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Lecture 1: Curve counting and refined curve counting



Aim: count (singular) curves on algebraic surfaces
What does this mean?
cCcp” projective cu rve over C

If Cis smooth, g(C) = genus = #handles
If C singular,

9(C) = geometric genus = genus of normalization.

XK « CA  40-0

a(C) > g(C) genus of smooth deformation

X - O elo-

Simplest singularity = node =transversal self intersection

a(C) - g(C) = 1 D<



Severi degrees: count nodal curves in P?
C plane curve of degree d
C = Z(F) c P?, F € C[xp, X1, X2] homog. of degree d

{curves of degree d in P2} = P(9+3)d/2,

A node imposes one condition on curves of degree d
passing through a gen. point imposes one condition

Severi degree: ng ; = #{6 — nodal, degree d curves in P2
through (d +3)d/2 — 4 gen. points}

(same as number of curves of genus (?,") —¢)
Ngo =1, ng1 = 3(d — 1)? (Steiner 1848)



Curve counting

General surface: S proj. alg. surface, L line bundle on S

L| = {C = Z(s) | s section of L} = PP

P’  |L| general §-dimensional linear subspace
Severi degree: n(s;); := #{d-nodal curves in P’  |L[}



There are different ways to count curves in varieties
Usually there are several steps:
© Find the correct compact moduli space M, parametrizing
the curves and the degenerations one wants to allow.

©@ On wants to count curves satisfying certain conditions, this
will be an intersection number on M.

© Often one needs to use a virtual fundamental class and
count "virtual numbers of curves".



(0) Severi degrees: curves are elements of |O(d)| or |L|

Count curves with given genus through correct number of

points as points in proj. space P (L)1

(1) Gromov-Witten invariants: Count maps f : C — X.

Look at moduli space

Mgy (X, 3) = {(C,f) stable map f : C — X, C nodal curve of
genus g, £.([C]) = B € H3(X,Z)}

(2) Pandharipande-Thomas invariants:

These count possibly degenerate curves in C C X,

by counting their structure sheaves on Ox — O¢

P-T moduli space:

Pn(X, ) := {(F, s) \ F pure 1-dimensional sheaf on X,

s: Ox — F section, dim(coker(s)) =0, cx(F) = 8, x(F) = n}

Conjectural PT-GW correspondence:

PT and GW invariants conjectured equivalent (generating

functions related by explicit change of variables)



Curve counting

Why are the Severi degrees interesting?

(1) Classical old question

(2) Rel. to other invariants and moduli spaces
(Pandharipande-Thomas-invariants, Gromov-Witten-inv)
(3) Relation to physics (string theory).

String theory also gives refined invariants.
N(s.1),s should be Euler numbers of some moduli space M
The refined invariants something like Betti numbers.



Curve counting conjecture

Severi degree: ny s = #{6 — nodal, degree d curves in P2
through (d +3)d/2 — § gen. points}

ns.L)s == #{6-n0dal curves in P C |f_|}

Are there closed formulas for the n g ) ; in terms of the

"topological data" L2, LKg K2, c,(S)? Itis easy to see that this

cannot be true without conditions: L must be sufficiently ample

with respect to 4. Formulas for n(s 1) ;s as polynomial in

L2, LKs, K3, c2(S) computed by Avritzer-Vainsencher for § < 6
and by Kleimann-Piene for larger 4.



Curve counting conjecture

Conjecture (G’97)

@ There exists a universal polyn. n‘S:b)9 jn
L2, LKs, K3, c2(S) computing ng 5 for L sufficiently
ample with respect to 6 (more below)

Q
Z (S04 _ pl2 AéKsA;@ A:{(Os)_
50

for universal power series Ay, Az, Az, Aq € Q|[1]]
(in particular 3. Na 5t° = Ag"g A5 %9 ASA,. modulo t29-2))

Proven by Tzeng, Kool-Shende-Thomas

KST obtain n(S:£)9 from generating function of Euler numbers
of Hilbert schemes of points on the universal curve C/P’

This Hilbert scheme is a Pandharipande-Thomas moduli space
so ntS:h-9 s closely related to PT-invariants



