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ABSTRACT: We study the satisfiability of randomly generated formulas formed by M clauses of
exactly K literals over N Boolean variables. For a given value of N the problem is known to be most
difficult when α = M/N is close to the experimental threshold αc separating the region where almost
all formulas are SAT from the region where all formulas are UNSAT. Recent results from a statistical
physics analysis suggest that the difficulty is related to the existence of a clustering phenomenon of
the solutions when α is close to (but smaller than) αc. We introduce a new type of message passing
algorithm which allows to find efficiently a satisfying assignment of the variables in this difficult
region. This algorithm is iterative and composed of two main parts. The first is a message-passing
procedure which generalizes the usual methods like Sum-Product or Belief Propagation: It passes
messages that may be thought of as surveys over clusters of the ordinary messages. The second part
uses the detailed probabilistic information obtained from the surveys in order to fix variables and
simplify the problem. Eventually, the simplified problem that remains is solved by a conventional
heuristic. © 2005 Wiley Periodicals, Inc. Random Struct. Alg., 27, 201–226, 2005

1. INTRODUCTION

The satisfiability problem is the archetype of combinatorial optimization problems which
are well known to be intractable in the worst case. However, experimental studies show that
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many instances of satisfiability are surprisingly easy, even for naive heuristic algorithms.
In an attempt to get a better understanding of which instances are easy or hard to solve, a
lot of efforts have focused in recent years on the “random K-sat” problem [1]. Instances
of this problem are generated by considering N variables and M = αN clauses, where
each clause contains exactly K distinct variables, and is picked up with uniform probability
distribution from the set of

(N
K

)
2K possible clauses. For a given value of α, the probability

PN(α) that a randomly generated instance is SAT is a decreasing function, with PN(0) = 1
and limα→∞ PN(α = 0), which has been shown to approach, as N increases, a step function
characteristic of a zero-one law [12], or a “phase transition.” It is convenient to identify a
crossover regime between “SAT” and “UNSAT” regimes using the value αc(N) of the num-
ber of constraints per variable where PN(αc(N)) = 1/2. From numerical simulations, αc(N)

is supposed to converge, in the large N limit, to a value around αc � 4.27 [8, 10, 16, 26], but
this convergence has not yet been established rigorously. Interestingly, the performance of
algorithms is found to be much worse around this value of α = 4.27: randomly generated
instances with α near to the phase transition are particularly difficult to solve.

Rigorous lower and upper bounds have been found for this conjectured satisfiability
threshold: it has been established that limN→∞ PN(α) = 1 for α < αlb and limN→∞ PN(α) = 0
for α > αub. The present best bounds for the case of the random 3-SAT problem (with
K = 3) are αub = 4.506 (from [9], using the first moment method) and αlb = 3.42 (from
[15], using algorithmic analysis). Note also the interesting algorithm-independent upper
bound found in [1, 28] using the second moment method, which becomes better for larger
values of K .

Recently, some elaborate statistical physics methods have been brought to bear on the
random satisfiability problem. These non-rigorous analytical calculations have put forward
some interesting conjectures about what happens in the solution space of the problem as
this threshold is approached [22, 24] (see also previous work in [2, 25]). They suggest the
following overall picture, which should hold for a generic sample of the random satisfiability
problem, in the limit N → ∞, with α fixed.

1. There exists a SAT-UNSAT phase transition at a critical value αc which can be
computed by solving some (complicated) integral equation; for K = 3, one gets
αc � 4.267.

2. There exists a second threshold αclust separating two phases which are both “SAT” (in
each of them there exists a satisfying assignment with probability 1), but with very
different geometric structures.

3. For α < αclust , a generic problem has many solutions, which tend to form one giant
“cluster”; the set of all satisfying assignments forms a connected cluster in which it is
possible to find a path between two solutions that requires short steps only (each pair
of consecutive assignments in the path are close together in Hamming distance). In
this regime, local search algorithms and other simple heuristics can relatively easily
find a solution. This region is called the “easy-SAT” region.

4. For αclust < α < αc, there exists a “hard SAT” phase where the solution space breaks
up into many smaller clusters. Solutions in separate clusters are generally far apart:
It is not possible to transform a SAT assignment in one cluster into another one in
a different cluster by changing only a finite number of variables. Because of this
clustering effect, local search algorithms tend to have a very slow convergence when
applied to large N instances.
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So far, the analytic method used in the most recent statistical physics analysis, named the
cavity method [21], is nonrigorous, and turning this type of approach into a rigorous theory
is an open subject of current research [11, 35]. Note, however, that, in the simpler case of
the random K-XOR-SAT, the validity of this statistical physics analysis can be confirmed by
rigorous studies [6, 23], and the above clustering conjecture has been fully confirmed [3].

Interestingly, the statistical physics analysis suggests a new efficient heuristic algorithm
for finding SAT assignments in the hard SAT phase, which has been put forward by two of
us in [24].

The aim of this paper is to provide a detailed self-contained description of this algorithm,
which does not rely on the statistical physics background. We shall limit the description
to the regime where solutions exist, the so-called SAT phase; some modification of the
algorithm allows us to address the optimization problem of minimizing the number of
violated constraints in the UNSAT phase, but it will not be discussed here.

The basic building block of the algorithm, called survey propagation (SP), is a message
passing procedure which resembles in some respect the iterative algorithm known as belief
propagation (BP), but with some crucial differences which will be described. BP is a generic
algorithm for computing marginal probability distributions in problems defined on factor
graphs, which has been very useful in the context of error correcting codes [13] and Bayesian
networks [32].

While in simple limits we are able to give some rigorous results together with an explicit
comparison with the belief propagation procedures, in general there exists no rigorous
proof of convergence of the algorithm. However, we provide clear numerical evidence of
its performance over benchmarks problems which appear to be far larger than those which
can be handled by present state-of-the-art algorithms.

The paper is organized as follows: Section 2 describes the satisfiability problem and
its graphical representation in terms of a factor graph. Section 3 explains two message
passing algorithms, namely warning propagation (WP) and belief propagation (BP). Both
are exact for tree factor graphs. Even if they are typically unable to find a solution for
random SAT in the “interesting” hard-SAT region, they are shown here because they are
in some sense the basic building blocks of our survey propagation algorithm. Section 4
explains the survey propagation algorithm itself, a decimation procedure based on it, the
“survey inspired decimation” (SID), and the numerical results. In Section 5 we give some
heuristic arguments from statistical physics which may help the reader to understand where
the SP algorithm comes from. Section 6 contains a few general comments.

