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Tropical geometry is sometimes called the combinatorial
shadow of algebraic geometry

Algebraic varieties: zero sets of polynomials F(xi,...,Xp) in C"
Replaced by simpler combinatorial objects
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Tropical geometry is sometimes called the combinatorial
shadow of algebraic geometry

Algebraic varieties: zero sets of polynomials F(xi,...,Xp) in C"
Replaced by simpler combinatorial objects

Combinatorial properties of tropical varieties reflect geometric
properties of algebraic varieties

Many results in algebraic geometry have counterparts in
tropical geometry



Introduction Tropical Varieties Plane tropical curves Tropical enumerative geometry References

[ JO) 000000 0000000000 000000000 @)

Tropical geometry is sometimes called the combinatorial
shadow of algebraic geometry

Algebraic varieties: zero sets of polynomials F(xi,..., Xn) in C"
Replaced by simpler combinatorial objects

Combinatorial properties of tropical varieties reflect geometric
properties of algebraic varieties

Many results in algebraic geometry have counterparts in
tropical geometry

Many problems in algebraic geometry can be translated into
tropical geometry and then are easier to solve
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Tropical geometry:
@ originates in computer science
(name in honour of Imre Simon, Brazilian computer
scientist: first studied the max-plus algebra, at the basis of
tropical geometry)
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Tropical geometry:

@ originates in computer science
(name in honour of Imre Simon, Brazilian computer
scientist: first studied the max-plus algebra, at the basis of
tropical geometry)

@ has applications in many fields:
algebraic geometry (e.g. enumerative geometry of curves)
physics
economy (e.g. auctions)
biology (e.g. genetics)
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Tropical geometry:

@ originates in computer science
(name in honour of Imre Simon, Brazilian computer
scientist: first studied the max-plus algebra, at the basis of
tropical geometry)

@ has applications in many fields:
algebraic geometry (e.g. enumerative geometry of curves)
physics
economy (e.g. auctions)
biology (e.g. genetics)

| first learned tropical geometry from Gathmann’s notes [Ga]
arXiv:math/0601322, (and consulted them for this talk)

also inspired by Atom lectures
https://sites.google.com/wisc.edu/atonlinemeetings/lecture-series
please watch if you want to know more, or read the book
[Mac-S]
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Algebraic varieties

In algebraic geometry study algebraic varieties:
zero sets of polynomials

X=2Z(F,. .. ,F)CA"=C", F eCx,...,x)
X={(a1,....,an) €C"| Fy(a1,....an) = ... = Fx(ai,...,an) =0}
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Algebraic varieties

In algebraic geometry study algebraic varieties:
zero sets of polynomials

X=2Z(F,. .. ,F)CA"=C", F eCx,...,x)
X={(a,...,an) €C" | Fi(ai,...,an) = ... = Fx(ay,...,an) = 0}

Z(x) C A% line / .
Z(y? — x(x —1)(x + 1)) c A? elliptic curve O < @



Tropical enumerative geometry References
o)

Introduction Tropical Varieties Plane tropical curves
000000 0000000000 000000000

o]e)

Algebraic varieties

In algebraic geometry study algebraic varieties:
zero sets of polynomials

X=2Z(F,. .. ,F)CA"=C", F eCx,...,x)
X={(a1,....,an) €C"| Fy(a1,....an) = ... = Fx(ai,...,an) =0}

Z(x) C A? line /
Z(y? — x(x —1)(x + 1)) c A? elliptic curve O < @

Algebraic geometry is based of algebra of polynomials,
therefore ultimately on the standard basic operations

@ additiona+ bin C
@ multiplicationa- b e C
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Algebraic varieties

In algebraic geometry study algebraic varieties:
zero sets of polynomials

X=2Z(F,. .. ,F)CA"=C", F eCx,...,x)
X={(a1,....,an) €C"| Fy(ai,....an) = ... = Fx(ai,...,an) = 0}

Z(x) C A? line /
Z(y? — x(x —1)(x + 1)) c A? elliptic curve O < @

Algebraic geometry is based of algebra of polynomials,
therefore ultimately on the standard basic operations

@ additiona+binC
@ multiplicationa- b e C
What happens if we change the rules of algebra?
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The tropical semifield

Algebraic geometry is based of algebra of polynomials,
therefore ultimately on the standard basic operations

@ additiona+ binC
@ multiplicationa- b e C
What happens if we change the rules of algebra?
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The tropical semifield

Algebraic geometry is based of algebra of polynomials,
therefore ultimately on the standard basic operations

@ additiona+ binC
@ multiplicationa- b e C
What happens if we change the rules of algebra?

