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The goal of this talk was to illustrate how the two concepts of the title, perhaps seemingly unrelated at first
sight, are really tied together quite closely. Combinatorics, the art of counting, naturally deals with discrete
objects. Geometry on the other hand mostly evokes the opposite, the continuous, dealing with shapes in space
and the like. But there is a tight connection between the two. We may even go further and speculate whether
our universe is continuous or discrete. Arguably, the natural answer is the former but it increasingly it looks
like it might just be the latter.

§1. What is a projective plane? We can abstract axiomatically the basic properties of what a projective
should be: a set A whose elements we call points and a collection of subsets of A which we call lines
satisfying a few simple axioms:

• Two distinct points lie in a unique line.

• Two distinct lines meet in a unique point.

• There exist four points not all in a line

The first two axioms are the key features of a projective plane, the third avoids dealing with some trivial
cases.

The main point we would like to emphasize is that no finiteness is required: A could be a finite set. For
example, Fano in 1892 produced a projective plane consisting of seven points and seven lines (see Fig.1). In
general, in any finite projective plane all lines have the same number of points, say q + 1 points for some q.
The total number of points of the plane is then q2 + q + 1, with q = 2 in Fano’s case (the smallest possible).

Figure 1: Fano plane
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Figure 2: Desargues theorem
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Figure 3: Fano plane coordinates

The familiar theorem of Desargues of usual projective geometry (see Fig.2, the theorem says that the lines
A, A′, B, B′ and C,C′ necessarily meet at a point) does not follow from the above axioms. In fact, it holds
if and only if we can give coordinates to our plane. If Desargues theorem holds we can use it to define all
the usual operations with coordinates: sums, multiplication by scalars, etc. The scalars obtained inherit the
algebraic structure of a field. For a finite plane we get a finite field Fq, necessarily of size q = pn elements for
some prime number p. Up to isomorphism this field is uniquely determined by its size q. You can see in Fig. 3
the coordinates system in the Fano plane where the scalars consist of the field of two elements F2 = {0, 1}.

§2. In algebraic geometry we study the zero locus X(C) of polynomials, say, F1, . . . , Fm with complex
coefficients in variables x1, . . . , xn. If the coefficients of Fi are actually integers we may also consider their
solutions X(Fq) with coordinates in the finite field Fq. What, if any, is the relation between the complex points
X(C) and the finite field points X(Fq)?

Consider for example,
X : y2 = f (x)

with f ∈ Z[x] square-free of degree 8. This is an algebraic curve of genus g = 3. Its complex points X(C)
look like Figure 4. Topologically X(C) is a three-holed doughnut.

What can we say about X(Fq)? Pictures of this finite set are not particularly useful. Passing from C to Fq

we go from the continuous to the discrete and loose our ordinary spatial intuition. But we gain something
else: we can count.

Thanks to the work of Weil we know that for a smooth projective curve X of genus g we have for all n

#X(Fpn) = pn + 1 −
2g∑
i=1

αn
i , |αi| = p

1
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Figure 4: X(C) genus 3 curve

Hence with q = pn

|#X(Fq) − q − 1| ≤ 2g
√

q. (0.1)

In particular, if g = 0 then #X(Fq) = q + 1. This is as it should be! Indeed, X is isomorphic to a projective
line, which as we discussed has q + 1 points if the field of scalars is Fq.

We can interpret the inequality (0.1) as saying that a general algebraic curve of genus g has roughly q + 1
points over Fq, the points in a line, with an error bounded by 2g

√
q. This error does indeed range over the

whole interval [−2g
√

q, 2g
√

q] as X and q vary. Hence, on one hand g determines the topological shape of
X(C) and on the other it controls the rough behaviour of #X(Fq).

In general, what precisely can we recover of X(C) from the #X(Fq) data? In a loose analogy the situation
is similar to that of tomography. We may think of passing to a given finite field as analogous to taking the
sectional image of an object in space along a given plane. In tomography one reconstructs the shape of object
from the sectional images along all planes. One may hope that data on X(Fq) would allow the recovery of the
shape of X(C). To some extent this is the case (see [4] and [2] for two well know and important examples)
thanks to the Weil conjecures proved by Deligne.

A particular, simple situation is the following. Suppose X(C) is smooth, compact and #X(Fq) = C(q) for
a certain polynomial C. Let b j(X) := dim H j(X,C), the Betti numbers of X. (These are topological invariants
of the space X(C); for example, for an a algebraic curve of genus g we have b0 = b2 = 1, b1 = 2g and all
others are zero.) Then b2i+1(X) = 0 and

C(q) =

dim X∑
i=0

b2i(X) qi (0.2)

For example, if X = P1, the projective line, then

C(q) = q + 1

and indeed we have b0 = b2 = 1, b1 = 0 since g = 0. Similarly, if X = P2, the projective plane, then as we
mentioned in §1

C(q) = q2 + q + 1

and indeed b0 = b2 = b4 = 1, b1 = b3 = 0.
We must point out a technical but crucial point for what follows. The equality (0.2) holds in a bit more

generality. It is enough to know that the natural mixed Hodge structure in the cohomology of X is pure and
#X(Fq) = C(q) or all finite fields with q = pn for al

Note that such counting polynomials C(q) must have non-negative integer coefficients (these coefficients
being dimensions of vector spaces). The relation (0.2) is actually a two-way street. We may use it to compute
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Figure 5: S g quiver

Betti numbers by counting or to prove that certain polynomials have non-negative coefficients (because they
happen to equal C(q) for an appropriate X). We discuss an example along the lines of the latter situation in §3
below.

Consider for example the Grassmanian X = G(k, n) of all dimension k subspaces in a fixed n dimensional
space. Its number of points is given by the q-binomial coefficient

#G(k, n)(Fq) =

[
n
k

]
=

[n]!
[k]![n − k]!

