ON CERTAIN PLANE CURVES
WITH MANY INTEGRAL POINTS

F. Rodriguez Villegas and J. F. Voloch

May 1998

0. In the course of another investigation1 we came across a sequence of polynomials $P_d \in \mathbb{Z}[x, y]$, such that P_d is absolutely irreducible, of degree d, has low height and at least $d^2 + 2d + 3$ integral solutions to $P_d(x, y) = 0$. We know of no other family of polynomials of increasing degree with as many integral solutions in terms of their degree, except of course those with infinitely many rational points.

It is a consequence of Siegel’s theorem [Si] that these polynomials have finitely many integral zeros, since their homogeneous part of highest degree has distinct roots. Siegel [Si, §7] speculated whether there is a bound for the number of integral zeros of a polynomial as a function of the number of non-zero coefficients, provided it has only finitely many zeros. This is still very much of an open problem but Caporaso et al. [CHM] have shown that a similar statement for rational points on curves (with the genus replacing the number of coefficients) would follow from a conjecture of Lang. Abramovich [8] proved an analogue of the result of [CHM] for integral points on elliptic curves. See also [NV].

A polynomial in two variables and degree d has $N = \binom{d+2}{2}$ coefficients, so, given points $(x_1, y_1), \ldots, (x_{N-1}, y_{N-1})$, one can find a non-zero polynomial that vanishes on these points. If these points have integer coordinates of absolute value at most H, then such a polynomial can be chosen with integer coefficients of absolute value at most $(NH^d)^N$, by a straightforward application of Siegel’s lemma. We can choose $H = N/2$, for instance, and it will turn out that our polynomials P_d have slightly lower height and twice as many points as this construction gives. If we are unlucky, the polynomial obtained is not absolutely irreducible. A slightly better construction, suggested by Ed Schaffer is to take a polynomial of the shape $(x - x_1) \cdots (x - x_d) + \alpha(y - y_1) \cdots (y - y_d)$, which will vanish on the d^2 points $(x_i, y_j), i, j = 1, \ldots, d$, is irreducible for most choices of α and has height at most $|\alpha|H^d$. Our polynomials P_d have larger height but more points.

We have checked that $P_d = 0$ defines a smooth curve for $d = 1, 2, \cdots, 25$. We do not know whether this is true in general, though it is very likely. Also, we can

1See the end of the paper for a brief description
prove the existence of certain points on the curve, but numerical experimentation shows that they may contain a few more. We present the data in n° 7.

1. Let $T_k \in \mathbb{Z}[x, y]$ be defined recursively by

\[
(T0) \quad T_0 = 1, \quad T_1 = y, \quad T_{k+1} = yT_k + k(x + k - 1)T_{k-1}, \quad k \in \mathbb{N}.
\]

The first few polynomials are

\[
\begin{align*}
T_2 &= x + y^2 \\
T_3 &= 3yx + y^3 + 2y \\
T_4 &= 3x^2 + 6y^2x + 6x + y^4 + 8y^2 \\
T_5 &= 15yx^2 + 10y^3x + 50yx + y^5 + 20y^3 + 24y \\
T_6 &= 15x^3 + 45y^2x^2 + 90x^2 + 15y^4x + 210y^2x + 120x + y^6 + 40y^4 + 184y^2.
\end{align*}
\]

From the recursion it follows easily that

\[T(x, -y) = (-1)^k T_k(x, y), \quad k \in \mathbb{N}.
\]

Hence for $k = 2d$ with $d \in \mathbb{N}$, $T_k(x, y) = P_d(-x, y^2)$ with $P_d \in \mathbb{Z}[x, y]$.

We will use the following notation: given a polynomial

\[H = \sum_{m,n} a_{m,n} x^m y^n \in \mathbb{C}[x, y],\]

we let

\[||H||_1 = \sum_{m,n} |a_{m,n}|.\]

We will prove the following.