The tropical semifieldis R = (RU {—oo}, ®, ®) with

ad b= max(a,b)
aob=a+b
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The tropical semifield

Algebraic geometry is based of algebra of polynomials,
therefore ultimately on the standard basic operations

@ additiona+ binC
@ multiplicationa- b e C
What happens if we change the rules of algebra?

The tropical semifieldis R = (RU {—oo}, ®, ®) with

a® b= max(a, b)
aocb=a+b>b

Thus we have
SP6 =6, 506 =11
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The tropical semifield

The tropical semifieldis R = (R U {—oo}, ®, ®) with
adb=max(a,b), acGb=a+b
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The tropical semifield

The tropical semifieldis R = (R U {—oo}, ®, ®) with
adob=max(a,b), acGb=a+b

This looks crazy, but is it almost a field:
Easy to check:

@ @ and ¢ are associative, commutative

@ distributive law holds:
(a b) ®c=max(a,b)+c=max(a+c,b+c)=
(acc)ae(bo )

@ —oo IS neutral element of &

@ 0 is neutral element of ®

@ —ais @-inversetoac R=R\ {—o0}
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The tropical semifield

The tropical semifieldis R = (R U {—oo}, ®, ®) with
adbi=max(a,b), acGb=a+b

This looks crazy, but is it almost a field:
Easy to check:

@ @ and ¢ are associative, commutative

@ distributive law holds:
(a b) ®c=max(a,b)+c=max(a+c,b+c)=
(acc)ae(bo )

@ —oo IS neutral element of &

@ 0 is neutral element of ®

@ —ais @-inversetoac R=R\ {—o0}

Only thing missing: elements a € R have no @-inverse:
there is no b € R with max(a, b) = —¢
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Tropical polynomials

Tropical varieties should be "zero sets" of tropical polynomials in R":
polynomials with +, - replaced by &, ®
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Tropical polynomials

Tropical varieties should be "zero sets" of tropical polynomials in R":
polynomials with +, - replaced by &, ®

We write X" = X ©...0 X = mX

m times
For a multindex | = (i, ...,Iy) and X = (Xq, ..., Xn) We write

X'=x'©...0x" = (ix; + ...+ inxp) = - X
The tropical polynomial f = @, a; © x!, a; € Ris the function

f:mlanx(a/+l-x):R”—>]R:br—> m?x(a/+/-b)

Do not write terms with a; = —co. Note 0 @ x/ = x/
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Tropical polynomials

Tropical varieties should be "zero sets" of tropical polynomials in R":
polynomials with +, - replaced by &, ®

Definition

We write x" = X ©...0 X = mX

~

m times
For a multindex | = (i, ...,Iy) and X = (Xq, ..., Xn) We write

X=X O...0x» = (X1 4+ ... +ixp) = 1-X
The tropical polynomial f = @, a; © x!, a; € Ris the function

f:mlanx(a/+l-x):R”—>]R:br—> m?x(a/+/-b)

Do not write terms with a; = —co. Note 0 @ x/ = x/

Example: (—2) © x> ® x & 1 = max(1, x,2x — 2) é‘T
2+

—.1-=
o S R
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Tropical hypersurfaces

Tropical polynomial f = @, a; ® x' = max;(a;+ /- X) : R" = R
Example: (—2) ® x2 @ x & 1 = max(1, x,2x — 2) Al
2_--.

