Schur bundles over Quot schemes of \mathbb{P}^{1}

Shubham Sinha
University of California San Diego

8th April, 2023

Venue: University of Pennsy/vania

Quot Scheme

- C smooth projective curve of genus g.
- $E \rightarrow C$ vector bundle with $\operatorname{rank}(E)=N$.

Quot Scheme

- C smooth projective curve of genus g.
- $E \rightarrow C$ vector bundle with $\operatorname{rank}(E)=N$.

DEFINITION

Quot scheme Quot $_{d}(E, r)$ parameterizes short exact sequence

$$
\{0 \rightarrow S \rightarrow E \rightarrow Q \rightarrow 0: \operatorname{deg}(Q)=d ; \operatorname{rank}(Q)=N-r\} .
$$

Quot Scheme

- C smooth projective curve of genus g.
- $E \rightarrow C$ vector bundle with $\operatorname{rank}(E)=N$.

DEFINITION

Quot scheme Quot ${ }_{d}(E, r)$ parameterizes short exact sequence

$$
\{0 \rightarrow S \rightarrow E \rightarrow Q \rightarrow 0: \operatorname{deg}(Q)=d ; \operatorname{rank}(Q)=N-r\} .
$$

Examples of smooth Quot schemes

Punctual Quot scheme

Several properties of the Punctual Quot schemes has been studied:

- (Bifet'89, Chen'01): Poincare Polynomial
- (Biswas-Dhillon-Hurtubise'15): Automorphism group
- (Ricolfi'20, Bagnarol-Fantechi-Perroni'20): Motives
- (Oprea'22, Oprea-Pandharipande'18): Positivity and Segre classes of tautological bundles
- (Toda'22) S.O.D of the derived category

Punctual Quot scheme

- (Oprea-S'22): Explicit formula for the Euler characteristics of tautological bundles over punctual Quot scheme

Punctual Quot scheme

- (Oprea-S'22): Explicit formula for the Euler characteristics of tautological bundles over punctual Quot scheme
- (Marian-Oprea-Sam'22): Refine the formulas to cohomology in the case of \mathbb{P}^{1}

Quot scheme over \mathbb{P}^{1}

Quot scheme over \mathbb{P}^{1}

When $C=\mathbb{P}^{1}$ and $E=\mathcal{O}_{C}^{\oplus N}$ then Quot $_{d}(E, r)$ (denoted as Quot ${ }_{d}(N, r)$)

Quot scheme over \mathbb{P}^{1}

When $C=\mathbb{P}^{1}$ and $E=\mathcal{O}_{C}^{\oplus N}$ then Quot $_{d}(E, r)$ (denoted as Quot ${ }_{d}(N, r)$)

- Quot ${ }_{d}(N, r)$ is smooth.
- dim Quot $_{d}(N, r)=N d+r(N-r)$

Quot scheme over \mathbb{P}^{1}

When $C=\mathbb{P}^{1}$ and $E=\mathcal{O}_{C}^{\oplus N}$ then Quot $_{d}(E, r)$ (denoted as Quot ${ }_{d}(N, r)$)

- Quot ${ }_{d}(N, r)$ is smooth.
- dim Quot $_{d}(N, r)=N d+r(N-r)$
- When $d=0$, then Quot $_{d}(N, r)=\operatorname{Gr}(N, r)$.

Quot scheme as Morphism Space

Quot $_{d}(N, r)$ compactifies Mor $_{d}\left(\mathbb{P}^{1}, \operatorname{Gr}(N, r)\right)$!

Maps from C to $\operatorname{Gr}(N, r)$
Subbundles of $S \subset \mathcal{O}_{C}^{\oplus} N$

TAUTOLOGICAL SEQUENCE

Consider the tautological sequence for Quot scheme

$$
0 \longrightarrow \mathcal{S} \longrightarrow r^{*} \mathcal{O}_{\mathbb{P}^{1}}^{\oplus N} \longrightarrow \mathcal{Q} \longrightarrow 0
$$

TAUTOLOGICAL SEQUENCE

Consider the tautological sequence for Quot scheme

$$
0 \longrightarrow \mathcal{S} \longrightarrow p r^{*} \mathcal{O}_{\mathbb{P}^{1}}^{\oplus N} \longrightarrow \mathcal{Q} \longrightarrow \mathbb{P}^{\downarrow}
$$

