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Severi degrees

Severi degree: ng ; = #{6 — nodal, degree d curves
through (d +3)d/2 — ¢ gen. points}
General surface: S proj. alg. surface, L line bundle on S
L| = {C = Z(s) | s section of L} = P/~

P’  |L| general §-dimensional linear subspace
Severi degree: ns ) s := #{d-nodal curves in P’ }

General surface: S proj. alg. surface, L line bundle on S

L| = {C = Z(s) | s section of L} = PP

P’  |L| general §-dimensional linear subspace
Severi degree: n(s,) s := #{d-nodal curves in P’ }



Refined invariants

Assume L is sufficiently ample with respect to 4.

Sl —Hilbert scheme of points on S

C ={(p,[C))|p € C} C S x P° universal curve

¢l = {([2].[C])|Z c C} c S x P’ relative Hilbert scheme
X-y-genus x_y(X) = Zp (=1)PTahPa(X)y 1

Write » " x_,(ClM)t Z NE(y t)(1 — yt))9b-1-1
n>0 1>0

g(L) =genus of smooth curve in |L|

Refined invariants N(S:L)-9(y) := NS(y)/y?. By definition

NS:-D-o(1) = ns,L),s-



Refined invariants

Z N(S:L), 5 t5 ALEALKSA sAx(Os)
§>0

for universal power series A1, Az, As, As € Qy="][[1]]
Ay and A4 are expressed in terms of modular forms.

Theorem

The conjecture is true if
© S is an abelian or a K3 surface
@ modulo t'" for all surfaces



Refined invariants

Know: N(5:D-2(1) = n g ) 5 for L sufficiently ample
What is the meaning at other values of y?
What do the refined invariants count?

The claim is that for toric surfaces this has to do
with real algebraic geometry and tropical geometry



Welschinger invariants

Welschinger invariants:

Let S real algebraic surface; complex conj. - maps Sto S
real algebraic curve = curve C such that 7(C) = C

Real locus of C: C* = C”

P configuration of dim |L| — ¢ real points of S
Welschinger invariants: Ws ) 5(P) = Z(—1)S(C)

sum is over all real 6-nodal curves C in |L| though P

2
s(C) = #{isolated nodes of C} (.o lowl W ’“y
. S S(C) -3
These invariants depend in general on the point configuration,
via walls and chambers. These are in general not the actual

Welschinger invariants, which are deformation invariants, but
we use the name by abuse of notation.



Tropical curve counting

What | say below is for toric surfaces, for simplicity restrict to P2

Tropical geometry: piecewise linear version of algebraic
geometry

Real and complex algebraic curves can be counted by counting
piecewise linear objects: the tropical curves



Tropical curve counting

plane tropical curve of degree d:
piecewise linear graph I' immersed in R? s.t.

@ the edges e of I have rational slope
@ they have weight w(e) € Z-

© balancing condition:
let p(e) primitive integer vector in direction of e;

for all vertices v of I': < :‘(;
Z p(e)w(e) = 0.

eatv
() F has d unbounded edges in each of the directions
—1,-1), (0,1)

e T



Tropical curve counting

A lattice polygon A in R? is a polygon with vertices with
integer coordinates

To a convex lattice polygon A one can associate a pair
(S(A), L(A)) of atoric surface and a toric line bundle on S

S is defined by the fan given by the outer normal vectors of A
hO(S, L) = #(A N Z?), arithmetic genus #int(A N Z?)

P B fom 4///]
R



its and tropical geometry

Tropical curve counting

Q (P2,0(d)) h 0?2)6(3))

(W’alf’j (7(2,3))

© Hirzebruch surface £, = P(O © O(m)) on P!
F fibre, E section with E2 = —m, H := E + mF

L:= (0H + nF) (Z”ZLHBF)



Tropical curve counting

plane tropical curve of degree A:
piecewise linear graph I' immersed in R? s.t.