At
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Tropical hypersurfaces

Tropical polynomial f = @, a; ® x' = max;(a;+ /- X) : R" = R

Example: (—2)® x> ® x ® 1 = max(1, x,2x — 2) éli//
jj-.
3 4

. . . . . . . 1.2
Tropical polynomials are piecewise linear. Interesting set is not
the zero set, but corner locus where two linear pieces meet
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Tropical hypersurfaces

Tropical polynomial f = @, a; ® x' = max;(a;+ /- X) : R" = R ,
Example: (—-2)© x2 @ x ® 1 = max(1, x,2x — 2) éj/

2
7

: : : . . . . 1.2 3 4
Tropical polynomials are piecewise linear. Interesting set is not

the zero set, but corner locus where two linear pieces meet

For the tropical polynomial
_ I _ y) - N
f_QI}a,G)x = max(a+/-X) :R" > R
the tropical hypersurface Z(f) defined by f is the set of all

b € R", such that the maximum  f(b) is obtained by at least
two @ monomials a; + [ - X.
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Tropical hypersurfaces

Tropical polynomial f = @, a; ® x' = max;(a;+ /- X) : R" = R
Example: (—-2)© x2 @ x ® 1 = max(1, x,2x — 2) éll/

2+
]

Tropical polynomials are piecewise linear. Interesting set is not o
the zero set, but corner locus where two linear pieces meet

For the tropical polynomial

f:@a,G)x’:mlax(a,JrI-x):R”—>R
/

the tropical hypersurface Z(f) defined by f is the set of all
b € R", such that the maximum Z(f(b)) is obtained by at least /

two @ monomials a; + /- x. %“i/
2+
: 2 _
Example: Z((-2) o x e xe1)={1,2} + gt
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Tropical hypersurfaces

Examples of tropical plane curves Z(f) c R?:
In each sector write which monomial achieves the maximum
Tropical line Z(x @ y © 0) = max(x, y,0)



Introduction Tropical Varieties Plane tropical curves Tropical enumerative geometry References

o]e) 0000e0 0000000000 000000000 @)

Tropical hypersurfaces

Examples of tropical plane curves Z(f) c R?:
In each sector write which monomial achieves the maximum

Tropical line Z(x @ y ® 0) = max(x, y,0)

X-:y/
Y=o ﬁ/

Tropical conic |

x=0

X2Ry*a30X0yE20ya20xH3 = max(2x, 2y, (x+y+3), x+2, y+2,3)




Introduction Tropical Varieties Plane tropical curves Tropical enumerative geometry References
00 00000e 0000000000 000000000 o

Tropical algebraic sets

Letfi,...,f, € (R,®,0)[xq, ..., Xn] be tropical polynomials. The
tropical algebraic set defined by f,...,f Is

Z(fy,....H) =) Z(f)
i=1
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Tropical algebraic sets

Letfi,...,f, € (R,®,0)[xq, ..., Xn] be tropical polynomials. The
tropical algebraic set defined by f,...,f Is

Z(fy,....H) =) Z(f)
i=1

We will in the rest of the talk specialize to plane tropical curves,
i.e. tropical hypersurfaces in R? given as corner sets of tropical
polynomials in x, y.
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Plane tropical curves

The degree of a tropical polynomial f = @, ;a;; © X' © y/ is the
maximum of the i + j occuring

(i.e. where the coefficient is not —oo, note that x' = 0 ® x/)

A plane tropical curve of degree d is Z(f) C R? for f a tropical
polynomial in x, y of degree d
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Plane tropical curves

Definition

The tropical polynomial f = @; ; a; @ X' @ y! Lwas degree d 4 4 iotle
maximum of the / + j occuring axd X%

(i.e. where the coefficient is not —oo, notéthat?( 0 @x )
A plane tropical curve of degree d is Z(f) c R? for f a tropical
polynomial in x, y of degree d

line: Z(x® y & 0) /

conic: Z(xX° o y? d30Xx0y®20y®20x®3))

cubic:
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Plane tropical curves

line: Z(x & y ¢ 0)

conic: Z(xX2 @ y? p3oXx0ya20y®20x®3)"

cubic:
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Plane tropical curves

line: Z(x & y ¢ 0) /

conic: Z(xX° @y’ @30Xx0ya20ye20xa3)

cubic:

We observe that a plane tropical curve of degree d has d
unbounded edges in each of the directions (—1,0), (0, —1),
(1,1). We will see later why this is true.
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The shape of plane tropical curves

How does a plane tropical curve of degree d look like?
[ = Z(F) plane tropical curve of degree d ép c. 0 X“ti O 5 b;
g °
F = max(ajx + by +c¢i, i=1,...,n) 7

