Refined curve counting and tropical
geometry
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Lecture 3: Floor diagrams, Feynman diagrams and Fock space



curve counting

plane tropical curve of degree d:
piecewise linear graph I' immersed in R? s.t.

@ the edges e of I have rational slope
© they have weight w(e) € Z-¢
© balancing condition:

let p(e) primitive integer vector in direction of e;
for all vertices v of I':

> ple)w

eatv
Qo F has d unbounded edges in each of the directions
—1,-1),
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urve counting

A lattice polygon A in R? is a polygon with vertices with
integer coordinates

To a convex lattice polygon A one can associate a pair
(S(A), L(A)) of atoric surface and a toric line bundle on S

S is defined by the fan given by the outer normal vectors of A
hO(S, L) = #(A N Z?), arithmetic genus #int(A N Z?)

Examples: )
9 (72,0(d)) EB (¥ or2)
Q (P' x P!, O(dy, b)) 5 . } Qr'xr’,(y(z,d)

© Hirzebruch surface X, = P(O & O(m)) on P!
F fibre, E section with E2 = —m, H := E + mF

L:= (aH + nF) {: @, 20F)




Ve counting

plane tropical curve of degree A:
piecewise linear graph I' immersed in R? s.t.

@ the edges e of I have rational slope
© they have weight w(e) € Z-

© balancing condition:
let p(e) primitive integer vector in direction of e;
for all vertices v of I':
> p(e)w(e) = 0.
eatv
© For every edge of A (of lattice length n) I has n unbounded
edges in corresponding outer normal direction

:¢>: ¥, 002.2)



Tropical curve counting

Known: through #(A N Z?) — 1 — § general points in R?, there
are finitely many §-nodal degree A tropical curves, all simple
(Simple tropical curves are in particular trivalent)

Count these curves with certain multiplicities

Always use the same principle: for every (trivalent) vertex v of a
simple tropical curve I define a vertex multiplicity u(v).

The multiplicity of I"is u() = [, venex U(v) and the
corresponding curve count is

UA_.(; = Z U(r)

r

(sum over all 5-nodal, degree A tropical curves through
#(ANZ? —1 — 6 general points in R?)



curve counting

Tropical Severi degree nj%: define vertex multiplicity as

m(v) := w(e)w(ez)| det(p(er), p(e))l,  m(f) = [ m(v)

v vertex

Tropical Welschinger invariants W% define vertex
(—1)™)D/2 m(v) odd

multiplicity as w(v) := {0 m(v) even

Refined Severi degree Ny (y): define vertex multiplicity as
M(v) := [m(v)], with quantum number: [n], := %
By definition Ngog)(1) = nzog = n{S(A),L(A)),é:

NK??(—” = WK?(? = Ws(a).L(a)).s(P)

NK‘?(?(y) is a tropical invariant, i.e. independent of the position
of the points.



Vertically stretched configuration

Vague definition: A configuration py = (X1, ¥1).....Pn = (Xn, ¥n)
of points in R? is called vertically stretched if

mini4(|yi — yj|) > max(|x; — x;|)

(Points are stretched out close to vertical line)

Consider them ordered by vertical component
i<yYa<...<Wn

(we turn the drawings so that vertical becomes horizontal)

Let I' be a §-nodal degree A tropical curve through a vertically
stretched configuration of (A NZ) — 1 — d points. Then I has
a special shape: a floor decomposition:



Vertically stretched configuration

A vertical edge of C is called an escalator
A connected component of closure of complement of
escalators in I is called a floor.
The following properties hold:
@ Every floor and every escalator contains precisely one
marked point.
© Only the escalators can have weights different from 1
@ any vertex v has multiplicity m(v) = 1, unless it is adjacent
to am escalator e, in which case the multiplicity is
m(v) = w(e).



Floor diagrams

To I tropical curve through horizontally stretched conf. of points
associate marked floor diagram.

escalators: horizontal segments of I’ »0———1
floors: conn. comp. of complem. of
escalators. One marked point on
every floor and escalator ‘
Floor diagram: black vertex for rod

escalator white vertex for floor ’?‘ Lo

connect if escalator connects to floor
keep weight of escalator




Floor diagrams

To count tropical curves we can just count floor diagrams

Description of floor diagrams

@ Every bounded edge connects a black and a white vertex

© Every unbounded edge connects to a black vertex

© every black vertex is connected to two edges, one
incoming (i.e. from left), one outgoing, both of the same
weight.

© white vertices v can have several incoming and outgoing
edges the divergence »

dfv(v) - Ze—fncommg W(e) - Ze—ourgomg W(e)-



Floor diagrams

A floor diagram is é-nodal of degree d

(i.e. a floor diagrams of d-nodal tropical curve of degree d) if it
has d incoming edges of weight 1, no outgoing edges

d(d +3)/2 — ¢ vertices of which d are white of divergence 1

W—o 1- nodel curve
{ e



Floor diagrams

Counting of floor diagrams
Put m(A) =[], edges[w(e)]y
By definition:

Proposition

NyP(y) = >

d-nodal floor diagrams A of degree d

2.2

WO

m(A)

mlh) = (ye2+ 3").




