Physical and Engineering Sciences Exploratory Workshops, W08-115, co-funded by Life, Earth and Environmental Sciences: Biosignatures On Exoplanets; The Identity Of Life, 22-26 June 2009, Mulhouse, France.

Looking for Astrobiological Signatures with Penetrators on Europa

Robert Gowen¹, Alan Smith¹, Richard Ambrosi⁶, Olga Prieto Ballesteros¹⁶, Simeon Barber², Dave Barnes¹¹, Chris Braithwaite⁹, John Bridges⁶, Patrick Brown⁵, Phillip Church¹⁰, Glyn Collinson¹, Andrew Coates¹, Gareth Collins⁵, Ian Crawford³, Veronique Dehant²¹, Michele Dougherty⁵, Julian Chela-Flores¹⁷, Dominic Fortes⁷, George Fraser⁶, Yang Gao⁴, Manuel Grande¹¹, Andrew Griffiths¹, Peter Grindrod⁷, Leonid Gurvits¹⁹, Axel Hagermann², Tim van Hoolst²¹, Hauke Hussmann¹³, Ralf Jaumann¹³, Adrian Jones⁷, Geraint Jones¹, Katherine Joy³, Ozgur Karatekin²¹, Günter Kargl²⁰, Antonella Macagnano¹⁴, Anisha Mukherjee⁵, Peter Muller¹, Ernesto Palomba¹², , Tom Pike⁵, Bill Proud⁹, Derek Pullen⁶, Francois Raulin¹⁵, Lutz Richter¹⁸, Keith Ryden², Simon Sheridan², Mark Sims⁶, Frank Sohl¹³, Joshua Snape⁷, Paul Stevens¹⁰, Jon Sykes⁶, Vincent Tong³, Tim Stevenson⁶, Werner Karl⁵, Lionel Wilson², lan Wright², John Zarnecki².

1: Mullard Space Science Laboratory, University College London, UK email:
rag@mssl.ucl.ac.uk. 2: Planetary and Space Sciences Research Institute, Open University,
UK. 3:Birkbeck College, University of London, UK. 4: Surrey Space Centre, Guildford, UK. 5:
Imperial College, London, UK, 6: University of Leicester, UK. 7: University College London,
UK. 8: University of Lancaster, UK. 9: Cavendish Laboratory, Cambridge, UK. 11: University of
Aberystwyth, UK. 12: Istituto di Fisica dello Spazio Interplanetario-INAF, Roma, Italy. 13: DLR,
Berlin, Germany. 14: Institute of Microelectronics and Microsystem-CNR, Roma, Italy. 15:
Université Paris, France. 16: Centro de Astrobiologia-INTA-CSIC, España. 17: Abdus Salam
International Centre for Theoretical Physics (ICTP), Trieste, Italy. 18: DLR, Bremen, Germany.
19: Joint Institute for VLBI in Europe (JIVE), Dwingeloo, The Netherlands. 20: IAF, Space
Research Institute, Graz, Austria. 21: Royal Observatory, Belgium

Europa, along with Mars and Titan, is considered a prime candidate for the presence of extraterrestrial life in the solar system. Although without a significant atmosphere, but which includes trace amounts of molecular oxygen, and very cold surface temperatures around 40-120K, it is widely believed that Europa hides a liquid salty water ocean kms under its icy crust warmed by enormous tidal forces from Jupiter, with a rocky mantle beneath (ref.1). Such a subterranean ocean, shielded from massive surface radiation, make it a good habitability candidate for indicenous life.

Furthermore, the Europan surface features a plethora of apparently young, colourful fissures consistent with the egress of potential astrobiological material upwelled from the ocean beneath, which could be investigated either remotely or in-situ for signatures of life. In particular, this material appears to be rich in sulphur which offers the opportunity for determination of the isotopic proportions of sulphur, either remotely or in-situ, capable of differentiating between inorganic and biological origin (ref.2). This is relevant to the search for life on exoplanets, since evidence of high external radiation need not be an excluder of the presence of life.

Penetrators proposed for Europa (ref.3) involve delivering small projectiles at high velocity to just beneath the surface ice, where the destructive effects of radiation are greatly reduced. This provide a means for both direct sampling, and remote sensing of potential astrobiological material with stand-off distances of the order of centimetres rather than interstellar distances as for exoplanets. However, since spectrographic signals are preserved through long space transits, this may offer the possibility for detection of common astrobiological signatures, though sensitivity may be an issue. Direct astrobiological investigations of samples collected by the penetrators will also be presented, to allow other potential insights for remote observations of life signatures from exoplanets.

R1: Carlson, R. W., Johnson, R. E. and Anderson, M. S. 1999, Science, 286, pp. 97-99.

R2: Chela-Flores J. and Kumar N. 2008, International Journal of Astrobiology, 7, (3), pp. 263-269.

R3: Penetrator website: http://www.mssl.ucl.ac.uk/planetary/missions/Micro_Penetrators.php