2. THE SAT PROBLEM AND ITS FACTOR GRAPH REPRESENTATION

We consider a satisfiability problem consisting of N Boolean variables {xi ∈ {0, 1}} (where
{0, 1} ≡ {F, T}), with i ∈ {1, . . . , N}, with M constraints. Each constraint is a clause, which
is the logical OR of the variables or of their negations. A clause a is characterized by the
set of variables i1, . . . , iK which it contains, and the list of those which are negated, which
can be characterized by a set of K numbers Ja

ir
∈ {±1} as follows. The clause is written as

(
zi1 ∨ · · · ∨ zir ∨ · · · ∨ ziK

)
, (1)

where zir = xir if Ja
ir

= −1 and zir = x̄ir if Ja
ir

= 1 (note that a positive literal is represented
by a negative J). The problem is to find whether there exists an assignment of the xi ∈ {0, 1}
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Fig. 1. An example of a factor graph with 6 variable nodes i = 1, . . . , 6 and 6 function nodes
a, b, c, d, e, f . The formula which is encoded is: F = (x1 ∨ x̄3) ∧ (x̄1 ∨ x2 ∨ x4) ∧ (x̄3 ∨ x5) ∧ (x̄3 ∨
x̄4 ∨ x5) ∧ (x̄2 ∨ x4 ∨ x6) ∧ (x5).

which is such that all the M clauses are true. We define the total cost C of a configuration
x = (x1, . . . , xN) as the number of violated clauses.

In what follows we shall adopt the factor graph representation [18] of the SAT problem.
This representation is convenient because it provides an easy graphical description to the
message passing procedures which we shall develop. It also applies to a wide variety of
different combinatorial problems, thereby providing a unified notation.

The SAT problem can be represented graphically as follows (see Fig. 1). Each of the
N variables is associated with a vertex in the graph, called a “variable node” (circles in
the graphical representation), and each of the M clauses is associated with another type of
vertex in the graph, called a “function node” (squares in the graphical representation). A
function node a is connected to a variable node i by an edge whenever the variable xi (or its
negation) appears in the clause a. In the graphical representation, we use a full line between
a and i whenever the variable appearing in the clause is xi (i.e., Ja

i = −1), a dashed line
whenever the variable appearing in the clause is x̄i (i.e., Ja

i = 1). Variable nodes compose
the set X (|X| = N) and function nodes the set A (|A| = M).

In summary, each SAT problem can be described by a bipartite graph, G =
(X ∪ A; E = X × A), where E is the edge set, and by the set of “couplings” {Ji

a} needed to
define each function node. For the K-SAT problem where each clause contains K variables,
the degree of all the function nodes is K .

Throughout this paper, the variable nodes indices are taken in i, j, k, . . ., while the function
nodes indices are taken in a, b, c, . . . . For every variable node i, we denote by V(i) the set
of function nodes a to which it is connected by an edge, by ni = |V(i)| the degree of the
node, by V+(i) the subset of V(i) consisting of function nodes a where the variable appears
un-negated (the edge (a, i) is a full line), and by V−(i) the complementary subset of V(i)
consisting of function nodes a where the variable appears negated (the edge (a, i) is a dashed
line). V(i)\b denotes the set V(i) without a node b. Similarly, for each function node a,
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Fig. 2. A function node a of the factor graph with the V u
a (j) and V s

a(j) sets relative to node j.

we denote by V(a) = V+(a) ∪ V−(a) the set of neighboring variable nodes, decomposed
according to the type of edge connecting a and i, and by na the degree. Given a function
node a and a variable node j, connected by an edge, it is also convenient to define the two
sets: V u

a (j) and V s
a(j), where the indices s and u respectively refer to the neighbors which

tend to make variable j satisfy or unsatisfy the clause a, defined as (see Fig. 2):

if Ja
j = 1: V u

a (j) = V+(j); V s
a(j) = V−(j)\a, (2)

if Ja
j = −1: V u

a (j) = V−(j); V s
a(j) = V+(j)\a. (3)

The same kind of factor graph representation can be used for other constraint satisfaction
problems, where each function node a defines an arbitrary function over the set Xa ⊂ X of
variable nodes to which is connected, and could also involve hidden variables.

3. THE MESSAGE PASSING SOLUTION OF SAT ON A TREE

In the special case in which the factor graph of a SAT problem is a tree (we shall call it a
tree-problem), the satisfiability problem can be easily solved by many methods. Here we
shall describe two message passing algorithms. The first one, called warning propagation
(WP), determines whether a tree-problem is SAT or not; if it is SAT, WP finds one satisfying
assignment. The second algorithm, called belief propagation (BP), computes the number of
satisfying assignments, as well as the fraction of these assignments where a given variable
is set to true. These algorithms are exact for tree-problems, but they can be used as heuristic
in general problems, and we first give their general definition, which does not rely on the
treelike structure of the factor graph.

3.1. Warning Propagation

The basic elementary message passed from one function node a to a variable i (connected
by an edge) is a Boolean number ua→i ∈ {0, 1} called a “warning.”

The update rule is defined as follows. Given a function node a and one of its variables
nodes i, the warning ua→i is determined from the warnings ub→j arriving on all the variables
j ∈ V(a)\i according to

ua→i =
∏

j∈V(a)\i

θ


−Ja

j


 ∑

b∈V(j)\a

Jb
j ub→j





 , (4)
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where θ(x) = 0 if x ≤ 0 and θ(x) = 1 if x > 0. This update rule is used sequentially,
resulting in the following algorithm:

WP algorithm
INPUT: the factor graph of a Boolean formula in conjunctive normal form; a maximal
number of iterations tmax

OUTPUT: UN-CONVERGED if WP has not converged after tmax sweeps. If it has
converged: the set of all warnings u∗

a→i.

0. At time t = 0: For every edge a → i of the factor graph, randomly initialize the
warnings ua→i(t = 0) ∈ {0, 1}, e.g., with probability 1/2.

1. For t = 1 to t = tmax:
1.1. sweep the set of edges in a random order (obtained by a permutation which

is randomly generated for each t with uniform distribution), and update
sequentially the warnings on all the edges of the graph, generating the
values ua→i(t), using subroutine WP-UPDATE.

1.2. If ua→i(t) = ua→i(t − 1) on all the edges, the iteration has converged and
generated u∗

a→i = ua→i(t): go to 2.
2. If t = tmax return UN-CONVERGED. If t < tmax return the set of fixed point

warnings u∗
a→i = ua→i(t)

Subroutine WP-UPDATE(ua→i)

INPUT: Set of all warnings arriving onto each variable node j ∈ V(a)\i
OUTPUT: new value for the warning ua→i.

1. For every j ∈ V(a)\i, compute the cavity field hj→a =
(∑

b∈V+(j)\a ub→j

)
−(∑

b∈V−(j)\a ub→j

)
(If V(j)\a is empty, then hj→a = 0).

2. Using these cavity fields hj→a, compute the warning ua→i = ∏
j∈V(a)\i θ

(
hj→aJa

j

)
(If V(a)\i is empty, then ua→i = 1).

The interpretation of the messages and the message-passing procedure is the following.
A warning ua→i = 1 can be interpreted as a message sent from function node a, telling the
variable i that it should adopt the correct value in order to satisfy clause a. This is decided
by a according to the messages which it received from all the other variables j to which it

is connected: if
(∑

b∈V(j)\a Jb
j ub→j

)
Ja

j < 0, this means that the tendency for site j (in the

absence of a) would be to take a value which does not satisfy clause a. If all neighbors
j ∈ V(a)\i are in this situation, then a sends a warning to i. An example of the use of WP
is shown in Fig. 3.