Floor diagrams

more generally can define §-nodal floor diagrams of degree A
for A an h-transversal lattice polytope
i.e. slopes of the edges of A are 0, o or 1/m, for m integer

For simplicity deal with P! x P! and Hirzebruch surfaces X,



Floor diagrams

(P' x P',O(dy. db)): A has d; incoming edges and d; outgoing
edges of weight 1
(dy +1)(d2 + 1) — 1 — 4 vertices of which d, are white of

divergence 0 2 2 1-novtee
A o 7 daneel2,)

(m, dH + nF), H? = m, F fibre. A has n+ dm incoming edges
and n outgoing edges of weight 1

(d+1)(n+1)+m(3) — 15 vertices of which d are white of
divergence m.

@oﬁ.—io_._, 3, WeF), S



Floor diagrams

Counting of floor diagrams
Put m(A) =[], edges[w(e)]y

Proposition

N2 (y) = 3

d-nodal floor diagrams A of degree d

2 1

o

m(A)

m (/] )= (J foJM)




Floor diag

Contacts and Caporaso Harris Recursion formula

Floor diagrams with contacts: Can use floor diagrams to
prove versions of Caporaso-Harris recursion
For simplicity restrict to case of P?

Let a = (191,2°2,..)), = (1%1,2%, . ) partitions

A floor diagram is -nodal of degree d, with contact «, 3, if

has «; incoming edges of weight i connected to white vertices
for all i, 3; incoming edges of weight i conn. to black vertices
no outgoing edges

d(d+3)/2 -6 —||la|| —||8] + |8]| vertices of which d are white

of divergence 1 2.2 33 2,
(ol = 3y, Jo] = Ty0) 0~ 0~70+0

d=4,53 =) p=()



Floor diag

Contacts and Caporaso Harris Recursion formula

2 2 3 3.22
Counting of floor diagrams

Put m(A) = [T eqgesl(E)]y [u’m (e 2oy 2302557

|Z>

Proposition

Ni%P(a, B)(y) = 3 m(A)

d-nodal floor diagrams N of degree d, contact «, 3

Caporaso-Harris recursion: Remove one by one the vertices
from the right.



Floor diag

Contacts and Caporaso Harris Recursion formula

Nos(cv, B)(y) = Z [k]yNa.s(a+ ek, 8 — ek)(y)
k|8 >0

5 T () it

Alal b i

a = ((1‘1 , 00, .. .), 8= (,;"31 , B, .. .), (E) = Hr‘ (i,;:),
ex=(0....,0,1,0....): 1in position k.

(first sum: remove black vertex,

second sum: remove white vertex)

Second sum is over all o' < «, 5’ > § and §’ such that

[+ 18 =d =1, §"=d-(d=1)+[5]-5|

y = 1 gives Caporaso-Harris recursion,
y = —1 gives recursion for Welschinger invariants.



L,
W (9)2) = —@—1 //Vz,o(ﬂ),ff)=—0+2 0

Thes fh 4 (4, 00) = 2eloe - 4, > ye v ys5-59)
b 20 0 ]



Heisenberg algebra

H deformed Heisenberg algebra gen. by a,, b,, neZ
a_n, b_pwith n > 0 are called creation operators

an, by with n > 0 are called annihilation operators
commutation relations

n/2 —n/2
yrr-y

1/2 12
yie=y

Fock space: F generated by creation operators a_,, b_,
acting on vacuum vector v

elements of F are f vy, where f is a polynomial

(with coefficients in y='/2in the a_,, b_,)

H-module by anvp := 0, bpvy :==0forn>0

(concatenate and apply commutation relations) e.g.
ar(a-1a-2vp) = a-1(a2a +[2ya-1)vy = (y"2+y a1y

[@n, @m] = 0 = [bn, bm], [@n, bm] = [N]ydn—m. [N]y =



Heisenberg algebra

Basis paramtr. by pairs of partitions
= (1”1 2“2 )y v= (1”1 2v2 . ..)

=11 M.,a p = H, ,,5|mllarly forb,, b_,
Vp.,p :=a_,b_,v basis for F

inner product (vy|vy) = 1; an, by adjointto a_n, b_p

Explicitely (V.. [vy,) = (T1, 94 ) (T1, B9 ) 600610



Heisenberg algebra

Expression for refined Severi degrees in terms of
Heisenberg algebra:
Case of P?:

H(t) =Y bbx+t > aa,

k>0 [l =l[w][ =1

el == >0 ipis sum includes p = ()

Theorem

NyP(y) = (V1) g|CoeffyaH(t)X+3)/2=0y)

Generating function
19 gd(d+3)/2-5

2050 2530 m“@?()’) = (vy| exp(qH(t)) exp(a_1)vp)