(@i, b;) are distinct integer points in triangle
sndudingy (4,0) (6,d] (0,0)
Ag={(ab)eR*|a>0,b>0,a+b<d} A,
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The shape of plane tropical curves

How does a plane tropical curve of degree d look like?
[ = Z(F) plane tropical curve of degree d

F:max(a,-x+b,-y+c,-, i:1,...,n)

(aj, bj) are distinct integer points in triangle

Ag={(ab)eR*|a>0,b>0,a+b<d} s A
When 3(x, y) € R?, sth

F(x,y) = aix+biy+c; = aix+bjy+c; forsome i # |

[ has edge in dir. orth. to line (a;, b;), (&, b;)
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The shape of plane tropical curves

How does a plane tropical curve of degree d look like?
[ = Z(F) plane tropical curve of degree d

F:max(a,-x+b,-y+c,-, i:1,...,n)

(aj, bj) are distinct integer points in triangle

Ag={(ab)eR*|a>0,b>0,a+b<d} A,
When 3(x, y) € R?, sth (@b, )
F — axtbVic — axtbivic f L I\ .
(x,y) = aix+biy+c; = aix+bjy+c; for some i # | NS
\
[ has edge in dir. orth. to line (a;, bi), (&, b;) J B, N\
The lines (a;, b;i), (&;, b;) give subdivision of Ay T “T-f

&)
into polygons J; with integer vertices ( 5 by) (31\’5
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The shape of plane tropical curves

[ =Z(F), F(x,y) =max(aix+ by +ci, i=1,...,n)
(ai, bi) are integer pts in Ay = {(a,b) e R* |a>0,b>0,a+ b < d}
When 3(x, y) € R?, sth F(x,y) = aix + bjy + ¢i = ajx + bjy + C;
[ has edge in dir. orth. to line (a;, bi), (&, by)
The lines (a;, b;), (&;, b;) give subdivision of Ay into polygons [J;
@ﬂ?,ﬂ)

\

Dz\ \ @2 ]BZ)
\

/' n

& 1 N\

= L A
S (@30
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The shape of plane tropical curves

= Z(F), F(x,y) = max(ajx + bjy +c¢;, i=1,...,n)
(ai, bi) are integer pts in Ay = {(a,b) e R* |a>0,b>0,a+ b < d}
When 3(x, y) € R?, sth F(x,y) = aix + bjy + ¢i = ajx + bjy + C;
[ has edge in dir. orth. to line (a;, bi), (&, by)
The lines (a;, bi), (a;, b;) give subdivision of Ay into polygons [J;

@‘i[bg r;”‘\
. N d d
“‘lbz\-’hﬁbzﬁ TAL Condiion ﬂ{wﬁ X 3\3 J x @3 OTCur
f D«\\\ m F A/my\/.wn Had e Ay
(I are dmugms o gome (@ b )
Choose g)ne mn%br]\f);,sfmt V; in each [J; OJ) 61" /@3’

connect the V; in adjacent [J; by lines orthog. to (a;, bi), (a;, b;)
Get graph 'y w. vertices V; and edges same slope and incidence as I

i.e. ro s equal to I' except for lengths of the edges  an/d Hhe W of
, r
- M IR
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Plane tropical curves as balanced graphs

[ =Z(max(aix+biy+ci, i=1,...,n))
determines subdivision of Ay

into polygons LUJ; with integer vertices
Edges orthog. to edges of LJ; give graph
[0 equal to I except for edge lenghts
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Plane tropical curves as balanced graphs

[ =Z(max(aix+biy+ci, i=1,...,n))
determines subdivision of Ay

into polygons LUJ; with integer vertices
Edges orthog. to edges of LJ; give graph
[0 equal to I except for edge lenghts

Let 1 one of the polygons,

with verticies (ay, b1), ..., (ax, bx) clockwise
v = (b — bj11, @iy — a;) is outer normal vector to %
(aji, bi) — (a@i+1bir1) turned by 90 degrees) v

Thus vi + ...+ v =0 A
-3
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Plane tropical curves as balanced graphs