REMARK

The cohomology ring of Quot $_{d}(N, r)$ is generated by Chern classes of

$$
\mathcal{S}_{x}^{\vee}:=\left.\mathcal{S}^{\vee}\right|_{\{x\} \times \operatorname{Quot}_{d}(N, r)} \quad \text { and } \quad \pi_{*} \mathcal{S}^{\vee}
$$

TAutological sequence

Consider the tautological sequence for Quot scheme

$$
0 \longrightarrow \mathcal{S} \longrightarrow r^{*} \mathcal{O}_{\mathbb{P}^{1}}^{\oplus N} \longrightarrow \mathcal{Q} \longrightarrow 0
$$

REMARK

The cohomology ring of Quot $_{d}(N, r)$ is generated by Chern classes of

$$
\mathcal{S}_{x}^{\vee}:=\left.\mathcal{S}^{\vee}\right|_{\{x\} \times \operatorname{Quot}_{d}(N, r)} \quad \text { and } \quad \pi_{*} \mathcal{S}^{\vee}
$$

Intersection numbers involving $c_{i}\left(\mathcal{S}_{x}^{\vee}\right)$ is given by Vafa-Intriligator formula.

History

- (Witten '93): Quantum cohomology of Grassmannian
- (Seibert-Tian '94): Quantum cohomology using stable maps

History

- (Witten '93): Quantum cohomology of Grassmannian
- (Seibert-Tian '94): Quantum cohomology using stable maps
- (Bertram '94): Studied intersection numbers using Quot scheme
- (Popa-Roth'03) Geometric comparison with stable map compactification

History

- (Witten '93): Quantum cohomology of Grassmannian
- (Seibert-Tian '94): Quantum cohomology using stable maps
- (Bertram '94): Studied intersection numbers using Quot scheme
- (Popa-Roth'03) Geometric comparison with stable map compactification
- (Marian-Oprea '05): Virtual intersection theory and recovered Vafa-Intriligator formula (for all genus)
- (Marian-Oprea '09) Relation with Verlinde numbers and Grassmann TQFT.

History

- (Witten '93): Quantum cohomology of Grassmannian
- (Seibert-Tian '94): Quantum cohomology using stable maps
- (Bertram '94): Studied intersection numbers using Quot scheme
- (Popa-Roth'03) Geometric comparison with stable map compactification
- (Marian-Oprea '05): Virtual intersection theory and recovered Vafa-Intriligator formula (for all genus)
- (Marian-Oprea '09) Relation with Verlinde numbers and Grassmann TQFT.
- (Buch-Mihalcea '09) Quantum K-theory of Grassmannian

Schur functors

DEFINITION

Let $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$ be an integer partition and $V=\mathbb{C}^{n}$ (standard representation of $G L_{n}(\mathbb{C})$). The Schur functor \mathbb{S}^{λ} associates $\mathbb{S}^{\lambda}(V)$, the unique irreducible representation of $G L_{n}(\mathbb{C})$ of highest weight λ.

Schur Functors

DEFINITION

Let $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$ be an integer partition and $V=\mathbb{C}^{n}$ (standard representation of $G L_{n}(\mathbb{C})$). The Schur functor \mathbb{S}^{λ} associates $\mathbb{S}^{\lambda}(V)$, the unique irreducible representation of $G L_{n}(\mathbb{C})$ of highest weight λ. Moreover,

$$
\operatorname{dim} \mathbb{S}^{\lambda}(V)=s_{\lambda}(\underbrace{1,1, \ldots, 1}_{n \text { times }})
$$

where s_{λ} denotes the Schur function associated to λ.

Schur functors

DEFINITION

Let $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$ be an integer partition and $V=\mathbb{C}^{n}$ (standard representation of $G L_{n}(\mathbb{C})$). The Schur functor \mathbb{S}^{λ} associates $\mathbb{S}^{\lambda}(V)$, the unique irreducible representation of $G L_{n}(\mathbb{C})$ of highest weight λ. Moreover,

$$
\operatorname{dim} \mathbb{S}^{\lambda}(V)=s_{\lambda}(\underbrace{1,1, \ldots, 1}_{n \text { times }})
$$

where s_{λ} denotes the Schur function associated to λ.

- We can also apply Schur functor to vector bundles $V \rightarrow X$.