The warning propagation algorithm can be applied to any SAT problem. When it con-
verges, this dynamics defines a fixed point, which is a set of warnings u∗

a→i. These can be
used to compute, for each variable i, the “local field” Hi and the “contradiction number” ci
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Fig. 3. An example of result obtained by the WP algorithm on a tree-problem with N = 8 variables
and M = 9 clauses. The number on each edge of the graph is the value of the corresponding warning
u∗. The local fields on the variable are thus: 1, −1, 1, 2, 0, 0, 0, 0. The satisfying assignments are such
that x1 = 1, x2 = 0, x3 = 1, x4 = 1, x7 ∈ {0, 1}, (x5, x6, x8) ∈ {(1, 1, 1), (1, 1, 0), (0, 1, 1), (0, 0, 1)}.
One can check that the variables with nonzero local field take the same value in all SAT assignments.
In the WID algorithm, the variables 1, 2, 3, 4 are fixed to x1 = 1, x2 = 0, x3 = 1, x4 = 1; the remaining
tree has only the clauses h and i remaining, and all the warnings are u∗ = 0. The variable x7 will be
fixed arbitrarily. If one chooses for instance x5 = 1, the remaining graph leaves x8 unconstrained but
imposes x6 = 1, as can be checked by applying to it the BP algorithm.

which are two integers defined as

Hi = −
∑

b∈V(i)

Jb
i u∗

b→i, (5)

ci = 1 if


 ∑

b∈V+(i)

u∗
b→i





 ∑

b∈V−(i)

u∗
b→i


 > 0. (6)

ci = 0 otherwise. (7)

The local field Hi is an indication of the preferred state of the variable i: xi = 1 if Hi > 0,
xi = 0 if Hi < 0. The contradiction number indicates whether the variable i has received
conflicting messages.

The interest in WP largely comes from the fact that it gives the exact solution for tree-
problems. This is summarized in the following simple theorem:

Theorem 1. Consider an instance of the SAT problem with N variables for which the
factor graph is a tree. Then the WP algorithm with tmax = N converges to a unique set
of fixed point warnings u∗

a→i, independently on the initial warnings. If at least one of the
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corresponding contradiction numbers ci is equal to 1, the problem is UNSAT; otherwise it
is SAT.

Corollary. In the case where the problem is SAT, the local fields Hi can be used to find an
assignment of the variables satisfying all the clauses, using the following algorithm called
“Warning Inspired Decimation” or WID:

WID algorithm
INPUT: the factor graph of a Boolean formula in conjunctive normal form
OUTPUT: UN-CONVERGED, or status of the formula (SAT or UNSAT); If the formula
is SAT: one assignment which satisfies all clauses.

1. While the number of unfixed variables is > 0, do:
1.1. Run WP
1.2. If WP does not converge, return UN-CONVERGED. Else compute the local

fields Hi and the contradiction numbers ci, using Eqs. (5), (7).
1.3. If there is at least one contradiction number ci = 1, return UNSAT. Else:

1.3.1. If there is at least one local field Hi �= 0: fix all variables with Hi �= 0
(Hi > 0 ⇒ xi = 1 and Hi < 0 ⇒ xi = 0 ), and clean the graph,
which means: {remove the clauses satisfied by this fixing, reduce the
clauses that involve the fixed variable with opposite literal, update
the number of unfixed variables}. GOTO label 1. Else:

1.3.2. Choose one unfixed variable, fix it to an arbitrary value, clean the
graph. GOTO label 1

2. return the set of assignments for all the variables.

Proof of Theorem 1 and of the corollary. The convergence of message passing procedures
on tree graphs is a well known result (see, e.g., [18]). We give here an elementary proof of
convergence for the specific case of WP, and then show how the results on Hi and ci follow.

Call E the set of nodes. Define the leaves of the tree, as the nodes of degree 1. For any
edge (a, i) connecting a function node a to a variable node i, define its level r as follows:
Remove the edge (a, i) and consider the remaining subgraph containing a. This subgraph
Ta→i is a tree factor graph defining a new SAT problem. The level r is the maximal distance
between a and all the leaves in the subgraph Ta→i (the distance between two nodes of the
graph is the number of edges of the shortest path connecting them). If an edge (a, i) has
level r = 0 (which means that a is a leaf of the subgraph), ua→i(t) = 1 for all t ≥ 1. If
(a, i) has level r = 1, then ua→i(t) = 0 for all t ≥ 1. From the iteration rule, a warning
ua→i at level r is fully determined from the knowledge of all the warnings ub→j at levels
≤ r − 2. Therefore, the warning ua→i(t) at a level r is guaranteed to take a fixed value u∗

a→i

for t ≥ 1 + r/2.
Let us now turn to the study of local fields and contradiction numbers.
We first prove the following lemma.

Lemma. If a warning u∗
a→i = 1, the clause a is violated in the reduced SAT problem

defined by the subgraph Ta→i.
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This is obviously true if the edge has level r = 0 or r = 1. Supposing that it holds for
all levels ≤ r − 2, one considers an edge (a, i) at level r, with u∗

a→i = 1. From (4), this
means that for all variable nodes j ∈ V(a)\i, the node j receives at least one message from
a neighboring factor node b ∈ V(j)\a with ub→j = 1. The edge (b, j) is at level ≤ r − 2;
therefore, the reduced problem on the graph T(b,j) is UNSAT, and, therefore, the clause b
imposes the value of the variable j to be 1 (True) if Jb

j = −1, or 0 (False) if Jb
j = 1: We

shall say that clause b fixes the value of variable j. This is true for all j ∈ V(a)\i, which
means that the reduced problem on Ta→i is UNSAT, or, equivalently, the clause a fixes the
value of variable i.

Having shown that u∗
a→i = 1 implies that clause a fixes the value of variable i, it is clear

from (7) that a nonzero contradiction number ci implies that the formula is UNSAT.
If all the ci vanish, the formula is SAT. One can prove this for instance by showing

that the WID algorithm generates a SAT assignment. The variables with Hi �= 0 receive
some nonzero u∗

a→i = 1 and are fixed. One then “cleans” the graph, which means: Remove
the clauses satisfied by this fixing, reduce the clauses that involve the fixed variable with
opposite literal. By definition, this process has removed from the graph all the edges on
which there was a nonzero warning. So, on the new graph, all the edges have u∗ = 0.
Following the step 2.2 of WID, one chooses randomly a variable i, fixes it to an arbitrary
value xi, and cleans the graph. The clauses a connected to i which are satisfied by the
choice xi are removed; the corresponding subgraphs are trees where all the edges have
u∗ = 0. A clause a connected to i which is not satisfied by the choice xi may send some
u∗ = 1 messages (this happens if such a clause had degree 2 before fixing variable i).
However, running WP on the corresponding subgraph Ta→i, the set of warnings cannot
have a contradiction: A variable j in this subgraph can receive at most one u∗ = 1 warning,
coming from the unique path which connects j to a. Therefore, cj = 0: one iteration of WID
has generated a strictly smaller graph with no contradiction. By induction, it thus finds a
SAT assignment.

One should notice that the variables which are fixed at the first iteration of WID (those
with nonzero Hi) are constrained to take the same value in all satisfying assignments.