[ =Z(max(aix+biy+ci, i=1,...,n))
determines subdivision of Ay

into polygons LUJ; with integer vertices
Edges orthog. to edges of LJ; give graph
[0 equal to I except for edge lenghts

Let 1 one of the polygons,

with verticies (ay, b1), ..., (ax, bx) clockwise |
v = (bj — bj11, air1 — a;) is outer normal vector to [I: %‘ C1,4)
(@i, bi) — (@i+1bit1) turned by 90 degrees) 9.y 1) = Y /)

Thus vy +... 4+ v =0 / A
Write v; = w;u;, with u; primitive integer vector,

w; :=multiplicity=lattice length of (a;, b;), (@j+1bis1)

lattice length of side A=#integer points in A minus 1
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Plane tropical curves as balanced graphs

[ =Z(max(aix+biy+ci, i=1,...,n))
determines subdivision of Ay

into polygons LUJ; with integer vertices
Edges orthog. to edges of LJ; give graph
[0 equal to I except for edge lenghts

Let 1 one of the polygons,

with verticies (ay, b1), ..., (ax, bx) clockwise g
v = (bj — bj11, air1 — a;) is outer normal vector to [ Y ‘
(aj, bj) — (aj11bj1) turned by 90 degrees) | F\\

Thus vy +...+ v =0

Write v; = w;u;, with u; primitive integer vector,

w; :=multiplicity=lattice length of (a;, b;), (@j+1bis1)
lattice length of side A=#integer points in A minus 1
Balancing condition: for every vertex V of I

with outgoing edge vectors v; = w;u; have

k
Z WU, = 0
=1
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Plane tropical curves as balanced graphs

Edges of Ay are unions of some of segments (a;, b;), (8i+1bi+1)

thus 'y has one (unbounded) edge through each of these segments.
Lattice length of edges of Ay is d

—> d unbounded edges of I' in each of the directions
(—1,0), (0,—1), (1, 1) counted with weights
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Plane tropical curves as balanced graphs

Edges of Ay are unions of some of segments (a;, b;), (8i+1bi+1)

thus 'y has one (unbounded) edge through each of these segments.
Lattice length of edges of Ay is d

—> d unbounded edges of I' in each of the directions
(—1,0), (0,—1), (1, 1) counted with weights

MMM?\@% Hevr wepd wla) €7,

A plane tropical curve of degree d is a balanced weighted graph
with edges of rational slopes
with d (counted with weight) unbounded edges in directions (—1,0),

(0,—1), (1,1)

satisfying at each vertex V the balancing condition

k
Z WU, = 0
=1

(vi = w;u; outgoing edges at V', w; weight, u; primitive integer vector)
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Genus of a plane tropical curve

Important topological invariant of a smooth projective algebraic

curve C over C: genus g(C)
Equals the number of handles of C, g(C) = Ydim(H;(C,R))

For C singular g(C) is genus of normalization (pull sing. apart)

L <>

genus 0 genus 0 genus 1
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Genus of a plane tropical curve

Important topological invariant of a smooth projective algebraic
curve C over C: genus g(C)
Equals the number of handles of C, g(C) = dim(H;(C,R))

For C singular g(C) is genus of normalization (pull sing. apart)

€ <>

genus 0 genus 0 genus 1

The genus of a plane tropical curve I is g(I') = dim(H;(C,R))
=#indep. cycles in I'. (cycles closed by intersect. edges do not

count (normalization)) i ﬁ/

genus 0 genus 0 genus 1
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Degree genus formula

C smooth degree d complex curve in P2 then g(C) = {=119-2)

. d—1)(d—2
For C singular g(C) < ! )2( )
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Degree genus formula

Theorem

C smooth degree d complex curve in P2 then g(C) = {=119-2)

For C singular g(C) < G 1)2(d 2)

\

What is a smooth tropical curve?