Schur functors

DEFINITION

Let $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$ be an integer partition and $V=\mathbb{C}^{n}$ (standard representation of $G L_{n}(\mathbb{C})$). The Schur functor \mathbb{S}^{λ} associates $\mathbb{S}^{\lambda}(V)$, the unique irreducible representation of $G L_{n}(\mathbb{C})$ of highest weight λ. Moreover,

$$
\operatorname{dim} \mathbb{S}^{\lambda}(V)=s_{\lambda}(\underbrace{1,1, \ldots, 1}_{n \text { times }})
$$

where s_{λ} denotes the Schur function associated to λ.

- We can also apply Schur functor to vector bundles $V \rightarrow X$.

ExAMPLE

- For $\lambda=(4)$, we have $\mathbb{S}^{\lambda}(V)=\operatorname{Sym}^{4}(V)$
- For $\lambda=(1,1,1)$, we have $\mathbb{S}^{\lambda}(V)=\wedge^{3}(V)$

Schur bundles on Grassmannian

Let $\operatorname{Gr}(N, r)$ be the Grassmannian of rank r subspaces of \mathbb{C}^{N} with tautological sequence

$$
0 \rightarrow S \rightarrow \mathbb{C}^{N} \times \operatorname{Gr}(N, r) \rightarrow Q \rightarrow 0
$$

Schur bundles on Grassmannian

Let $\operatorname{Gr}(N, r)$ be the Grassmannian of rank r subspaces of \mathbb{C}^{N} with tautological sequence

$$
0 \rightarrow S \rightarrow \mathbb{C}^{N} \times \operatorname{Gr}(N, r) \rightarrow Q \rightarrow 0
$$

Proposition

For any partition λ with at most r parts,

$$
H^{i}\left(\operatorname{Gr}(N, r), \mathbb{S}^{\lambda}\left(S^{\vee}\right)\right)= \begin{cases}\mathbb{S}^{\lambda}\left(\left(\mathbb{C}^{N}\right)^{\vee}\right) & i=0 \\ 0 & i>0\end{cases}
$$

Schur bundles on Grassmannian

Let $\operatorname{Gr}(N, r)$ be the Grassmannian of rank r subspaces of \mathbb{C}^{N} with tautological sequence

$$
0 \rightarrow S \rightarrow \mathbb{C}^{N} \times \operatorname{Gr}(N, r) \rightarrow Q \rightarrow 0 .
$$

Proposition

For any partition λ with at most r parts,

$$
H^{i}\left(\operatorname{Gr}(N, r), \mathbb{S}^{\lambda}\left(S^{\vee}\right)\right)= \begin{cases}\mathbb{S}^{\lambda}\left(\left(\mathbb{C}^{N}\right)^{\vee}\right) & i=0 \\ 0 & i>0\end{cases}
$$

In particular,

$$
\chi\left(\operatorname{Gr}(N, r), \mathbb{S}^{\lambda}\left(S^{\vee}\right)\right)=s_{\lambda}(\underbrace{1,1, \ldots, 1}_{N \text { times }}) .
$$

Result

Recall $\mathcal{S}_{x}^{\vee}:=\left.\mathcal{S}^{\vee}\right|_{\{x\} \times \operatorname{Quot}_{d}(N, r)}$.

Result

Recall $\mathcal{S}_{x}^{\vee}:=\left.\mathcal{S}^{\vee}\right|_{\{x\} \times \operatorname{Quot}_{d}(N, r)}$.

Theorem (ZHANG,S 23)

For any partition λ with at most r parts,

$$
\chi\left(\operatorname{Quot}_{d}(N, r), \mathbb{S}^{\lambda}\left(\mathcal{S}_{x}^{\vee}\right)\right)=\left[q^{d}\right] s_{\Lambda}\left(z_{1}, \ldots, z_{N}\right)
$$

Result

Recall $\mathcal{S}_{x}^{\vee}:=\left.\mathcal{S}^{\vee}\right|_{\{x\} \times \operatorname{Quot}_{d}(N, r)}$.