@ the edges e of I have rational slope
© they have weight w(e) € Z-

© balancing condition:
let p(e) primitive integer vector in direction of e;
for all vertices v of I':
> p(e)w(e) = 0.
eatv
© For every edge of A (of lattice length n) I has n unbounded
edges in corresponding outer normal direction

— ameof /ﬂruﬁl,l)aaﬂ‘w

S




Tropical curve counting

There is a notion of simple tropical curve

(these can be thought of as analogues of nodal curves)
Simple tropical curves are in particular trivalent

The genus g(I) of a tropical curve I — R2is h'(I") — h%(T) + 1
The number of nodes of a simple tropical curve of degree A is
#int(A) — g(T)

Known: through #(A N Z?) —1 — § general points in R?, there
are finitely many d-nodal degree A tropical curves, all simple

:§\/ L i e



Tropical curve counting

Count these curves with certain multiplicities

Always use the same principle:

for every (trivalent) vertex v of a simple tropical curve I define a
vertex multiplicity u(v).

The multiplicity of I"is (') = [, venex %(v) and the
corresponding curve count is

u(a,6) ==> u(r)

r

(sum over all 5-nodal, degree A tropical curves through
#(ANZ?) —1 —§ general points in R?)



Tropical curve counting

Tropical Severi degree: Let I' simple tropical curve, v vertex,
e1, €2, e3 edges at v, define vertex multiplicity as

m(v) := w(ei)w(ez)| det(p(er). p(e2)).  m(N) = [[ m(v)

e P(L.) poomboi o vy v vertex
(TSN

r(ll) Vr(h) 7
Tropical Severi degree: njy := > m(r)

-
sum over all 5-nodal, degree A tropical curves through
#(AN7Z?) —1 — ¢ general points in R?.



Tropical curve counting

Let I' simple tropical curve, v vertex

o (=1)m=1/2 m(v) odd
V)= 0 m(v) even

v vertex
Tropical Welschinger inv.: W% := " w(r)

-
sum over all 5-nodal, degree A tropical curves through
#(AN7Z?) —1 — ¢ general points in R?.



Tropical curve counting

Mikhalkin: The Severi degree is equal to the tropical Severi
degree and the Welschinger invariants are equal to the tropical
Welschinger invariants.

troj troj
Ngs = ”d_.éov Ngs = ”d_.éo

Was(P) = Wy, Wisa)ia)s(P) = Wa%

(the second for suitable P)
We know, for L(A) sufficiently ample N24(1) = ng(a) 1(a)).s

Conjecture
Ford > 5§/3 +1 N%%(—1) = WJ%

Is there a tropical invariant N % (y), that interpolates between
Severi degree and Welschinger invariant?



Refined Severi degree

nj2_y—n2 By (ne3), ‘h")i
quantum number: [n], := % =y NN )
(=1)("=1/2 " n odd

By definiti =M N1 =
y definition [n]; = n, [n] 4 0 n even

Let I' simple tropical curve, v vertex

M(v) = [mv)l,. M) = [] M)

v vertex

Refined Severi degree: N;’:‘;p(y) = > M(I") sum as above

By definition N5%(1) = n%® = ng.,

Ny (1) = Wy = Was(P)

ltenberg-Mikhalkin: NJ%(y) is a tropical invariant, i.e.
independent of the position of the points.



Refined Node polynomials

Ford > §/2+1, N%%(y) = Ni%(y)

The above conjectures specialize to

Conjecture
Q@ NiP(y) = N%(y) ford > 6

© N99(y) is a polynomial in d, y*'
(3

SN (y)t = B BYBy
8>0

for universal power series B; € Q[y*="|[[{]]. (gn Lofoe)



Refined Node polynomials

@ There exist refined node polynomials
Ns(d,y) € Q[d. y='] with N;(d.y) = NG (y) for d > 6.

@ Nj(d,y) = N99(y), fors < 10.

Theorem

|
|I\)
|

3" Ns(d, y)* = B B3Bs

5>0

for power series B; € Q[y*="][[1]].

Rest of the conjecture is B; = B; for i = 1,2, 3.

Note that in particular the specialization to y = —1 gives a
corresponding result for the Welschinger invariants.



Node polynomials

Floor diagrams

The method to prove this is floor diagrams and combinatorics

These have been introduced by Brugallé and Mikhalkin to study
the ngﬁ;", and used e.g. by Block, Liu, to prove the analogue of

the above results for n;%



