Schur bundles over Quot schemes of \mathbb{P}^1

Shubham Sinha

University of California San Diego

8th April, 2023

Venue : University of Pennsylvania

Shubham Sinha (UCSD

Schur bundles over Quot schemes

8th April, 2023 1

QUOT SCHEME

- C smooth projective curve of genus g.
- $E \rightarrow C$ vector bundle with rank(E) = N.

- C smooth projective curve of genus g.
- $E \rightarrow C$ vector bundle with rank(E) = N.

DEFINITION

Quot scheme $Quot_d(E, r)$ parameterizes short exact sequence

$$\{0 \rightarrow S \rightarrow E \rightarrow Q \rightarrow 0 : deg(Q) = d; rank(Q) = N - r\}$$

- C smooth projective curve of genus g.
- $E \to C$ vector bundle with rank(E) = N.

DEFINITION

Quot scheme $Quot_d(E, r)$ parameterizes short exact sequence

$$\{0 \rightarrow S \rightarrow E \rightarrow Q \rightarrow 0 : deg(Q) = d; rank(Q) = N - r\}$$

Shubham Sinha (UCSD)

Several properties of the Punctual Quot schemes has been studied:

- (Bifet'89, Chen'01): Poincare Polynomial
- (Biswas-Dhillon-Hurtubise'15): Automorphism group
- •
- (Ricolfi'20, Bagnarol-Fantechi-Perroni'20): Motives
- (Oprea'22, Oprea-Pandharipande'18): Positivity and Segre classes of tautological bundles
- (Toda'22) S.O.D of the derived category

PUNCTUAL QUOT SCHEME

 (Oprea-S'22): Explicit formula for the Euler characteristics of tautological bundles over punctual Quot scheme

Shubham Sinha (UCSD)

Schur bundles over Quot schemes

8th April, 2023 4 / 14

イロト イヨト イヨト イヨト

PUNCTUAL QUOT SCHEME

- (Oprea-**S**'22): Explicit formula for the Euler characteristics of tautological bundles over punctual Quot scheme
- (Marian-Oprea-Sam'22): Refine the formulas to cohomology in the case of \mathbb{P}^1

イロト イヨト イヨト イヨト

QUOT SCHEME OVER \mathbb{P}^1

Shubham Sinha (UCSD)

Schur bundles over Quot schemes

э

イロト イヨト イヨト イヨト

When $C = \mathbb{P}^1$ and $E = \mathcal{O}_C^{\oplus N}$ then $\mathbf{Quot}_d(E, r)$ (denoted as $\mathbf{Quot}_d(N, r)$)

When $C = \mathbb{P}^1$ and $E = \mathcal{O}_C^{\oplus N}$ then $\operatorname{Quot}_d(E, r)$ (denoted as $\operatorname{Quot}_d(N, r)$) • $\operatorname{Quot}_d(N, r)$ is smooth.

• dim
$$\mathbf{Quot}_d(N, r) = Nd + r(N - r)$$

When $C = \mathbb{P}^1$ and $E = \mathcal{O}_C^{\oplus N}$ then $\operatorname{Quot}_d(E, r)$ (denoted as $\operatorname{Quot}_d(N, r)$) • $\operatorname{Quot}_d(N, r)$ is smooth.

• dim
$$\mathbf{Quot}_d(N,r) = Nd + r(N-r)$$

• When d = 0, then $\mathbf{Quot}_d(N, r) = Gr(N, r)$.