Theorem. Let $d \in \mathbb{N}$ and P_d be the polynomial defined above. Then

a) P_d has degree d;

b) P_d is absolutely irreducible;

c) the coefficients of $P_d(-x, y)$ are relatively prime non-negative integers;

d) $||P_d||_1 = (2d)!$; and

e) P_d vanishes at the $d^2 + 2d + 3$ integral points:

\[
\begin{align*}
I : & \quad (n, m^2) \quad 0 \leq m \leq n \leq 2d - 1, \quad n \equiv m \mod 2 \\
II : & \quad (4d, 4n^2) \quad 1 \leq n \leq 2d - 1 \\
III : & \quad (2d - 4, -6d + 4), \ (2d - 3, -2d + 1), \ (8d + 1, 3^2)
\end{align*}
\]

Note that P_d, P_{d+1} intersect in exactly $d(d + 1)$ of the above points.

2. Fix x, y and consider the generating function

\[F(\lambda) = \sum_{k=0}^{\infty} T_k \frac{\lambda^k}{k!},\]
where
\[(z)_0 = 1, \quad (z)_k = z(z+1) \cdots (z+k-1), \quad k \in \mathbb{N}.
\]
It is not hard to see that the recursion defining \(T_k\) implies that \(F\) satisfies the differential equation
\[
\lambda \frac{d^2 F}{d\lambda^2} + x \frac{dF}{d\lambda} - (\lambda + y) F = 0.
\]

In order to get a formula for \(T_k\) we consider \(G(\lambda) = e^{\lambda} F(\lambda)\). A calculation shows that \(G\) satisfies the differential equation
\[
\lambda \frac{d^2 G}{d\lambda^2} + (x - 2\lambda) \frac{dG}{d\lambda} - (x + y) G = 0.
\]
It follows that
\[
G(\lambda) = \Phi\left(\frac{1}{2}(x+y), x, 2\lambda\right),
\]
where \(\Phi\) is the confluent hypergeometric function (see for example, [Le § 9.9]).

If we write
\[
G(\lambda) = \sum_{k=0}^{\infty} S_k \frac{\lambda^k}{(x)_k k!},
\]
the differential equation implies that
\[
S_{k+1} = (y + x + 2k) S_k, \quad k \in \mathbb{N}.
\]
Therefore,
\[
S_k = (y + x)(y + x + 2) \cdots (y + x + 2k - 2),
\]
from which we obtain
\[
\text{(T2)} \quad T_k = \sum_{j=0}^{k} (-1)^{k-j} \binom{k}{j} (x+y)(x+y+2) \cdots (x+y+2j-2)
\]
\[
(x+j)(x+j+1) \cdots (x+k-1).
\]

We now may see why \(P_d\) vanishes at the points \(I\) of the theorem. The principle is based on the following self-proving lemma; we leave the details to the reader.

Lemma. Let \(x_1, \ldots, x_n\) and \(y_1, \ldots, y_n\) be two sets of \(n\) elements of a field \(K\). Let
\[
\phi_0 = 1, \quad \phi_\nu(x) = (x - x_1)(x - x_2) \cdots (x - x_\nu), \in K[x] \quad 1 \leq \nu \leq n
\]
\[
\psi_0 = 1, \quad \psi_\nu(y) = (y - y_1)(y - y_2) \cdots (y - y_\nu), \in K[y] \quad 1 \leq \nu \leq n,
\]
with \(x, y\) indeterminates. Then any linear combination
\[
\sum_{\nu=0}^{n} \alpha_\nu \phi_\nu(x) \psi_{n-\nu}(y) \in K[x,y], \quad \alpha_\nu \in K,
\]
has degree at most \(n\) and vanishes at the points \((x_\nu, y_\nu)\) for all \(1 \leq \nu \leq n\).
Remark Zagier suggested to us a simpler way to study the properties of the polynomials T_k. One may define the polynomials by means of the generating series

$$H(\lambda) = (1 - \lambda)^x(1 + \lambda)^y\sum_{k=0}^{\infty} T_k(-x - y, -x + y) \frac{\lambda^k}{k!},$$

which satisfies the differential equation

$$\frac{dH}{d\lambda} H = -\frac{x}{(1-t)} + \frac{y}{(1+t)},$$

giving the recursion T_0. As an example of this approach, P_d clearly vanishes at the points I of the theorem, since for $x, y \in \mathbb{N}$, H is a polynomial of degree $x + y$.