3.2. Belief Propagation

While the WP algorithm is well adapted to finding a SAT assignment, the more complicated
belief propagation (BP) algorithm is able to compute, for satisfiable problems with a tree
factor graph, the total number of SAT assignments, and the fraction of SAT assignments
where a given variable xi is true.

We consider a satisfiable instance, and the probability space built by all SAT assignments
taken with equal probability. We will also consider the space of SAT assignments with
uniform probability for a graph built from the original one by removing a given clause a.

Calling a one of the clauses in which xi appears, the basic ingredients of BP are the
messages:

• µa→i(xi) ∈ [0, 1], the probability that clause a is satisfied in the space of SAT
assignments of the graph without clause a, given the value of xi.

• µi→a(xi) ∈ [0, 1], the probability that the variable with index i takes value xi in the
space of SAT assignments of the graph without clause a (this is again a typical “cavity”
definition).
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Notice that
∑

xi∈{0,1} µi→a(xi) = 1, while there is no such normalization for µa→i(xi). The
BP equations are

µi→a(xi) = Ci→a

∏
b∈V(i)\a

µb→i(xi), (8)

µa→i(xi) =
∑

{xj(j �=i)}
fa(X)

∏
j∈V(a)\i

µj→a(xj), (9)

where Ci→a is a normalization constant ensuring that µi→a is a probability, the sum over
{xj(j �= i)} means a sum over all values of the variables xj ∈ {0, 1}, for all j different from
i, and fa(X) is a characteristic function taking value 1 if the configuration X = {xi} satisfies
clause a, taking value 0 otherwise.

It is convenient to parametrize µi→a(xi) by introducing the number γi→a ∈ [0, 1] which
is the probability that the variable xi is in the state which violates clause a, in a problem
where clause a would be absent. That is,

µi→a(xi) = γi→aδ(xi, 1
2 (1 + Ja

i )) + (1 − γi→a)δ(xi, 1
2 (1 − Ja

i )). (10)

Let us denote by

δa→i ≡
∏

j∈V(a)\i

γj→a (11)

the probability that all variables in clause a, except variable i, are in the state which violates
the clause.

The BP algorithm amounts to an iterative update of the messages δa→i according to the
rule:

BP algorithm: INPUT: the factor graph of a Boolean formula in conjunctive normal
form; a maximal number of iterations tmax; a requested precision ε.
OUTPUT: UN-CONVERGED if BP has not converged after tmax sweeps. If it has
converged: the set of all messages δ∗

a→i.

0. At time t = 0: For every edge a → i of the factor graph, randomly initialize the
messages δa→i(t = 0) ∈ [0, 1]

1. For t = 1 to t = tmax:
1.1. Sweep the set of edges in a random order (obtained by a permutation

which is randomly generated for each t with uniform distribution), and
update sequentially the messages on all the edges of the graph, generating
the values δa→i(t), using subroutine BP-UPDATE.

1.2. If |δa→i(t) − δa→i(t − 1)| < ε on all the edges, the iteration has converged
and generated δ∗

a→i = δa→i(t): go to 2.
2. If t = tmax, return UN-CONVERGED. If t < tmax, return the set of fixed point

messages δ∗
a→i = δa→i(t).
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Subroutine BP-UPDATE(δa→i)

INPUT: Set of all messages arriving onto each variable node j ∈ V(a)\i
OUTPUT: new value for the message δa→i.

1. For every j ∈ V(a)\i, compute the cavity field

γj→a = Pu
j→a

Pu
j→a + Ps

j→a

, (12)

where

Pu
j→a =

∏
b∈Vs

a(j)

(1 − δb→j) ,

Ps
j→a =

∏
b∈Vu

a (j)

(1 − δb→j) . (13)

If an ensemble is empty, for instance V s
a(j) = ∅, the corresponding Pu

j→a takes
value 1 by definition.

2. Using these numbers γj→a, compute the new message: δa→i ≡ ∏
j∈V(a)\i γj→a. If a

factor node a is a leaf (unit clause) with a single neighbor i, the corresponding
δa→i takes value 1 by definition.

Note that this procedure corresponds simply to the application of the right-hand side
of Eqs. (8), (9).

As WP, the BP algorithm is exact on trees (see, for instance, [18]). In fact it gives a
more accurate results than WP since it allows to compute the exact probabilities µi (while
WP identifies the variables which are fully constrained, and gives a zero local field on the
other variables). A working example of BP is shown in Fig. 4. In this example and more in
general for trees, BP also provides the exact number N of SAT assignments, as given by
the following theorem:

Theorem 2. Consider an instance of the SAT problem for which the factor graph is a
tree, and there exist some SAT assignments. Then:

a. The BP algorithm converges to a unique set of fixed point messages δ∗
a→i.

b. The values γ ∗
i→a computed in the fixed point by the BP procedure parametrize the

exact messages µi→a, i.e., Eq (10) holds for γi→a = γ ∗
i→a.

c. The probability marginal µi that the variable xi = 1 (the ratio between satisfying
assigments in which xi = 1 and the total number of satisfying assignments) is given
by

µi =
∏

a∈V−(i)(1 − δ∗
a→i)∏

a∈V−(i)(1 − δ∗
a→i) + ∏

a∈V+(i)(1 − δ∗
a→i)

. (14)
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Fig. 4. An example of result obtained by the BP algorithm on the tree-problem with N = 8 variables
and M = 9 clauses studied in Fig. 3.1. On each edge of the graph connecting a function node like c
to a variable node like 2, appears the value of γ2→c (in blue, on the right-hand side of the edge) and
of δc→2 (in red, on the left-hand side of the edge). Comparing to the WP result of Fig. 3.1, one sees
that all the messages δa→i = 1, corresponding to strict warnings, are the same, while the messages
δa→i < 1 are interpreted in WP as “no warning” (i.e., a null message). Using (14), the probability µi

that each variable xi = 1 are found equal to: 1, 0, 1, 1, 1/2, 3/4, 3/4, 1/2. These are the exact results
as can be checked by considering all satisfying assignments as in Fig. 3.1.

d. The number of SAT assignments is N = exp(S), where the entropy S is given by

S =
∑
a∈A

ln


 ∏

i∈V(a)


 ∏

b∈Vs
a(i)

(1 − δ∗
b→i) +

∏
b∈Vu

a (i)

(1 − δ∗
b→i)




−
∏

i∈V(a)


 ∏

b∈Vu
a (i)

(1 − δ∗
b→i)







+
∑
i∈X

(1 − ni) ln


 ∏

b∈V+(i)

(1 − δ∗
b→i) +

∏
b∈V−(i)

(1 − δ∗
b→i)


 . (15)

Proof. Results a, b, and c are standard for BP (also called the “sum-product algorithm”);
the reader can learn more about it in [18]. We just outline the main lines of their proofs for
completeness.

a. The proof of convergence is simple, using the same strategy as the proof in Section 3:
Messages at level 0 and 1 are fixed automatically, and a message at level r is fixed by the
values of messages at lower levels.

b. In a tree factor graph, using the fact that by removing a clause all participating
variables belong to different connected components, it is straightforward to verify that the
BP equations (8), (9) are exact equations for the correct cavity marginals µi→a. Then the
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statement in b is a consequence of the fact that the fixed point is unique. An alternative
proof can be obtained by induction on the level of the edge (a, i).

c. Note that µi in (14) are computed with a formula similar to the one giving the BP
equations (8), with the difference that one takes into account all neighbors of the site i.
Precisely, using point b, µi = pi(xi = 1), where

pi(xi) = Ci

∏
b∈V(i)

µ∗
b→i(xi). (16)

[Ci is a normalization constant ensuring that pi(0) + pi(1) = 1.] It is easy to check that
pi(xi) is the said probability marginal.

d. The slightly more involved result is the one concerning the entropy. We use the
probability measure P(X) on the space of all assignments which has uniform probability
for all SAT assignments and zero probability for all the assignments which violate at least
one clause:

P(X) = 1

N
∏
a∈A

fa(X). (17)

From P one can define the following marginals:

• The “site marginal” pi(xi) is the probability that variable i takes value xi ∈ {0, 1}.
• The “clause marginal” pa(Xa) is the probability that the set of variables xi, i ∈ V(a),

takes a given value, denoted by Xa (among the 2na possible values).