, [n]! := (1 − q) · · · (1 − qn),

which is a polynomial in q. E.g., [
5
2

]
= q6 + q5 + 2q4 + 2q3 + 2q2 + q + 1

and therefore for X = G(2, 5) we have b0 = b2 = b10 = b12 = 1, b4 = b6 = b8 = 2 and all other Betti numbers
are zero.

§3. A quiver Q is a directed graph. A representation of Q is an assignment:

vertex 7→ vector space
arrow 7→ linear map

We are interested in representations up to isomorphism.
For example, if Q is the quiver S g (see Fig. 5) consisting of one vertex with g loops attached then a

representation is a tuple (A1, . . . , Ag) of n × n matrices for some n. Two representations (A1, . . . , Ag) and
(A′1, . . . , A

′
g) are isomorphic if the tuples of matrices are simultaneously conjugate. I.e.

(A′1, . . . , A
′
g) = U(A1, . . . , Ag)U−1

for some invertible matrix U. For g = 1 this is Jordan’s problem: to classify matrices up to conjugation; it
has a beautiful solution that we learn in a linear algebra course.

Can we classify in some form representations up to isomorphim in general? For example, can we classify
g > 1 tuples of matrices up to simultaneous conjugation? Mostly we cannot; these are typically difficult
linear algebra problems.

Kac (in the early 80’s) thought of passing to finite fields and counting representations up to isomorphim.
Fix Q and a dimension vector α (recording the dimension of the vector spaces attached to the vertices of Q).
Consider absolutely indecomposable representations of dimension α. These are representations that do not
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decompose in a non-trivial way as a direct sum even after extending scalars to a larger field. In Jordan’s case
an absolutely indecomposable representation of dimension n is given by an n × n matrix with exactly one
Jordan block. To illustrate the issue of extending scalars, note that for example the matrix(

0 1
−1 0

)
is not absolutely indecomposable. It represents an indecomposable representation over R but not over C since
its Jordan decomposition is diagonal with eigenvalues i and −i.

Kac showed that up to isomorphism the number of absolutely indecomposable representations of a quiver
Q of dimension α equals Aα(q) a polynomial in q with integer coefficients. It is not a particularly easy
polynomial to compute though there is a rather daunting formula for a certain generating function of these [6].
For example, for the S g quiver we have

α\g 1 2 3 4

1 q q2 q3 q4

2 q q5 + q3 q9 + q7 + q5 q13 + q11 + q9 + q7

3 q q10 + q8 + q7 + · · · q19 + q17 + q16 + · · · q28 + q26 + q25 + · · ·

4 q q17 + q15 + q14 + · · · q33 + q31 + q30 + · · · q49 + q47 + q46 + · · ·

5 q q26 + q24 + q23 + · · · q51 + q49 + q48 + · · · q76 + q74 + q73 + · · ·

6 q q37 + q35 + q34 + · · · q73 + q71 + q70 + · · · q109 + q107 + q106 + · · ·

Note that for g = 1 we have Aα(q) = q for all α since, as mentioned, an absolutely indecomposable represen-
tation of dimension α consists of one Jordan block of size α. This Jordan block is uniquley determined up to
isomorphism by its eigenvalue for which there are q = |Fq| possibilities.

Kac conjectured that the coefficients of Aα(q) are in fact non-negative. Crawley-Boevey and van der Bergh
proved the conjecture when α indivisible (not a proper multiple of another integral vector). For the quivers
S g, for example, it only applies to the case of dimension 1. With Hausel and Letellier we extended the proof
to the general case, see §4.

The argument of Crawley-Boevey and van der Bergh shows that, in fact,

Aα(q) =
∑

i

dim
(
H2i

c (Qα;C)
)

qi−dα/2, (0.3)

where Qα is an associated smooth Nakajima quiver variety of dimension dα. The hypothesis on α being
indivisible is crucial for the existence of Qα. This variety is an appropriate replacement for a naive “space
of isomorphism classes” of representations of the type we want to count and the identity (0.3) is far from
obvious.

The proof of (0.3) is along the lines of our discussion in §2. Namely,

#Qα(Fq) = qdα/2Aα(q).

However, this is not quite enough to deduce (0.3) because though Qα is smooth it is not compact. A further
argument is needed to show that (0.2) still holds for Qα because the natural mixed Hodge structure on its
cohomology is pure.

§4. Given a quiver Q and arbitrary dimension vector α with Hausel and Letellier (see [5] and the refer-
ences given therein) we consider an extended quiver Q̃ adding legs to every vertex. On Q̃ we take the dimen-
sion vector α̃ where if αi is the dimension at the i-th vertex of Q then we put dimensions αi − 1, αi − 2, . . .
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Figure 6: Extended S g quiver

along the vertices of the attached leg. For example, if Q = S g and α = n then Q̃ is as in Fig.6 with a leg of
length n and α̃ = n, n − 1, . . . , 2, 1.

The vector α̃ is indivisible and we may hence consider the associated Nakajima quiver variety Q̃α̃ of
dimension dα̃. Each vertex of the quiver gives rise to a reflection that acts on the cohomology of Q̃α̃. The
reflections along the i-th leg generate a copy of the symmetric group S αi and we therefore obtain an action of
S α1 × S α2 · · · . Let ε = ε1 × ε2 · · · where εi is the sign character of S αi . Our main result is that

Aα(q) =
∑

i

dim
(
H2i

c (Qα̃;C)ε
)

qi−dα̃/2,

where the subscript indicates we take the ε isotypical component of the corresponding space. This again is
proved by counting points over finite fields using the whole machinery for counting points on character and
quiver varieties developed in our previous papers.
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