3. It is clear from the recursion T_0 that T_k has degree k, that the coefficients of T_k are non-negative integers and that the coefficient of y^k is 1. This proves parts a) and c) of the theorem. To prove part d), let $c_k = ||T_k||_1$ since the coefficients of T_k are non-negative. From the recursion

$$c_0 = 1, \quad c_1 = 1,$$
$$c_{k+1} = c_k + k^2 c_{k-1}, \quad k \in \mathbb{N},$$

it follows easily that $c_k = k!$ hence

$$(T3) \quad ||T_k||_1 = k!, \quad k \in \mathbb{N}.$$

Let us also remark that T_2 implies the following

$$(T4) \quad \frac{T_k(m, n)}{k!} \in \mathbb{Z}, \quad \text{for all } m, n \in \mathbb{Z}.$$

4. Let $\tilde{T}_k = z^k T_k(x/z^2, y/z)$. Then \tilde{T}_k is isobaric of weight k, if we assign x weight 2, y weight 1, and z weight 1. These polynomials satisfy the recursion

$$\tilde{T}_0 = 1, \quad \tilde{T}_1 = y,$$
$$\tilde{T}_{k+1} = y\tilde{T}_k + k(x + z^2(k - 1))\tilde{T}_{k-1}, \quad k \in \mathbb{N}.$$

Set now $R_k = \tilde{T}_k(1, t, 0)$, the leading terms of \tilde{T}_k at infinity. Then

$$R_0 = 1, \quad R_1 = t,$$
$$R_{k+1} = tR_k - kR_{k-1}, \quad k \in \mathbb{N}.$$

It follows that $R_k(t) = 2^{-k/2} H_k(t/\sqrt{2})$, where H_k is the classical Hermite polynomial (see for example [Le §4.9]). More precisely,

$$(T5) \quad R_k(t) = z^k T(1/z^2, t/z)|_{z=0} = k! \sum_{j=0}^{[k/2]} \frac{(-1)^j}{j! (k - 2j)! 2^j} t^{k-2j}$$

It is interesting that the discriminant can be computed explicitly

$$\text{disc}(R_k) = \prod_{j=1}^{k} j^j,$$

but we only need to know that it is non-zero.
Lemma. Let K be a perfect field and \overline{K} an algebraic closure of K. Let $P \in K[x, y, z]$ be a homogeneous polynomial of degree d. Suppose that $P(t, 1, 0) \in K[t]$ also has degree d, is irreducible over K and $P(x, y, z) = 0$ has more than $d^2/4$ projective solutions over K. Then P is irreducible over K.

Proof. Since $P(t, 1, 0)$ has degree d and is irreducible over K it follows that $P(x, y, z)$ is also irreducible over K. Suppose P is not absolutely irreducible. Then, $P = \prod_\sigma Q^\sigma$, where Q is an irreducible factor of P over K of degree $e \leq d/2$ and σ runs through the embeddings of the field of definition of Q into K. Any K-rational point of $P = 0$ is a rational point of $Q^\sigma = 0$ for every σ. Since the Q^σ’s are all distinct, Bezout’s theorem implies that the number of K-rational points of $P = 0$ is bounded by $e^2 \leq d^2/4$, a contradiction. □

According to Schur [Sc] the polynomials R_k for k even and R_k/t for k odd are irreducible over \mathbb{Q}. Hence, the above lemma applies and we deduce part b) of the theorem.

5. For $p > 2$ a prime number let us consider the recursion defining T_k modulo p. It turns out to have a very simple structure. First, from T2 and \[
\prod_{j=0}^{p-1} (x - j) \equiv x^p - x \mod p
\]

it follows that \[
T_p \equiv y^p - y \mod p, \quad p > 2, \quad p \text{ prime}.
\]

Also, from T0 it follows easily that \[
T_{p+k+1} \equiv yT_{p+k} + k(x + k - 1)T_{p+k-1} \mod p,
\]

and hence by induction in k \[
T_{p+k} \equiv (y^p - y)T_k \mod p.
\]

