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1 Introduction

This is a report on work our group did at the workshop Higher rank L-functions in Benasque,
July 2009. Our group consisted of: Sal Baig, Philip Candelas, Henri Cohen, Xenia de la Ossa,
Fernando Rodriguez Villegas and Mark Watkins. The goal was to compute the full L-function of
the principal piece of the middle cohomology of the quintic

Xψ : x5
1 + · · · + x5 − 5ψx1 · · · x5 = 0,

for arbitrary ψ ∈ Q.
Concretely, fix ψ ∈ Q with ψ5 , 1. Then Xψ is a smooth projective Calabi-Yau threefold.

Consider the abelian subgroup of automorphisms

A := {(ζ1, . . . , ζ5) | ζ5
i = 1, ζ1 · · · ζ5 = 1},

acting by xi 7→ ζixi and let V = Vψ be the subspace of H3(Xψ,C) fixed by A.
Our goal is to:
i) Compute the complete L-function Λ(V, s) of V , i.e, compute all of its Euler factor including

those for bad primes and at infinity.
ii) Check numerically the functional equation of Λ(V, s) and determine the corresponding

sign.
iii) Check, if possible, the modularity of L(V, s).
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2 The L-function

By the general recipe (described in Serre [?] for the total space Hk(X) of a smooth projective
variety X) the shape of the L-function is as follows

Λ(V, s) = N s/2L∞(V, s)
∏

p

Lp(V, p−s)−1,

where N is the conductor, a positive integer, L∞ is a product of gamma factors and Lp(V,T ) is a
polynomial, generically of degree equal to dim V .

2.1 Gamma factors and numerical test of the functional equation

The gamma factors are determined by the Hodge numbers of V . It is known that dim V = 4 and
that in fact hp,q(V) = 1 for p = 0, 1, . . . , 3 and p + q = 3. This yields the following value for the
Euler factor at∞.

L∞(V, s) = (2π)−2sΓ(s)Γ(s − 1).

Let
L(V, s) :=

∏
p

Lp(V, p−s)−1 =
∑
n≥1

an

ns .

By using the Mellin transform we can write

Λ(V, s) =

∫ ∞

0
ϕ(t)ts dt

t
,

where

ϕ(t) :=
∑
n≥1

an k
(

nt
√

N

)
, k(t) :=

1

π
√

t
K1

(
4π
√

t
)

(1)

and K1 is the usual K-Bessel function. The point is that k(t) is the inverse Mellin transform of
L∞(V, s).

It is know that

K1(x) ≈
√

π

2x
e−x, x→ ∞.

Since V is pure of weight 3, being a subspace of H3(Xψ) where Xψ is smooth and projective, we
know that

an = O(n3/2+ε),

for any ε > 0. Hence the definition (1) gives ϕ as a sum of exponentially decaying terms. To
compute it to a given accuracy we will need, as a rule of thumb, a number of terms in the series
proportional to

√
N. The size of N will therefore be crucial for the feasibility of the calculations.

Since V is a piece of H3 the expected functional equation is

Λ(4 − s) = εΛ(s), ε = ±1.
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By taking the inverse Mellin transform this is equivalent to

ϕ(t−1) = εt4ϕ(t).

Our numerical test will be to compute an approximation to the ratio

ϕ(t−1)/t4ϕ(t)

for t ≈ 1. The result should be close to ε = ±1.

2.2 Hypergeometric trace and Euler factors

Let S be the finite set of primes p consisting of p = 5 and those satisfying ψ5 ≡ 1 mod p or
ψ ≡ ∞ mod p (i.e., such that p divides the denominator of ψ). Any prime p outside S is a good
prime and the corresponding Euler factor has the form

Lp(T ) = 1 + aT + bpT 2 + ap3T 3 + p6T 4, a, b ∈ Z, p < S . (2)

The coefficients a and b that determine the whole polynomial can be computed using the p-adic
methods of Dwork. We will give the final expression obtained in [?] in terms of the hypergeo-
metric trace of Katz, which we now define.

Let Q(p) be the ring of rational numbers with denominator coprime to p. Fix α = (α1, . . . , αr)
and β = (β1, . . . , βr) vectors in Qr

(p) with 0 ≤ α j, β j < 1 and f a positive integer. For m =

0, 1, . . . , q − 2, with q := p f , we define a p-adic analogue of the Pochammer symbol

(x)∗m,q :=
Γ∗q

(
x + m

1−q

)
Γ∗q(x)

, x ∈ Q(p) ⊆ Zp. (3)

where to simplify the notation we set

Γ∗p(x) := Γp ({x}) , Γ∗q(x) :=
f−1∏
ν=0

Γ∗p(pνx), x ∈ Q(p) ⊆ Zp.