Heisenberg algebra

Case of Hirzebruch surface % ;:
Hm(r) = Z bkb—k + f Z aua—lu.
k>0 [lell=]lef| —m
el = > iuis sum includes p = ()

Theorem

t d 1
N(rzoi):’H+nF),5(y) = (V(1dm+n)__@|C0€ff,aHm(r)(d+1)(2+”+” 1 (sv“n)__@)

J



ldea of proof: Feynman diagrams = floor diagrams

Feynman diagrams: To monomial M in bib_y, a,a-, and
inner product (V{1n),m|MV(1.r),m> associate diagrams:
@ black vertex for bib_, with one incoming and one
outgoing edge of weight k
@ white vertex for a,a_,, with weights of incoming vertices
given by 1, weightsof outgoing vertices by p. e.g. for
2@y =
@ write vertices in order they are in the monomial
@ connect the vertices, all half edges are connected except
for nincoming edges of weight 1 and / outgoing vertices of
weight 1
@ edges connect only vertices of different colour, and the
weights match

%O
(b1 b_1 )28(12)8_1 b1 b_1 aiq



ldea of proof: Feynman diagrams = floor diagrams

@ connect the vertices, all half edges are connected except
for nincoming edges of weight 1 and / outgoing vertices of
weight 1

@ edges connect only vertices of different colour, and the
weights match

count the diagrams for M with multiplicity
m(l) == ]1e edges[w(e)]y-

Proposition (Wicks Theorem)

(VamalMvang) = Y. m(r)
" Graphs for M



ldea of proof: Feynman diagrams = floor diagrams

Idea of proof of proposition: Can write v(in)y = a_(1n), thus
(V(1n),m|MV(1F),w> = (Vm|a(1n)Ma—(1!)Vm)-

This allows to reduce to case n= [/ = 0.

(1) Now let N be any monomial in the a;, b;, i.j € Zg

Assign diagrams to (vp|Nvy).

@ For each g; put white vertex, with incoming edge of weight
i (if i > 0) and outgoing edge of weight —i (if / < 0)

@ For each b; put black vertex, with incoming edge of weight
i (if i > 0) and outgoing edge of weight —i (if / < 0)

@ adiagram for (vy|Nvy) is a diagram with these vertices,
such that the total diagram has no incoming and no
outgoing edges.

Count these diagrams with multiplicity m(T") := [, eqges[W(€)]y-
Remark: (vy|Nvy) = > r Graphs for N m(T)



ldea of proof: Feynman diagrams = floor diagrams

Remark: (Vﬂ|NVﬂ) - ZI‘ Graphs for N m(r)

Compute by applying commutation relations to move
annihilation operators an, bs, n > 0 to the right, and creation
operators to left

We get many summands. They are only nonzero where none of
the creation and annihilation operators survive

We get e.g. Uanb_nV = Ub_panV + [n], UV

do not connect the vertices for by, an for the first summand,
connect them for the second summand

We get a nonzero result only if every vertex is connected to a
other one



ldea of proof: Feynman diagrams = floor diagrams

Let M = my --- my monomial in the (a_,a,), (b—xbk), b_k

Assume M contains factors a_sa,s fors=1,....n
Then M = WN’ where N is obtained from M by

replacing the a,sa_ s by (H}- a;-}") (H}- ai"j) .
The Feynman diagrams for M are obtained from the diagrams
for N by

@ replacing all vertices corresponding to each (a,sa—,s) by
one white vertex

@ replacing the two vertices corresponding to b_by by one
black vertex

This maps []4_, p5!'v°! graphs corresponding to the
reorderings of the factors in each [] -(a_f)"'f : H}-(af)”fs to
equivalent Feynman diagrams for M’



ldea of proof: Feynman diagrams = floor diagrams

(a1 )2b1 b_1b1b_1(ay )2 =4

&Y o oY e a0
e Y [T

a(_12)b1 b_1b1b_1a(12) = 1

0T, —0



ldea of proof: Feynman diagrams = floor diagrams

Claim: floor diagrams = Feynman diagrams Do this just in
case of P2,

Recall: H(t) := 3o bk + 132 = -1 @81

We claimed: N(’;{gp(y) = (vmm|Coef’f’,dH(r)d(d+3)f'2—5 Vo)
Corresponding Feynman diagrams:

d(d + 3)/2 — é-vertices (every factor H(t) adds one vertex)
of which d are white (the a,a_,, go with the t in H(t)

all the white vertices have divergence 1 (because of
condition ||u|| = ||v|| — 1).

We have d incoming edges and no outgoing edges of
weight 1 (because we have (V(10) y|)

edges connect of different colour, and the weights match

This precisely was our description of the §-nodal floor diagrams
of degree d.



ldea of proof: Feynman diagrams = floor diagrams

A floor diagram is é-nodal of degree d

(i.e. a floor diagrams of d-nodal tropical curve of degree d) if it
has d incoming edges, of weight 1, no incoming edges

d(d +3)/2 — ¢ vertices of which d are white of divergence 1