We conclude that \[(T6) \quad T_k \equiv T_{a_0}(y^p - y)^{a_1}(y^p - y)^{a_2} \cdots \mod p, \quad k = a_0 + a_1p + a_2p^2 \cdots \in \mathbb{N}.
\]

6. We now prove that P_d vanishes on the points II of the theorem. First we need the following. For each $k \in \mathbb{N}$ consider the polynomials \[
U_k(z, w) = T_k(x, y), \quad z = \frac{1}{2}(x - y), \quad w = x - k + 1.
\]

Let λ be an indeterminate and z, w two fixed integers. Then using T2 we obtain \[(T7) \quad \sum_{k=0}^{\infty} U_k(z, w) \frac{\lambda^k}{k^t} = \frac{(1 + 2\lambda)^z}{(1 + \lambda)^w}, \quad z, w \in \mathbb{Z}.
\]
From this identity it is not hard to see that

\[U_k(z,w) = \frac{w!}{k!} \sum_{j=0}^{w-1} (-2)^j \binom{z}{j} \binom{k + w - j - 1}{w - j - 1}, \quad 0 \leq z \leq w. \] (T8)

It follows that \(P_d \) vanishes at the points II if

\[\sum_{j=0}^{m} (-2)^j \binom{m}{j} \binom{2k - j}{k} = 0, \quad 0 \leq m \leq k, \quad m \text{ odd}, \] (*)

where \(k = 2d \).

To prove this identity we start with

\[\binom{a + b}{k} = \sum_{r=0}^{a} \binom{a}{r} \binom{b}{k - r}, \quad a, b \in \mathbb{Z}_{\geq 0}, \]

which follows from the binomial theorem by comparing the \(k \)-th coefficients on both sides of

\[(1 + \lambda)^{a+b} = (1 + \lambda)^a (1 + \lambda)^b. \]

Applying this to \(a = m - j, b = 2k - m \) we obtain

\[\binom{2k - j}{k} = \sum_{r=0}^{m-j} \binom{m-j}{r} \binom{2k-m}{k-r} \]

and hence (*) is equivalent to

\[\sum_{j=0}^{m} \sum_{r=0}^{m-j} (-2)^j \binom{m}{j} \binom{m-j}{r} \binom{2k-m}{k-r} = 0. \]

This in turn follows from the stronger fact

\[\sum_{j=0}^{m-r} (-2)^j \binom{m}{j} \binom{m-j}{r} = (-1)^m \sum_{j=0}^{r} (-2)^j \binom{m}{j} \binom{m-j}{m-r}, \]

since \(\binom{2k-m}{k-r} = \binom{2k-m}{k-m+r} \), obtained by expanding

\[(\lambda - 1)^m = (\lambda + 1 - 2)^m \]

and comparing the coefficients of \(\lambda^r \) and \(\lambda^{m-r} \) respectively.

The fact that the points listed in III are in \(P_d = 0 \) will be left to the reader (one may use the fact, for example, that they sit on lines that intersect the curve on \(d - 1 \) other explicitly known points).

7. We now present the experimental data. We first discuss the cases \(d = 3, 4 \) in more detail, where the equations \(P_d(x, y) = 0 \) determine smooth projective curves of genus 1, 3 respectively.
For \(d = 3 \) we have

\[
P_3 = -15x^3 + 45yx^2 + 90x^2 - 15y^2x - 210yx - 120x + y^3 + 40y^2 + 184y.
\]

The equation \(P_3 = 0 \) defines an elliptic curve with minimal Weierstrass equation (courtesy of F. Hajir)

\[
y^2 + xy + y = x^3 - x^2 - 62705x + 5793697
\]

and conductor \(N = 29734650 = 2 \cdot 3^2 \cdot 5^2 \cdot 11 \cdot 6007 \). A computer search yielded the following 25 integral solutions \((x, y)\) to \(P_3(x, y) = 0 \).

