J. R. Meteorol. Soc., 124:2073--2097.

Data generated with bibtex2html 1.97. Build script available on request.

Thunderstorm over Venice


predicts convective clustering onset in a simplified model of radiative-convection equilibrium! Be the first to read all about it in this new article submitted to JAMES (click).

Climate Unboxed

My new hobby in my free time is to upload videos on various topics related to weather and climate on my new YouTube channel climate unboxed. At the moment there are only my initial videos on climate data processing that I am developing for a new joint EDX course with the UNESCO regional office in Zimbabwe, but I hope to supplement these with more general interest material over the coming year. Don't forget to subscribe for news on new uploads.

Google Scholar Page

ORCID iD iconorcid.org/0000-0003-0975-6691

Page compiled 03-02-2023