For a tree factor graph, one easily shows by induction on the size of the graph that the full
probability can be expressed in terms of the site and clause marginals as

P(X) =
∏
a∈A

pa(Xa)
∏
i∈X

pi(xi)
1−ni . (18)

The entropy S = ln(N ) is then obtained as

S = −
∑

X

P(X) ln P(X) = −
∑

a

∑
Xa

pa(Xa) ln[pa(Xa)]

−
∑

i

(1 − ni)
∑

xi

pi(xi) ln[pi(xi)]. (19)

Let us now derive the expression of this quantity in terms of the messages used in BP. pi(xi)

has been found in (16). As for pa, it is easy to see that it is equal to

pa(Xa) = Cafa(Xa)
∏

i∈V(a)

µi→a(xi), (20)

where Ca is a normalization constant. From (16) one gets after some reshuffling∑
i

(ni − 1)
∑

xi

pi(xi) ln pi(xi) =
∑

i

(ni − 1) ln Ci +
∑

a

∑
i∈V(a)

∑
Xa

pa(Xa)

× ln


 ∏

b∈V(i)\a

µb→i(xi)


; (21)
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Using the BP equation (8), this gives

∑
i

(ni− 1)
∑

xi

pi(xi) ln pi(xi) =
∑

i

(ni− 1) ln Ci +
∑

a

∑
Xa

pa(Xa) ln

[ ∏
i∈V(a)

µi→a(xi)fa(Xa)

]

−
∑

a

∑
i∈V(a)

ln Ci→a, (22)

where the term fa(Xa) inside the logarithm has been added, taking into account the fact that,
as fa(Xa) ∈ {0, 1}, one always has pa(Xa) ln fa(Xa) = 0. Therefore,

S = −
∑

a

ln Ca +
∑

i

(ni − 1) ln Ci −
∑

a

∑
i∈V(a)

ln Ci→a. (23)

In the notations of (13), one has

Ca = 1

1 − ∏
i∈V(a) γi→a

= 1

1 − ∏
i∈V(a) Pu

i→a/(P
u
i→a + Ps

i→a)
, (24)

Ci→a = 1

Pu
i→a + Ps

i→a

, (25)

and

Ci = 1∏
b∈V+(i)(1 − δb→i) + ∏

b∈V−(i)(1 − δb→i)
. (26)

Substitution into (23) gives the expression (15) for the entropy.

4. SURVEY PROPAGATION

4.1. The Algorithm

The WP and BP algorithms have been shown to work for satisfiability problems where the
factor graph is a tree. In more general cases where the factor graph has loops, they can be
tried as heuristics, but there is no guarantee of convergence. In this section we present a new
message passing algorithm, survey propagation (SP), which is also a heuristic, without any
guarantee of convergence. It reduces to WP for tree-problems, but it turns out to be more
efficient than WP or BP in experimental studies of random satisfiability problems. SP has
been discovered using concepts developed in statistical physics under the name of “cavity
method.” Here we shall first present SP, then give some experimental results, and in the end
expose the qualitative physical reasoning behind it.

A message of SP, called a survey, passed from one function node a to a variable i
(connected by an edge) is a real number ηa→i ∈ [0, 1]. The SP algorithm uses exactly the
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same main procedure as BP (see Section 3.2), but instead of calling the BP-UPDATE, it
uses a different update rule, SP-UPDATE, defined as:

Subroutine SP-UPDATE(ηa→i)

INPUT: Set of all messages arriving onto each variable node j ∈ V(a)\i
OUTPUT: new value for the message ηa→i.

1. For every j ∈ V(a)\i, compute the three numbers:

�u
j→a =


1 −

∏
b∈Vu

a (j)

(
1 − ηb→j

) ∏
b∈Vs

a(j)

(
1 − ηb→j

)
,

�s
j→a =


1 −

∏
b∈Vs

a(j)

(
1 − ηb→j

) ∏
b∈Vu

a (j)

(
1 − ηb→j

)
,

�0
j→a =

∏
b∈V(j)\a

(
1 − ηb→j

)
(27)

if a set like V s
a(j) is empty, the corresponding product takes value 1 by definition.

2. Using these numbers, compute and return the new survey:

ηa→i =
∏

j∈V(a)\i

[
�u

j→a

�u
j→a + �s

j→a + �0
j→a

]
. (28)

If V(a)\i is empty, then ηa→i = 1.

Qualitatively, the statistical physics interpretation of the survey ηa→i is a probability that a
warning is sent from a to i (see Section 5 for details). Therefore, whenever the SP algorithm
converges to a fixed-point set of messages η∗

a→i, one can use it in a decimation procedure in
order to find a satisfying assignment, if such an assignment exists. This procedure, called the
survey inspired decimation (SID), is a generalization of the WID algorithm 3.1, defined by:

SID algorithm
INPUT: The factor graph of a Boolean formula in conjunctive normal form. A maximal
number of iterations tmax and a precision ε used in SP
OUTPUT: One assignment which satisfies all clauses, or “SP UNCONVERGED,” or
“probably UNSAT”

0. Random initial condition for the surveys
1. Run SP. If SP does not converge, return ’SP UNCONVERGED’ and stop (or restart,

i.e. go to 0.). If SP converges, use the fixed-point surveys η∗
a→i in order to:

2. Decimate:
2.1. If nontrivial surveys ({η �= 0}) are found, then:
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a. Evaluate, for each variable node i, the two “biases” {W (+)

i , W (−)

i } defined
by

W (+)

i = �̂+
i

�̂+
i + �̂−

i + �̂0
i

, (29)

W (−)

i = �̂−
i

�̂+
i + �̂−

i + �̂0
i

, (30)

where �̂+
i , �̂−

i , �̂0
i are defined by

�̂+
i =


1 −

∏
a∈V+(i)

(
1 − η∗

a→i

) ∏
a∈V−(i)

(
1 − η∗

a→i

)
,

�̂−
i =


1 −

∏
a∈V−(i)

(
1 − η∗

a→i

) ∏
a∈V+(i)

(
1 − η∗

a→i

)
,

�̂0
i =

∏
a∈V(i)

(
1 − η∗

a→i

)
. (31)

b. Fix the variable with the largest |W (+)

i − W (−)

i | to the value xi = 1 if
W (+)

i > W (−)

i , to the value xi = 0 if W (+)

i < W (−)

i . Clean the graph, which
means: {remove the clauses satisfied by this fixing, reduce the clauses
that involve the fixed variable with opposite literal, update the number
of unfixed variables}.