\[
(0, 0) \quad (1, 1) \quad (2, -14) \quad (0, 2) \quad (2, 4) \quad (3, -5) \quad (3, 1) \quad (3, 9) \\
(4, 0) \quad (4, 4) \quad (4, 16) \quad (5, 1) \quad (5, 9) \quad (5, 25) \quad (9, 25) \quad (12, 4) \\
(12, 36) \quad (12, 100) \quad (16, 144) \quad (25, 9) \quad (67, 25) \quad (345, 1225) \quad (-1, -9) \quad (-4, -20) \\
(-14, -56)
\]

For \(d = 4 \)

\[
P_4 = 105x^4 - 420x^3y - 1260x^3 + 210x^2y^2 + 4200x^2y + 4620x^2 \\
- 28xy^3 - 1540xy^2 - 11872xy - 5040x + y^4 + 112y^3 + 2464y^2 + 8448y
\]

A computer search yielded the following 31 integral solutions \((x, y)\) to \(P_4(x, y) = 0 \).

\[
(0, 0) \quad (2, 0) \quad (4, 0) \quad (6, 0) \quad (1, 1) \quad (3, 1) \quad (5, 1) \quad (7, 1) \\
(3, -3) \quad (2, 4) \quad (4, 4) \quad (6, 4) \quad (16, 4) \quad (5, -7) \quad (3, 9) \quad (5, 9) \\
(7, 9) \quad (33, 9) \quad (4, 16) \quad (6, 16) \quad (4, -20) \quad (0, -24) \quad (5, 25) \quad (7, 25) \\
(3, -35) \quad (6, 36) \quad (16, 36) \quad (7, 49) \quad (16, 100) \quad (16, 196) \quad (-11, -35)
\]

For higher \(d \) we have the following data, where we only present those points not given by the Theorem. We searched exhaustively for points with \(|x| \leq 1000\). We have not found any patterns in the extra points; perhaps a more attentive reader will.

<table>
<thead>
<tr>
<th>(d)</th>
<th>new points</th>
<th>total number of points</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>((16, 144), (17, 81), (25, 441), (99, 589))</td>
<td>42</td>
</tr>
<tr>
<td>6</td>
<td>((1, -11), (17, 121), (34, 784))</td>
<td>54</td>
</tr>
<tr>
<td>7</td>
<td>((16, 16), (17, 49), (25, 169), (36, 676), (98, 16))</td>
<td>71</td>
</tr>
<tr>
<td>8</td>
<td>none</td>
<td>85</td>
</tr>
<tr>
<td>9</td>
<td>((9, -35), (33, 289))</td>
<td>104</td>
</tr>
<tr>
<td>10</td>
<td>none</td>
<td>123</td>
</tr>
<tr>
<td>11</td>
<td>((34, 784), (36, 676), (41, 441), (57, 2601), (67, 3249))</td>
<td>160</td>
</tr>
<tr>
<td>12</td>
<td>none</td>
<td>171</td>
</tr>
</tbody>
</table>
To verify that $P_d = 0$ defines a smooth curve is enough to check that it has no affine singularities as the Hermite polynomial is separable. For this we verified, by computing modulo p for various primes p using the recursion, that the quantity

$$\text{Res}_y(\text{Res}_x(P_d, \frac{\partial P_d}{\partial x}), \text{Res}_x(P_d, \frac{\partial P_d}{\partial y})),$$

where Res_t stands for resultant in the variable t, is not zero for $d = 2, 3, \ldots, 25$.

Remark These polynomials arose while studying the Picard–Fuchs equation for a period of a holomorphic differential on the family of varieties given by

$$(x_1 + \cdots + x_N)(x_1^{-1} + \cdots + x_N^{-1}) = \lambda$$

with $\lambda \in \mathbb{C}$ a parameter. The Picard–Fuchs equation may easily be related to the equation satisfied by J_0^N where J_0 is the standard J-Bessel function and this equation can be computed recursively. The polynomials T_k appear as the coefficients of highest order in this recursion. The vanishing of T_k at some of the integral points of the theorem is then connected to the location of the bad fibers of the family.

Acknowledgements We would like to thank R. Coleman, A. Granville, F. Hajir, B. Poonen, and D. Zagier for suggestions, and the NSF (FRV) and NSA (JFV) for financial support. We also acknowledge the use of the software PARI for the numerical calculations. The routines we used are available at the URL

References