To alleviate the notation we will drop the dependence on q when there is no risk of confusion.
For x ∈ Q(p) and m = 0, 1, . . . , q − 2 we let

ηm(x) :=
f−1∑
ν=0

{
pν

(
x +

m
1 − q

)}
− {pνx}

and extend the definition to x = (x1, . . . , xr) ∈ Qr
(p) by setting

ηm(x) :=
r∑

j=1

ηm(x j).
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We assume now that for all m = 0, 1, . . . , q − 2 we have

ηm(α) − ηm(β) ∈ Z (4)

and define

Hq

(
α

β

∣∣∣∣∣∣ z
)

:=
1

1 − q

q−2∑
m=0

(−p)ηm(α)−ηm(β) qξm(β)
r∏

j=1

(α j)∗m
(β j)∗m

Teich(z)m. (5)

where

ξm(β) := #
{
j | β j = 0

}
− #

{
j | β j +

m
1 − q

= 0
}
.

Remark 2.0.1 We have normalized the hypergeometric trace Hq of Katz so that it resembles the
classical hypergeometric series. We should point, however, that α gives the exponents of the
local monodromy at ∞ and β those at 0, whereas classically the exponents at 0 would be given
as 1 − β j instead of β j.

We then have that the trace of the geometric Frobenius Frobq on V is given as a number in
Qp by

Tr
(
Frobq

∣∣∣
Vψ

)
= Hq

( 1
5

2
5

3
5

4
5

0 0 0 0

∣∣∣∣∣∣ψ−5
)
, ψ . 0 mod p. (6)

If we abbreviate the right hand side by Hq then we have

a = −Hp, b = 1
2p (H2

p − Hp2).

For a prime p , 5 such that ψ5 ≡ 1 mod p we may still compute the right hand side of (6).
These are the traces of an operator with characteristic polynomial

Lp(T ) = (1 −
(

5
p

)
pT )(1 − apT + p3T 2), p , 5, ψ5 ≡ 1 mod p, (7)

where ap is the p-th coefficient of the Hecke eigenform of weight 4 and level 25 discovered by
Schoen, which gives the trace of Frobenius acting on H3 of a resolutions of singularities of the
conifold X1. Again, with the above notation

ap +
(

5
p

)
p = −Hp,

(
5
p

)
ap + p2 = 1

2p (H2
p − Hp2).

For a prime p , 5 such that ψ ≡ ∞ mod p the right hand side of (6) gives the constant value
1 for all f . Hence the associated characteristic polynomials is simply

Lp(T ) = 1 − T, p , 5, ψ ≡ ∞ mod p. (8)

This seems to be the right answer.
If ψ ≡ 0 mod p the formula (6) breaks down. However, the variety X0 is the Fermat hyper-

surface
x5

1 + · · · x5
5 = 0,
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whose L-series was calculated by Weil in terms of Hecke characters. It is not difficult to work
out the Hecke character corresponding to V0. Let K := Q(ζ5), where ζ5 is a primitive fifth root of
unity and let F = (1 − ζ5)2. A prime p , 5 factors in the ring of integers OK of K into primes

(p) =

s∏
i=1

Pi,

where s | 4. The class number of K is 1 and we can in fact choose generators αi of Pi such that

αi ≡ 1 mod F , i = 1, 2, . . . , s. (9)

Indeed, it is not hard to verify that a generator ε of O?K generates (OK/F )? and hence given any
generator of Pi we can multiply it by an appropriate power of ε to obtain αi.

Let σ be the generator of Gal(K/Q) that takes ζ5 to ζ2
5 . We define the Hecke character φ by

setting
φ(Pi) := α1+2σ2+3σ3

i .

It is a short calculation to verify that this is well defined independent of the choice of αi satisfying
(9). Then the Euler factor at p is

Lp(T ) :=
s∏

i=1

(1 − φ(αi)T 4/s).

For p = 5 we have
L5(T ) = 1.

The L-function of this Hecke character has functional equation of the form

Λ(s) := N s/2L∞(s)L(φ, s) = Λ(4 − s),

where L(φ, s) :=
∏

p Lp(p−s). It is known that

N = disc(K/Q) · NK/Q(F ) = 53 · 52 = 55.