Definition
Let V be a trivalent vertex of plane tropical curve
U1, Uo, U3 Unit outg. vec. along edges at V; weights wq, ws, wa

Mikhalkin multiplicity of V' is
m(V) = wy ngdet(u1,U2)]§7/ /\/7//;;

(area spanned by wyuq, Waolb) R\/\,\
L0 |2
) =2 2 (1) 1\< o

@/1 av \l
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Degree genus formula

For V trivalent vertex m(V) = wywoldet(u, up))

Definition
A plane tropical curve I of degree d is called nonsingular if
@ [ is trivalent

@ for every vertex V of I' we have m(V) = 1

R S
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Degree genus formula

For T smooth plane degree d tropical curve g(I') = (a—1 )2(0’_2)

- d—1)(d—2
For T singular g(I') < * )2( )
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Degree genus formula

For T smooth plane degree d tropical curve g(I') = (a—1 )2(0’_2)

- d—1)(d—2
For T singular g(I') < * )2( )

Show first part (second part exercise):
[o := #verticesof [, [1 = # bounded edges of I'
The genus of ' is
g(l'):1+l'1—l'o | (1)
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Degree genus formula

For T smooth plane degree d tropical curve g(I') = (a—1 )2(0’_2)

- d—1)(d—2
For T singular g(I') < * )2( )

Show first part (second part exercise):

[o := #verticesof [, [1 = # bounded edges of I'

The genus of I is . oddiry o el moam adding
g(r)=1+T1—To %a"“wh’% (1) Ea

[ has 3d unbounded edges, every vertex is trivalent, every

bounded edge connects 2 vertices, thus

3d + 2Ty = 30, (2)
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Degree genus formula

For T smooth plane degree d tropical curve g(I') = (a—1 )2(0’_2)

- d—1)(d—2
For T singular g(I') < * )2( )

Show first part (second part exercise):
[o := #verticesof [, [1 = # bounded edges of I'
The genus of ' is

g(N)=1+T;—T, (1)

[ has 3d unbounded edges, every vertex is trivalent, every
bounded edge connects 2 vertices, thus

3d + 21 =3l (2)
A4 has area %2. Triangle corresp. to each vertex V has area
sm(V) = 3, thus
Mo = d° (3)

Combining (1), (2), (3) gives g(I') = {¢=11d=2),
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Severi degree

Enumerative geometry of curves:
Count curves satisfying suitable conditions
These questions has applications e.g. in string theory.
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Severi degree

Enumerative geometry of curves:
Count curves satisfying suitable conditions
These questions has applications e.g. in string theory.

Space of (singular) curves in P? of degree d and genus g,

has dimension 3d + g — 1, passing through point cuts down dim. by 1
Thus 3 finitely many degree d genus g curves through 3d + g — 1
general points in P2. What is this number?
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Severi degree

Enumerative geometry of curves:
Count curves satisfying suitable conditions
These questions has applications e.g. in string theory.

Space of (singular) curves in P? of degree d and genus g,

has dimension 3d + g — 1, passing through point cuts down dim. by 1
Thus 3 finitely many degree d genus g curves through 3d + g — 1
general points in P2. What is this number?

Definition

The Severi degree Ny 4 is the number of degree d genus g curves in
PP? through 3d + g — 1 general points in P? (independent of the choice
of points).

y

e.g. Ny o =1 (there is one line through 2 points)

/
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Severi degree

Enumerative geometry of curves:
Count curves satisfying suitable conditions
These questions has applications e.g. in string theory.

Space of (singular) curves in P? of degree d and genus g,

has dimension 3d + g — 1, passing through point cuts down dim. by 1
Thus 3 finitely many degree d genus g curves through 3d + g — 1
general points in P2. What is this number?

The Severi degree Ny 4 is the number of degree d genus g curves in
PP? through 3d + g — 1 general points in P? (independent of the choice

of points).

e.g. Ny o =1 (there is one line through 2 points) /

To determine Severi degrees one uses advanced tools of algebraic
geometry to study parameter spaces of curves [C-H]

y




Introduction Tropical Varieties Plane tropical curves Tropical enumerative geometry References
ole} 000000 0000000000 0O@0000000 o)

Tropical Severi degree

Instead count tropical curves
For instance we see: though 2 general points in R? there is a unique

tropical line. _Xq// +T)( __)f\(

In general to get a reasonable count have to count with suitable
multiplicities. Recall:
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Tropical Severi degree

Instead count tropical curves
For instance we see: though 2 general points in R? there is a unique

tropical line. _*_{ +T)( ’f

In general to get a reasonable count have to count with suitable
multiplicities. Recall:

Let V be trivalent vertex of plane tropical curve I'

U1, Uo, Uz outgoing vec. along edges at V; weights wy, ws, ws
Mikhalkin multiplicity of V is m(V) = w;woldet(us, u2)) (area spanned
by wyuq, walkp)

Assume I is trivalent. The Mikhalkin multiplicity of I is

mf) = [I mVe Z,

V vertex of I
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Tropical Severi degree

Given 3d + g — 1 general points in R?, there are finitely many
degree d genus g tropical curves I through the p;, all trivalent
The tropical Severi degree is

NyoP = Zm(l')_z IT mw).