QUOT SCHEME AS MORPHISM SPACE

 $Quot_d(N, r)$ compactifies $Mor_d(\mathbb{P}^1, Gr(N, r))!$

Maps from C to Gr(N, r)

TAUTOLOGICAL SEQUENCE

Consider the tautological sequence for Quot scheme

ubham Sinha (UCSD)

TAUTOLOGICAL SEQUENCE

Consider the tautological sequence for Quot scheme

Remark

The cohomology ring of $\mathbf{Quot}_d(N, r)$ is generated by Chern classes of

$$\mathcal{S}_x^ee := \mathcal{S}^ee |_{\{x\} imes \mathbf{Quot}_d(N,r)} \quad ext{and} \quad \pi_* \, \mathcal{S}^ee \,.$$

Shubham Sinha (UCSD

Schur bundles over Quot schemes

8th April, 2023 7 / 14

TAUTOLOGICAL SEQUENCE

Consider the tautological sequence for Quot scheme

Remark

The cohomology ring of $\mathbf{Quot}_d(N, r)$ is generated by Chern classes of

$$\mathcal{S}^ee_{\mathsf{X}} := \mathcal{S}^ee \mid_{\{\mathsf{X}\} imes \mathbf{Quot}_d(N,r)} \quad \textit{and} \quad \pi_* \, \mathcal{S}^ee \,.$$

Intersection numbers involving $c_i(\mathcal{S}_x^{\vee})$ is given by Vafa-Intriligator formula.

Shubham Sinha (UCSD)

- (Witten '93): Quantum cohomology of Grassmannian
- (Seibert-Tian '94): Quantum cohomology using stable maps

- (Witten '93): Quantum cohomology of Grassmannian
- (Seibert-Tian '94): Quantum cohomology using stable maps
- (Bertram '94): Studied intersection numbers using Quot scheme
- (Popa-Roth'03) Geometric comparison with stable map compactification

- (Witten '93): Quantum cohomology of Grassmannian
- (Seibert-Tian '94): Quantum cohomology using stable maps
- (Bertram '94): Studied intersection numbers using Quot scheme
- (Popa-Roth'03) Geometric comparison with stable map compactification
- (Marian-Oprea '05): Virtual intersection theory and recovered Vafa-Intriligator formula (for all genus)
- (Marian-Oprea '09) Relation with Verlinde numbers and Grassmann TQFT.

- (Witten '93): Quantum cohomology of Grassmannian
- (Seibert-Tian '94): Quantum cohomology using stable maps
- (Bertram '94): Studied intersection numbers using Quot scheme
- (Popa-Roth'03) Geometric comparison with stable map compactification
- (Marian-Oprea '05): Virtual intersection theory and recovered Vafa-Intriligator formula (for all genus)
- (Marian-Oprea '09) Relation with Verlinde numbers and Grassmann TQFT.
- (Buch-Mihalcea '09) Quantum K-theory of Grassmannian

SCHUR FUNCTORS

DEFINITION

Let $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_n)$ be an integer partition and $V = \mathbb{C}^n$ (standard representation of $GL_n(\mathbb{C})$). The Schur functor \mathbb{S}^{λ} associates $\mathbb{S}^{\lambda}(V)$, the unique irreducible representation of $GL_n(\mathbb{C})$ of highest weight λ .

SCHUR FUNCTORS

DEFINITION

Let $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_n)$ be an integer partition and $V = \mathbb{C}^n$ (standard representation of $GL_n(\mathbb{C})$). The Schur functor \mathbb{S}^{λ} associates $\mathbb{S}^{\lambda}(V)$, the unique irreducible representation of $GL_n(\mathbb{C})$ of highest weight λ . Moreover,

$$\dim \mathbb{S}^{\lambda}(V) = s_{\lambda}(\underbrace{1,1,\ldots,1}_{n \text{ times}})$$

where s_{λ} denotes the **Schur function** associated to λ .

SCHUR FUNCTORS

DEFINITION

Let $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_n)$ be an integer partition and $V = \mathbb{C}^n$ (standard representation of $GL_n(\mathbb{C})$). The Schur functor \mathbb{S}^{λ} associates $\mathbb{S}^{\lambda}(V)$, the unique irreducible representation of $GL_n(\mathbb{C})$ of highest weight λ . Moreover,

$$\dim \mathbb{S}^{\lambda}(V) = s_{\lambda}(\underbrace{1, 1, \dots, 1}_{n \text{ times}})$$

where s_{λ} denotes the **Schur function** associated to λ .