2.2. If all surveys are trivial ({η = 0}), then output the simplified subformula and
run on it a local search process (e.g., walksat [33, 34]).

4. If the problem is solved completely by unit clause propagation, then output
“SAT” and stop. If no contradiction is found, then continue the decimation
process on the smaller problem (go to 1.) Else (if a contradiction is reached) stop.

There exist several variants of this algorithm. In the code which is available at [37], for
performance reasons we update simultaneously all η belonging to the same clause. The
clauses to be updated are chosen in a random permutation order at each iteration step.
The algorithm can also be randomized by fixing, instead of the most biased variables, one
variable randomly chosen in the set of the x percent variables with the largest bias. This
strategy allows to use some restart in the case where the algorithm has not found a solution.
A fastest decimation can also be obtained by fixing in the step 2.1(b), instead of one variable,
a fraction f of the Nt variables which have not yet been fixed (going back to 1 variable when
fNt < 1).

4.2. Experimental Study of the SP Algorithm

In order to get some concrete information on the behaviour of SP for large but finite N , we
have experimented SP and SID on single instances of the random 3-SAT problem with many
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variables, up to N ∼ 107. In this section we summarize these (single machine) experiments
and their results.

Instances of the 3-SAT problem were generated with the pseudo random number genera-
tor “Algorithm B” on page 32 of Knuth [17]. However, we found that results are stable with
respect to changes in the random number generators. Formulas are generated by choosing
k-tuples of variable indices at random (with no repetitions) and by negating variables with
probability 0.5.

We first discuss the behavior of the SP algorithm itself. We have used a precision param-
eter ε = 10−3 (smaller values don’t seem to increase performance significantly). Depending
on the range of α, we have found the following behaviours, for large enough N :

• For α < αd ∼ 3.9, SP converges towards the set of trivial messages ηa→i = 0, for all
(a, i) edges. All variables are under-constrained.

• For 3.9 < α < 4.3, SP converges to a unique fixed-point set of nontrivial messages,
independently from the initial conditions, where a large fraction of the messages ηa→i

are in ]0, 1[.

For “small’ values of N , around N = 1000, one often finds some instances in which
SP does not converge. But the probability of convergence, at a given α < 4.3, increases
with N . This is exemplified by the following quantitative measure of the performance of
the SID algorithm (which uses SP). We have solved several instances of the random 3-SAT
problem, for various values of α and N , using the SID algorithm in which we fix at each

step the fraction fNt of variables with largest
∣∣∣W (+)

i − W (−)

i

∣∣∣. Table 1 gives in each case the

fraction of samples which are solved by SID, in a single run of decimation (without any
restart). The algorithm fails when, either SP does not converge, or the simplified subfor-
mula found by SID is not solved by walksat. The performance of SID improves when N
increases and when f decreases. Notice that for N = 105 we solve all the 50 randomly
generated instances at α = 4.24. For larger values of α the algorithm often fails. Unfortu-
nately, in such cases it does not give any information on whether the instance is UNSAT.
Some failures may be due to UNSAT instances, others are just real failures of the SID for
SAT instances. Few experiments on even larger instances (N = 106, 107) have also been
successfully run (the limiting factor being the available computer memory needed to store
formulas).

As shown by the data on the average total number of SP iterations along the successful
solution process in Table 1, the convergence time of the SP algorithm basically does not grow
with N (a growth like log N , which could be expected from the geometrical properties of the
factor graph, is not excluded). Therefore, the process of computing all the SP messages η∗

a→i

takes �(N), or maybe �(N ln N), operations. If SID fixes at each step only one variable,
it will thus converge in �(N2 log N) operations (the time taken by walksat to solve the
simplified sub-formula seems to grow more slowly). When we fix a fraction of variables
at a time, we get a further reduction of the cost to O(N(ln N)2) (the second ln comes from
sorting the biases).

A very basic yet complete version of the code which is intended to serve only for the study
on random 3-SAT instances is available at the web site [37]. Generalization of the algorithm
to other problems require some changes which are not implemented in the distributed
code.
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TABLE 1. Results Obtained by Solving with a Single Decimation Run of the SID Algorithm
50 Random Instances of 3-SAT with N = 25000, 50000, 100000 and α = 4.21, 4.22, 4.23, 4.24

N = 2.5 × 104 5.0 × 104 1.0 × 105

f \α 4.21 4.22 4.23 4.24 4.21 4.22 4.23 4.24 4.21 4.22 4.23 4.24

4% 86% 66% 28% 8% 98% 84% 52% 22% 100% 100% 72% 22%
2% 100% 86% 50% 22% 100% 98% 86% 48% 100% 68%
1% 94% 78% 32% 100% 94% 64% 88%
0.5% 98% 88% 50% 98% 66% 92%
0.25% 100% 90% 60% 100% 78% 92%
0.125% 94% 60% 84% 100%
< t > 1369 2428 4235 7843 1238 1751 3411 8607 1204 1557 2573 7461

SID was used by fixing variables in blocks fNt , where Nt is the number of unfixed variables at time t, and various
runs used different values of f taken in the geometric progression f = 4%, 2%, 1%, .5%, .25%, .125%, stopping
if the formula was solved. For each value of (N , α, f ), we give the fraction of the 50 instances which were solved
(i.e. for which the algorithm found a SAT assignment). The maximal number of iterations in each call to SP was
taken equal to tmax = 103 and the precision for convergence was taken equal to 10−3. We call t the cumulative
number of calls to SP during the full SID run. The last row gives < t >, the expectation value of t averaged over
the successful runs.

5. HEURISTIC ARGUMENTS

Survey propagation has been invented using powerful concepts and methods developed in
the statistical physics of disordered systems, notably the cavity method for diluted problems
[21]. In this section we want to give some short background on these methods, in order to
help the reader understand where SP comes from, and maybe develop similar algorithms
in other contexts. Unfortunately, so far there is no rigorous derivation of the cavity method,
so this whole section only contains heuristic arguments.

5.1. The Physical Picture Underlying the SP Construction: Clustering
of Configurations

Let us start with a discussion of the validity of BP. As we saw in section 3, BP aims at
computing the marginal probability distribution of a variable xi, within the probability space
built by all SAT assignments, each being given equal probability. The message µa→i(xi)

used in BP can be computed exactly if one knows the joint probability distribution P(a)(X)

of the variables in X = {xj, j ∈ V(a)\i}, in the graph where clause a is absent. Using the
same notations as in (9), one has

µa→i(xi) =
∑

{xj(j �=i)}
fa(X)P(a)(X) (32)

Comparing this Eq. (32) to the Eqs. (8), (9) of BP, one sees that BP uses an approximation,
namely, the fact that the joint probability P(a)(X) factorizes: P(a)(X) � ∏

j∈V(a)\i µj→a(xj).
This amounts to assuming that the variables xj, for j ∈ V(a)\i, are uncorrelated in the
absence of clause a. This assumption is obviously correct when the factor graph is a tree,



SURVEY PROPAGATION: AN ALGORITHM FOR SATISFIABILITY 219

which confirms the validity of BP in that case. In a general problem, for such an assumption
to hold, we need two conditions to be fulfilled:

• The variables xj, j ∈ V(a)\i should be far from each other, in the factor graph where
clause a is absent.