Theorem (ZHANG,S 23)

For any partition λ with at most r parts,

$$
\chi\left(\operatorname{Quot}_{d}(N, r), \mathbb{S}^{\lambda}\left(\mathcal{S}_{x}^{\vee}\right)\right)=\left[q^{d}\right] s_{\Lambda}\left(z_{1}, \ldots, z_{N}\right)
$$

where

$$
\Lambda=\left(\lambda_{1}+d, \lambda_{2}+d, \ldots, \lambda_{r}+d\right)
$$

and $z_{1}, z_{2}, \ldots, z_{N}$ are roots of

$$
(z-1)^{N}+(-1)^{r} z^{N-r} q=0
$$

Vanishing Results

Let $P^{r, N-r}$ be the set of partition contained in $(\underbrace{N-r, \ldots, N-r}_{r \text { times }})$

Theorem (Zhang,S 23)

For any partition $\lambda \in P^{r, N-r}$,

$$
\chi\left(\operatorname{Quot}_{d}(N, r), \mathbb{S}^{\lambda}\left(\mathcal{S}_{x}\right)\right)=0 .
$$

Theorem (ZHANG,S 23)

For any partitions $\lambda, \mu \in P^{r, N-r}$ and $d>0$,

$$
\chi\left(\boldsymbol{Q u o t}_{d}(N, r), \operatorname{det} \mathcal{S}_{x} \otimes \mathbb{S}_{\lambda}\left(\mathcal{S}_{x}\right) \otimes \mathbb{S}_{\mu}\left(\mathcal{S}_{x}\right)\right)=0
$$

Application to Quantum K-invariants

Compare with genus 0, 3-pointed quantum K-invariants of Grassmannian:

$$
\left\langle\alpha_{1}, \alpha_{2}, \alpha_{3}\right\rangle_{0,3, d}
$$

where $\alpha_{1}, \alpha_{2}, \alpha_{3} \in K^{0}(\operatorname{Gr}(N, r))$.

Application to Quantum K-invariants

Compare with genus 0, 3-pointed quantum K-invariants of Grassmannian:

$$
\left\langle\alpha_{1}, \alpha_{2}, \alpha_{3}\right\rangle_{0,3, d}
$$

where $\alpha_{1}, \alpha_{2}, \alpha_{3} \in K^{0}(\operatorname{Gr}(N, r))$.
(Buch-Mihalcea '09) Uses Schubert subvarieties of Grassmannian $\left[\mathcal{O}_{\lambda}\right]:=\left[\mathcal{O}_{X_{\lambda}}\right]$.

Application To Quantum K-Invariants

Compare with genus 0, 3-pointed quantum K-invariants of Grassmannian:

$$
\left\langle\alpha_{1}, \alpha_{2}, \alpha_{3}\right\rangle_{0,3, d}
$$

where $\alpha_{1}, \alpha_{2}, \alpha_{3} \in K^{0}(\operatorname{Gr}(N, r))$.
(Buch-Mihalcea '09) Uses Schubert subvarieties of Grassmannian $\left[\mathcal{O}_{\lambda}\right]:=\left[\mathcal{O}_{X_{\lambda}}\right]$.

- Use (stable) Grothendieck polynomial to relate the two basis.

Application To Quantum K-Invariants

Compare with genus 0, 3-pointed quantum K-invariants of Grassmannian:

$$
\left\langle\alpha_{1}, \alpha_{2}, \alpha_{3}\right\rangle_{0,3, d}
$$

where $\alpha_{1}, \alpha_{2}, \alpha_{3} \in K^{0}(\operatorname{Gr}(N, r))$.
(Buch-Mihalcea '09) Uses Schubert subvarieties of Grassmannian $\left[\mathcal{O}_{\lambda}\right]:=\left[\mathcal{O}_{X_{\lambda}}\right]$.

- Use (stable) Grothendieck polynomial to relate the two basis.
- We have the following corollary

Application to Quantum K-invariants

Compare with genus 0, 3-pointed quantum K-invariants of Grassmannian:

$$
\left\langle\alpha_{1}, \alpha_{2}, \alpha_{3}\right\rangle_{0,3, d}
$$

where $\alpha_{1}, \alpha_{2}, \alpha_{3} \in K^{0}(\operatorname{Gr}(N, r))$.
(Buch-Mihalcea '09) Uses Schubert subvarieties of Grassmannian $\left[\mathcal{O}_{\lambda}\right]:=\left[\mathcal{O}_{x_{\lambda}}\right]$.

- Use (stable) Grothendieck polynomial to relate the two basis.
- We have the following corollary

Corollary

For any $F, G \in K^{0}(G r(N, r))$ and $d>0$,

$$
\left\langle\left[\mathcal{O}_{1}\right], F, G\right\rangle_{0,3, d}=\langle F, G\rangle_{0,2, d} .
$$

Thank you!