• We can also apply Schur functor to vector bundles $V \rightarrow X$.

DEFINITION

Let $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_n)$ be an integer partition and $V = \mathbb{C}^n$ (standard representation of $GL_n(\mathbb{C})$). The Schur functor \mathbb{S}^{λ} associates $\mathbb{S}^{\lambda}(V)$, the unique irreducible representation of $GL_n(\mathbb{C})$ of highest weight λ . Moreover,

$$\dim \mathbb{S}^{\lambda}(V) = s_{\lambda}(\underbrace{1, 1, \dots, 1}_{n \text{ times}})$$

where s_{λ} denotes the **Schur function** associated to λ .

• We can also apply Schur functor to vector bundles $V \rightarrow X$.

EXAMPLE

• For
$$\lambda = (4)$$
, we have $\mathbb{S}^{\lambda}(V) = \operatorname{Sym}^{4}(V)$

• For $\lambda=(1,1,1)$, we have $\mathbb{S}^{\lambda}(V)=\wedge^{3}(V)$

ヘロト 人間 ト 人 ヨ ト

Schur bundles on Grassmannian

Let Gr(N, r) be the Grassmannian of rank r subspaces of \mathbb{C}^N with tautological sequence

$$0 \rightarrow S \rightarrow \mathbb{C}^N \times Gr(N, r) \rightarrow Q \rightarrow 0.$$

Schur bundles on Grassmannian

Let Gr(N, r) be the Grassmannian of rank r subspaces of \mathbb{C}^N with tautological sequence

$$0 \to S \to \mathbb{C}^N \times Gr(N, r) \to Q \to 0.$$

PROPOSITION

For any partition λ with at most r parts,

$$H^{i}(Gr(N,r),\mathbb{S}^{\lambda}(S^{\vee})) = egin{cases} \mathbb{S}^{\lambda}((\mathbb{C}^{N})^{\vee}) & i=0\ 0 & i>0. \end{cases}$$

Shubham Sinha (UCSD)

Schur bundles over Quot schemes

8th April, 2023 10 / 14

Schur bundles on Grassmannian

Let Gr(N, r) be the Grassmannian of rank r subspaces of \mathbb{C}^N with tautological sequence

$$0 \to S \to \mathbb{C}^N \times Gr(N, r) \to Q \to 0.$$

PROPOSITION

For any partition λ with at most r parts,

$$H^{i}(Gr(N,r),\mathbb{S}^{\lambda}(S^{\vee})) = egin{cases} \mathbb{S}^{\lambda}((\mathbb{C}^{N})^{\vee}) & i=0\ 0 & i>0. \end{cases}$$

In particular,

$$\chi(Gr(N,r),\mathbb{S}^{\lambda}(S^{\vee})) = s_{\lambda}(\underbrace{1,1,\ldots,1}_{N \text{ times}}).$$

RESULT

Recall
$$\mathcal{S}_{x}^{\vee} := \mathcal{S}^{\vee}|_{\{x\} \times \mathbf{Quot}_{d}(N,r)}$$
.

Shubham Sinha (UCSD)

æ

・ロ・・ (日・・ 日・・ (日・

Result

Recall $\mathcal{S}_{x}^{\vee} := \mathcal{S}^{\vee}|_{\{x\} \times \mathbf{Quot}_{d}(N,r)}$.

THEOREM (ZHANG, S 23)

For any partition λ with at most r parts,

 $\chi(\mathbf{Quot}_d(N,r),\mathbb{S}^{\lambda}(\mathcal{S}_x^{\vee}))=[q^d]s_{\Lambda}(z_1,\ldots,z_N)$

hubham Sinha (UCSD)

RESULT

Recall $\mathcal{S}_{x}^{\vee} := \mathcal{S}^{\vee}|_{\{x\} \times \mathbf{Quot}_{d}(N,r)}$.