Curve counting conjecture

Example: 1-nodal(|2Iane curves of degree d

C — P! total spacevgeneral pencil of curves of degree d in P2
contains finite number of 1-nodal curves

Euler number of smooth curve of degree d is 3d — d?.

a node increases Euler number by 1. Thus @ @

e(C) =2(3d — d?) + ngy <)o eC)1=1
C is blowup of P2 at o2 intersection points of Z(F) and Z(G)
F(xo. X1, X2), G(x1, X2, X2) gen. polynomials of degree d.
Euler number e(C) = 3 + d?. Thus

Ng1 =3+ d?+2(d? - 3d) = 3(d — 1)



Review of Hilbert schemes of points

To make argument work for larger number of nodes
replace universal curve by relative Hilbert scheme of points

X projective variety. Hilbert scheme X[l of n points on X
parametrizes zero dimensional subschemes of length non X,
i.e. generically sets of n points on X.

On a smooth curve C a subscheme of length nis a set of n
points counted with multiplicity.

If S is a smooth projective surface, then SI! is smooth
projective variety of dimension 2n.

For any line bundle L € Pic(S) have a tautological vector
bundle LI of rank n on SI"l with fibre LI"([Z]) = HO(L|z).



Sketch of KST proof

Recall L e Pic(S) suff. ample (e.g .d-very ample, sufficient: Cl"!
below is smooth),

P% c |L| general linear subspace

C:={(p.[C]) € Sx P’ | pe C} universal curve

(fibred over P° with fibre C over [C])

¢l .= {(12].[C]) € S x P’|Z c C} rel. Hilbert scheme
(fibred over P with fibre C[" over [C])

KST show:

- JE 1:0), .,£ sth.
Z C[ﬂ] chrf 2g(L) 2-2
n=0
g(L) genus of nonsmgular curve in |L|

2dim(X)

e(X)= > (—1)'rk(H'(X.Z)) topological Euler number
i=0

(2] ns,L).s = n§



Sketch of KST proof

Why does this prove the conjecture?

Assume L is §-very ample (or just C[" is smooth) .

e(c") is tautological intersection number on S!"I:

LI tautological vector bundle on SI, LI7([Z]) = HO(L|).
Let H pullback of O(1) from PP°. b s

LI ) H has section s with zero set Z(s) = Cl"le S x P

This allows to compute e(Cl™) as intersection number on SI":

e(ClM) = / c(Tm)n(LI" B H)
Jsoes  o(LM & H)

(c(E)=1+c(E)+... + cxE)(E) Chern class).




Sketch of KST proof

' H
ly _ c(Tsm)cn(L )
e(Cc) = /:g[n]x_vﬁ C(f_[”] X H)

(c(E) =1+ ¢i(E) +... + cxE)(E) Chern class).
Ellingsrud-G-Lehn: such "tautological” integrals are always
given by universal polynomials in L2, LKg, K3, C2(S). By

Z C[ﬂ] )q" = anr’ 2g(L) 21-2

n=0

this gives for L sufh(:lently ample the number r§ is a universal
polynomial in L2, LKg, K2, cx(S). Denote this polynomial by
n(S:b2 for all (S, L), then n(S:H)0 = n(g ) 5 for L sufficiently
ample.



Refined curve counting

Give refinement, replacing Euler number by x_,-genus
Sl —Hilbert scheme of points on S

C = {(p,[C))|p € C} S x P’ universal curve
clnl = {([Z],[C))|Z c C} c Sl x P relative Hilbert scheme

X-y-genus X—Y(X) - Zp,q(_np—i_th’q(x)yq

Write
ZX—y(C[”])rn — ZDO: N;C(j/)f;((‘l —1)(1 - yr))g(t)—f—1
n=0 10

g(L) =genus of smooth curve in |L]|

By similar argument to above NS (y) is universal polynomial in
L2, LKs, K2, co(S) if Lis d-very ample.

Refined invariants: N(:D-%(y) polynomial in L2, LKg, K2, cx(S)
s.th. N(S:Do(y) .= N§(y)/y? for L sufficiently ample.