[ Vvertex of I'

(sum over degree d genus g tropical curves through the p;.
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Comparison Theorem

The tropical Severi degree is

Ny = Zm(r)_z IT mv).

[ V vertexof I

(sum over degree d genus g tropical curves through the p;.

Theorem (Mik1)

Severi degrees and tropical Severi degrees agree:

Nd’g _ Ntrop

A\

This allows us to do enumerative geometry of curves via
combinatorics
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Floor diagrams

Counting tropical curves is much easier than counting complex
curves, still the combinatorics is complicated
Floor diagrams are tool to simplify the task
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Floor diagrams

Counting tropical curves is much easier than counting complex
curves, still the combinatorics is complicated
Floor diagrams are tool to simplify the task

Count degree d genus g tropical curves I
through 3d + g — 1 general points in R?
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Floor diagrams

Counting tropical curves is much easier than counting complex
curves, still the combinatorics is complicated
Floor diagrams are tool to simplify the task

Count degree d genus g tropical curves I
through 3d + g — 1 general points in R?

Choose these points to lie on a line of extremely small irrational
slope, stretched out widely (horizontally stretched)
Then I has a special shape, a floor decomposition

A
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Floor diagrams

A horizontal edge of C is called an escalator
A connected component of closure of complement of
escalators in I is called a floor.
The following properties hold:
@ Every floor and every escalator contains precisely one
marked point.

© Only the escalators can have weights different from 1

© any vertex v has multiplicity m(v) = 1, unless it is adjacent
to am escalator e, in which case the multiplicity is
m(v) = w(e).
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Floor diagrams

To I tropical curve through horizontally stretched conf. of points
associate marked floor diagram.

escalators: horizontal segments of [ -o——

floors: conn. comp. of complem. of —,4
escalators. One marked point on 7~—0—~
every floor and escalator

Floor diagram: black vertex for

escalator white vertex for floor 0/o>®—_0_,©

connect if escalator connects to floor
keep weight of escalator
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Floor diagrams

To count tropical curves we can just count floor diagrams
Description of floor diagrams

Every bounded edge connects a black and a white vertex
Every unbounded edge connects to a black vertex

every black vertex is connected to two edges, one incoming (i.e.
from left), one outgoing, both of the same weight.

© 000

white vertices v can have several incoming and outgoing edges
with Ze—incoming W(e) o Ze—outgoing W(e) — +1
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Floor diagrams

To count tropical curves we can just count floor diagrams
Description of floor diagrams

@ Every bounded edge connects a black and a white vertex
@ Every unbounded edge connects to a black vertex

© every black vertex is connected to two edges, one incoming (i.e.
from left), one outgoing, both of the same weight.

© white vertices v can have several incoming and outgoing edges
with Ze—incoming W(e) o Ze—outgoing W(e) = —1

A floor diagram of degree d and genus g (i.e. of degree d genus g
tropical curve)
has d incoming edges of weight 1, no outgoing edges and g cycles
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Floor diagrams

Put m(A) := []¢ egqes W(€)

NyP(y) = > m(A)

floor diagrams A of degree d and genus g
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Floor diagrams
Put m(A) := []¢ egqes W(€)

trop L } :
Nd,g (y) — m(/\)
floor diagrams A of degree d and genus g

Example: rational cubics
We use floor diagrams to compute Njs o, the number of genus 0
cubics through 8 general points

m(A) =1, point positions p=1,2,3,4,5 count5

m(A) =1, point positions (56)(78), (57)(68) (58)(67) count 3

UL

m(\) =2 x 2 =4 point positions fixed count 4
— N3,0 =5+3+4=12
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