THEOREM (ZHANG, S 23)

For any partition λ with at most r parts,

 $\chi(\operatorname{\mathsf{Quot}}_d(N,r),\mathbb{S}^\lambda(\mathcal{S}_x^\vee))=[q^d]s_\Lambda(z_1,\ldots,z_N)$

where

$$\Lambda = (\lambda_1 + d, \lambda_2 + d, \dots, \lambda_r + d)$$

and z_1, z_2, \ldots, z_N are roots of

$$(z-1)^{N} + (-1)^{r} z^{N-r} q = 0.$$

Shubham Sinha (UCSD)

Let $P^{r,N-r}$ be the set of partition contained in $(\underbrace{N-r,\ldots,N-r}_{r \text{ times}})$

Theorem (Zhang, S 23)

For any partition $\lambda \in P^{r,N-r}$,

 $\chi(\operatorname{\mathsf{Quot}}_d(N,r),\mathbb{S}^\lambda(\mathcal{S}_{x}))=0.$

THEOREM (ZHANG, S 23)

For any partitions $\lambda, \mu \in \mathsf{P}^{r, \mathsf{N}-r}$ and d > 0,

 $\chi(\operatorname{\mathsf{Quot}}_d(N,r),\det\mathcal{S}_x\otimes\mathbb{S}_\lambda(\mathcal{S}_x)\otimes\mathbb{S}_\mu(\mathcal{S}_x))=0.$

Compare with genus 0, 3-pointed quantum K-invariants of Grassmannian:

 $\langle \alpha_1, \alpha_2, \alpha_3 \rangle_{0,3,d}$

where $\alpha_1, \alpha_2, \alpha_3 \in K^0(Gr(N, r))$.

Compare with genus 0, 3-pointed quantum K-invariants of Grassmannian:

 $\langle \alpha_1, \alpha_2, \alpha_3 \rangle_{0,3,d}$

where $\alpha_1, \alpha_2, \alpha_3 \in K^0(Gr(N, r))$. (Buch-Mihalcea '09) Uses Schubert subvarieties of Grassmannian $[\mathcal{O}_{\lambda}] := [\mathcal{O}_{X_{\lambda}}]$.

Compare with genus 0, 3-pointed quantum K-invariants of Grassmannian:

 $\langle \alpha_1, \alpha_2, \alpha_3 \rangle_{0,3,d}$

where $\alpha_1, \alpha_2, \alpha_3 \in K^0(Gr(N, r))$. (Buch-Mihalcea '09) Uses Schubert subvarieties of Grassmannian $[\mathcal{O}_{\lambda}] := [\mathcal{O}_{X_{\lambda}}].$

• Use (stable) Grothendieck polynomial to relate the two basis.

Compare with genus 0, 3-pointed quantum K-invariants of Grassmannian:

 $\langle \alpha_1, \alpha_2, \alpha_3 \rangle_{0,3,d}$

where $\alpha_1, \alpha_2, \alpha_3 \in K^0(Gr(N, r))$.

(Buch-Mihalcea '09) Uses Schubert subvarieties of Grassmannian $[\mathcal{O}_{\lambda}] := [\mathcal{O}_{X_{\lambda}}].$

- Use (stable) Grothendieck polynomial to relate the two basis.
- We have the following corollary

Compare with genus 0, 3-pointed quantum K-invariants of Grassmannian:

 $\langle \alpha_1, \alpha_2, \alpha_3 \rangle_{0,3,d}$

where $\alpha_1, \alpha_2, \alpha_3 \in K^0(Gr(N, r))$. (Buch-Mihalcea '09) Uses Schubert subvarieties of Grassmannian $[\mathcal{O}_{\lambda}] := [\mathcal{O}_{X_{\lambda}}]$.

- Use (stable) Grothendieck polynomial to relate the two basis.
- We have the following corollary

COROLLARY

For any
$$F, G \in K^0(Gr(N, r))$$
 and $d > 0$,

$$\langle [\mathcal{O}_1], F, G \rangle_{0,3,d} = \langle F, G \rangle_{0,2,d}.$$

Thank you!

Schur bundles over Quot schemes

3