Refined curve counting

Replaced Euler number by x_,-genus (combin. of Hodge

numbers) obtain refined invariants N(S:0)2(y) € Z[y, y~1], with
N(SDS(1) = p(S.L).d

Denote them N%°(y) in the case of P2

Conjecture

Z N(S,L),S(y)t& _ Afngfz-KsA;@Ai((Os)_
5>0

for universal power series A1, Az, As, As € Qy="][[1]]
Ay and A4 are expressed in terms of modular forms.



Refined curve counting

Generating function for refined invariants N(>1-°(y). D= q&
A(y,q) = qllnse(1 =91 = yg")?(1 -y 'q")?,
d.-"E —d /232
DGa(y, q) = an q" (Zcﬂn d%ﬁ%)
Bi(y,q)=1- (y+3+y‘1)
BE(Y:Q)=1+(Y+3+}’ Na -+ (v +y—2) +...

Conjecture

NSO () (BBl q))* = (P00 D/ AVB1(y. 9 Baly. q)11
; (A(}Gq) DDGz(y;q)/QE)“(L x)/2

Putting y = 1 recovers the old conjecture




Refined curve counting

Reformulation without variable change: D := g .

Aly.q) =qIls(1 = q"°(1 = yq")?(1 -y 'q")%,

d.-"E —dj242

DGE ¥, 9) = 2n=1 9" (Zcﬂn O'W)
Bi(y.q)=1-q—(y+3+y ")g® +..
Bz(y=q)=1+(y+3+y‘1)0+(y +y g+ ...
r:= x(L) — 1 — é number of point conditions for é-nodal curves in |L]
(i.e. count s-nodal curves through r gen. points on S). Then

DGs(y.q))’

e e,

DDGy(y. 9B, q)*Ba(y. Q)LKx‘|
(A(y.q) DDGa(y, q)) X7/

«fﬂog(#))
)oz(ﬂ %1 Q)m

N(SL}G(}/) = COC[TQ[LE—LKS]IE

)



Refined curve counting

The conjecture is true m 4, ney Cany

@ Fory = 1 (this is the old conjecture which was proved).
© S s an abelian or a K3 surface

© modulo q"" for all surfaces (i.e. for up to 11 nodes)

J



Refined curve counting

Check of Conjecture: x_,(CI") computed by very similar
integral on Sl as e(Cl).

EGL: coeff. of x_,(C[™) are univ. polyn. in L2, LKs, K%, c2(S).
= determined by values for

(S,L) = (P?,0),(P?,0(1)), (P2, 0(-1)), (P! x P',0).

These are toric surface: action of T = C* x C* on S with finitely
many fixpoints. Action lifts to SI"! with finitely many fixpoints
P1,...,Pe.

Bott Residue formula: Integral for x_,(Cl") on Sl can be
computed in terms of the weights of action of T on the fibres
Tsm(pi), LI(p;). Programmed on computer:

Result: Conjecture is true modulo g'.



Refined curve counting

Case of a K3 surface: Let S K3-surface, e.g. quartic in P3,
L primitive line bundle on S

Write M , , (v) := N(SD-9(D-K(y) (genus k curves in |L|

through k points).

: : s s DGa(y.q)
Conjecture says: dZ):O M3k(V)q? = =5 )
Case of an abelian surface Let A abelian surface,
L primitive line bundle on A Write
M, o ((y) = NAD-9W-K=2(y) (genus k + 2 curves in |L|
through k points)
Conjecture says: 3 My 4(y)q® = DGa(y.q)*DDGx(y. q)

d=0



Refined curve counting

By the multiplicativity of the generating functions,

it is enough to show these for k = 0. In this case the relative
Hilbert scheme is isomorphic to a moduli space of pairs,
parametrising sheaves of dimension 0 with one section.

In the case of K3 surfaces this was studied by Kawai and
Yoshioka, giving the formula.

A similar, a bit more complicated argument gives the result for
abelian surfaces.



Refined curve counting

Know: N(5:D-2(1) = n g ) 5 for L sufficiently ample
What is the meaning at other values of y?
What do the refined invariants count?

The claim is that for toric surfaces this has to do
with real algebraic geometry and tropical geometry