• There should be a single phase in the problem, or the probability measure should be
reduced to one single pure phase.

The first condition is easily understood, and one can see that it is generically fulfilled when
one considers a random satisfiability problem. In random K-sat with M = αN clauses,
the factor graph is a random bipartite graph, where function nodes have degree K and
variable nodes have fluctuating degrees, with a distribution which becomes, in the large N
limit, a Poisson law of mean Kα. Locally such a graph is tree like. Taking a clause a at
random, the minimal distance between two of the variables xj, j ∈ V(a)\i is generically of
order log N .

The second condition is more subtle. In general a pure phase is defined in statistical
physics as an extremal Gibbs measure [14]; however, the standard construction of Gibbs
measures deals with infinite systems. Here we need to work with N variables where N � 1
but is finite, and the corresponding construction has not been worked out yet. For the
random satisfiability problem, a heuristic description of a pure phase is a cluster of SAT
assignments, defined as follows. Define the distance between two assignments {xi} and
{yi} as the number of bits where they differ. Then build an auxiliary graph, in which the
vertices are all the SAT assignments, and one places an edge between two vertices if and
only if the distance the distance between the two corresponding SAT assignments is smaller
than a number q. Each connected component in this auxiliary graph is a q-cluster. One is
interested in the “clusters” obtained in large N-large q limit of the q-clusters, where the large
N limit is taken first. Heuristic statistical physics arguments indicate that, in the random
K-satisfiability problem, for α < αclust(K), there should exist one single such cluster of
SAT assignments: This means that one can move inside the space of SAT assignment, from
any assignment to another one, by a succession of moves involving each a number of flips
of variables which is � N . In such a case the BP factorization approximation is expected to
be correct. On the other hand, for α > αclust(K) the space of SAT assignment separates into
many distant clusters, and the BP factorization does not hold globally, but it would hold
if one could restrict the probability space to one given cluster α. Within such a restricted
space, BP would converge to a set of messages µα

a→i(xi) which depends on the cluster α.
In this situation, the cavity method uses a statistical approach. It considers all the clusters

of SAT assignments, and attributes to each cluster a probability proportional to the number
of configuration that it contains. Then one introduces, on each edge (a, i), a survey which
gives the probability, when a cluster α is chosen randomly with this probability, that the
message µα

a→i(x) is equal to a certain function P(x).
This object is a probability of a probability and it is thus difficult to use in practical

algorithms. For this reason, SP departs from the usual cavity method and uses a simpler
object which is a survey of warnings, interpreted as follows: Consider one cluster α and
an edge (a, i) of the factor graph. If, in every SAT assignments of the cluster α, all the
variables xj, j ∈ V(a)\i don’t satisfy clause a, then a warning uα

a→i = 1 is passed along the
edge from a to i. The SP message along this edge is the survey of these warnings, when one
picks up a cluster α at random: ηa→i = ∑

α uα
a→i/(

∑
α 1). So basically the SP message gives

the probability that there is a warning sent from a to i in a randomly chosen cluster. With
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respect to the full-fledged cavity method, this is a much simplified object, which focuses
onto the variables which are constrained.

The experimental results on random 3-satisfiability discussed in sect. 4.2 confirm the
theoretical analysis of [22, 24] which indicate that all ηa→i vanish for α < αd � 3.91. This
can be interpreted as the fact that, in this range of α, there are no “constrained clusters”
(meaning clusters in which some of the variables are constrained). For αd < α < αc = 4.267
the theory predicts the existence of nontrivial messages, meaning that there exist constrained
clusters. This is the region where SP and SID are able to outperform existing algorithms.
One should notice that the SID does not seem to converge up to the conjectured threshold
αc = 4.267: Although it is very small, there remains a region in the “Hard SAT” phase,
close to αc where the simple version of SP/SID does not give the result. Recent work shows
that this gap can be reduced by using some backtracking strategy in SID [31]. Whether
it will be possible to close the gap with generalized versions of SP/SID, while keeping a
typically polynomial running time, is an interesting open issue.

5.2. The “Don’t-Care” State

In a given cluster α, a variable xi can be thought of being in three possible states: either it is
constrained equal to 0 (this means that xi = 0 in all SAT assignments of the cluster α), or
it is constrained equal to 1, or it is not constrained. In this last situation we attribute it the
value ∗. Therefore, we can describe a cluster by the values of the N generalized variables
xα

i ∈ {0, 1, ∗}, where ∗ will be denoted as the don’t-care state. Such a description associates
to each cluster a single point in {0, 1, ∗}N . It discards a lot of information: xα

i = ∗ has lost
all the information on the fraction of assignments in the cluster α where xi = 0. But it gives
a simplified description of the cluster and it focuses onto the constrained variables.

It is interesting to notice that the SP equations can be interpreted as BP equations in the
presence of this extra don’t-care state. This can be seen as follows. Borrowing the notations
of the BP equations (8), (9) we denote by γi→a ∈ [0, 1] the probability that the variable xi is
in the state which violates clause a, in a problem where clause a would be absent, and by

δa→i =
∏

j∈V(a)\i

γj→a, (33)

the probability that all variables in clause a, except variable i, are in the state which violates
the clause.

Let us compute µi→a(xi). This depends on the messages sent from the nodes b ∈ {V(i)\a}
to variable i. The various possibilities for these messages are:

• No warning arriving from b ∈ V s
a(i), and no warning arriving from b ∈ V u

a (i). This
happens with a probability

�0
i→a =

∏
b∈V(i)\a

(1 − δb→i) . (34)

• No warning arriving from b ∈ V s
a(i), and at least one warning arriving from b ∈ V u

a (i).
This happens with a probability

�u
i→a =


1 −

∏
b∈Vu

a (i)

(1 − δb→i)


 ∏

b∈Vs
a(i)

(1 − δb→i) . (35)
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• No warning arriving from b ∈ V u
a (i), and at least one warning arriving from b ∈ V s

a(i).
This happens with a probability

�s
i→a =


1 −

∏
b∈Vs

a(i)

(1 − δb→i)


 ∏

b∈Vu
a (i)

(1 − δb→i) . (36)

• At least one warning arriving from b ∈ V u
a (i), and at least one warning arriving from

b ∈ V s
a(i). This happens with a probability

�C
i→a =


1 −

∏
b∈Vs

a(i)

(1 − δb→i)





1 −

∏
b∈Vu

a (i)

(1 − δb→i)


. (37)

As we work only with SAT configurations, the contradictory messages must be excluded.
Therefore, the probability γi→a ∈ [0, 1] that the variable xi is in the state which violates
clause a, given that there is no contradiction, is

γi→a = �u
i→a/(�

u
i→a + �s

i→a + �0
i→a). (38)

The above equations in the enlarged space including the null message, given in (33)–(38)
are identical to the SP Eqs. (28), (27), with the identification ηa→i = δa→i.

5.3. Complexity

The above interpretation of SP using the don’t-care state suggests a method to estimate
the complexity, defined as the normalized logarithm of the number of constrained clusters
of SAT assignments. As each constrained cluster of SAT assignments is associated with a
point in {0, 1, ∗}N , the complexity should be given by the corresponding entropy, which can
be estimated with the usual BP formula (15) in the presence of the don’t-care state (see Ref.
[5] for a rigorous derivation). The result, originally derived in [24] from a direct statistical
physics analysis without the use of the don’t-care state, is as follows.

The total complexity 	 can be decomposed into contributions associated with every
function node and with every variable, and reads

	 =
M∑

a=1

	a −
N∑

i=1

(ni − 1)	i, (39)

where

	a = + log


 ∏

j∈V(a)

(
�u

j→a + �s
j→a + �0

j→a

) −
∏

j∈V(a)

�u
j→a


, (40)

	i = + log
[
�̂+

i + �̂−
i + �̂0

i

]
. (41)

In Fig. 5 we report the data for the complexity of random 3-SAT formulae of size N = 106

and α in the clustering range. This has been obtained with the following procedure. One
generates first a “random” 3-SAT formula with N = 106 and M = 4.27 106, using a pseudo-
random number generator. The SP algorithm is run on this formula, and the complexity is
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Fig. 5. Complexity per variable (	/N) of the satisfying clusters for a given sample of size N = 106.
The complexity vanishes at αc which is expected to be the critical threshold for the specific formula
under study.

evaluated from (39). Then a new formula is generated from the previous one by eliminating
104 (pseudo-)randomly chosen clauses, and the algorithm is run again, etc. It turns out that,
for N = 106, the resulting curve is very “reproducible,” in the sense that the fluctuations of
the curve from one random instance to the next are small (typically below 1%).

5.4. Interpretation of the SID Algorithm: Categories of Variables

Once SP has reached convergence, we can compute the total biases {W (±)

i , W (0)

i }. According
to the previous discussion, these numbers should be interpreted as giving the fraction of
constrained clusters where the variable xi is respectively (frozen positive)/ (frozen negative)/
unconstrained. Having computed these weights, we may distinguish three reference types
of variable nodes (of course all the intermediate cases will also be present): the undercon-
strained ones with W (0)

i ∼ 1, the biased ones with either W (+)

i ∼ 1 or W (−)

i ∼ 1, and the
balanced ones with W (+)

i � W (−)

i and W (0)

i small.
Fixing a variable of each of these types produces different effects, consistently with the

interpretation of the surveys. The following behaviors can be easily checked in numerical
experiments:

Fixing a biased variable does not alter the structure of the clusters and the complexity
changes smoothly (few constrained clusters are eliminated). This is the strategy used by the
SID procedure.

Fixing an underconstrained variable has no effect on the complexity.
As expected, fixing a balanced variable produces a decrease very close to ln 2 in the

complexity.

5.5. A Summary of the Main Conjectures

The whole interpretation relies on the existence, in certain “hard SAT” regions of parameters
(here in a window of α below αc), of clusters of SAT assignments, which are very far apart
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Fig. 6. A simple SAT problem with three variables, two 2-clauses, one 3-clause, and loops. Each
figure gives one of the two possible solutions of warning propagation. The number on each edge
(a, i) is the warning ua→i, the number next to each variable node is the corresponding generalized
state of the variable in each of the two ’clusters’. The SP equations for this graph have an infinite
number of solutions, with ηa→1 = ηb→2 = x, ηa→2 = ηb→1 = y, ηc→1 = ηc→2 = 0, and ηc→3 =
(1 − x)2y2/(1 − xy)2.

(one cannot reach a cluster from another one unless one flips a finite fraction of the N
variables). It would be very interesting to prove this statement.

When there exist such clusters, some of them may be “constrained clusters,” in which
some variables are constrained to take the same value for all the assignments of the cluster.
The introduction of the don’t-care state is an attempt at identifying all these clusters (in
which each cluster is characterized by a single point in the enlarged assignment space
including the don’t-care state). SP, interpreted as BP in this enlarged assignment space, is
an attempt at obtaining a statistical description of these constrained clusters.

Two conjectures arise naturally from the heuristic statistical physics approach and the
numerical experiments on SP. They should hold for the random satisfiability problem, in
the large N limit, in some hard SAT window of α just below αc

• 1) With probability 1 (on the set of initial messages), SP converges to a unique set of
fixed point messages.

• 2) These fixed point messages contain the correct information about the constrained
clusters, and in particular the number of constrained clusters can be computed as in
(39).

After the completion of this work, two groups have arrived to the conjecture that the
“simple” clustering scenario described here should hold in the region α ∈ [4.15, αc �
4.2667], and not hold outside this region [19, 27].

Note that for finite N , there are obvious counterexamples to these conjectures, as shown
in Fig. 6.

6. COMMENTS AND PERSPECTIVES

When the solutions of a SAT (or more generally of a constrained satisfaction problem) tend
to cluster into well-separated regions of the assignment space, it often becomes difficult to
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find a global solution because (at least in all local methods), different parts of the problem
tend to adopt locally optimal configurations corresponding to different clusters, and these
cannot be merged to find a global solution. In SP we proceed in two steps. First we define
some elementary messages which are warnings, characteristic of each cluster, then we use
as the main message the surveys of these warnings. The warning that we used is a rather
simplified object: It states which variables are constrained and which are not constrained.
Because of this simplification the surveys can be handled easily, which makes the algorithm
rather fast. As we saw in Section 5, one might also aim at a finer description of each cluster,
where the elementary messages would give the probability that a variable is in a given state
(∈ {0, 1}), when considering the set of all SAT configurations inside this given cluster. In this
case the survey will give the probability distribution of this probability distribution, when
one chooses a cluster randomly. This is more cumbersome algorithmically, but there is no
difficulty of principle in developing this extension. One could also think of generalizing
further the messages (to probability distributions of probability distributions of probability
distributions), if some problems have a structure of clusters within other clusters (this is
known to happen for instance in spin glasses [20]), but the cost in terms of computer
resources necessary to implement it might become prohibitive.

We have presented here a description of a new algorithmic strategy to handle the SAT
problem. This is a rather general strategy which can also be applied in principle, to all
Constraint Satisfaction Problems [24, 29]. At the moment the approach is very heuristic,
although it is based on a rather detailed conjecture concerning the phase structure of ran-
dom 3-SAT. The validity of a similar conjecture has been checked exactly in the random
XOR-SAT problem. It would be interesting to study this algorithmic strategy in its own,
independently from the random 3-SAT problem and the statistical physics study. One can
expect progress on SP to be made in the future in various directions, among which: Rigorous
results on convergence, different ways of using the information contained in the surveys,
generalization of the algorithm [36] to deal with complex graphs which are not typical
random graphs, use of the generalized SP with penalty to provide UNSAT certificates. The
generalization of SP to generic Constraint Satisfaction Problems is discussed in a separate
publication [4].
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