We can verify that L∞(s) is our previously computed factor (2π)−2sΓ(s)Γ(s − 1) directly. Indeed,
the infinite type of φ is µ := 1 + 2σ2 + 3σ3 and 1, σ2 and σ,σ3 correspond to pairs of complex
conjugate embeddings of K. For the first pair we have (1, σ2) + (0, σ2) in µ. This contributes a
factor of ΓC(s − 1). For the second pair we have (0, 3σ3) in µ, which contributes a factor of ΓC.

2.3 The conductor

The conductor N is defined as a product over primes
∏

p p fp , where fp = 0 for all but finitely
many primes. The exponent fp itself is a sum of two terms: rp := dim V − dim V I , where I is the
inertia group at p, and a wild contribution δp. Since

Lp(T ) := det
(
I − Frobq

∣∣∣
V I

)
we see that rp = dim V − deg Lp.



6

2.4 Modularity

We would like to test whether L(V, s) is modular. A natural choice of automorphic L-function to
compare L(V, s) with is the spinor L-function of a Siegel modular form. For g = 2 this L-function
has an Euler factor for good primes p of the form

Lp(T ) = 1 − λpT + (λ2
p − λp2 − p2k−4)T 2 − λp p2k−3T 3 + p4k−6T 4,

where k is the weight of the Siegel modular form and λp and λp2 are the eigenvalues of the Hecke
operators Tp and Tp2 .

For a Siegel modular F form of level 1 Andrianov showed that the L-function

ZF(s) := (2π)−2sΓ(s)Γ(s − 1)
∏

p

Lp(p−s)−1,

has a meromorphic continuation to all s ∈ C and satisfies a functional equation

ZF(k + 1 − s) = (−1)kZF(s).

So if we expect ZF(s) to equal L(V, s) we need the weight k to equal 3. However, one needs to
be aware that if F is in the Maass space Lp(T ) is not pure of weight 3. Indeed in that case the
ZF factors as ζ(s − k + 1)ζ(s − k + 2)L( f , s) for an eigenform of weight 2k − 2 on Γ0(N). It is a
conjecture of Arthur that if F is not in the Maass space then there is an associated motive of V
rank 4 and pure weight 3 such that L(V, s) = ZF(s). Hence it is natural to expect that our V is
such a motive for some F.

Our situation is similar to the case of elliptic curves since a Siegel modular form F of g = 2
and weight 3 determines a holomorphic differential in the corresponding Siegel threefold

F(z) dz1,1 ∧ dz1,2 ∧ dz2,2, z = (zi, j) ∈ H2.

Other than quadratic twists of ZF(s) for F a Siegel eigenform of level 1 I could not find in the
literature a description of the Euler factors for primes dividing the conductor.

3 Other analogous families

There turn out to be fourteen families Xψ of Calabi-Yau threefolds analogue to the quintic; i.e.,
hypergeometric and with β = (0, 0, 0, 0), (maximally unipotent monodromy at ψ = ∞). The
values of α are given in the following table together with the level N1 of the weight 4 modular
form and the conductor D of the Dirichlet character associated with the singularity at ψ = 1.



7

α N1 D
(1

2 ,
1
2 ,

1
2 ,

1
2 ) 8 1

(1
3 ,

2
3 ,

1
4 ,

3
4 ) 9 24

(1
2 ,

1
2 ,

1
4 ,

3
4 ) 16 8

(1
5 ,

2
5 ,

3
5 ,

4
5 ) 25 5

(1
3 ,

2
3 ,

1
3 ,

1
3 ) 27 1

(1
4 ,

3
4 ,

1
4 ,

3
4 ) 32 1

(1
2 ,

1
2 ,

1
3 ,

2
3 ) 36 12

(1
2 ,

1
2 ,

1
6 ,

5
6 ) 72 1

(1
3 ,

2
3 ,

1
6 ,

5
6 ) 108 12

(1
8 ,

3
8 ,

5
8 ,

7
8 ) 128 8

(1
4 ,

3
4 ,

1
6 ,

5
6 ) 144 8

( 1
10 ,

3
10 ,

7
10 ,

9
10 ) 200 1

(1
6 ,

5
6 ,

1
6 ,

5
6 ) 216 1

( 1
12 ,

5
12 ,

7
12 ,

11
12 ) 864 1

For all of these cases we can write an explicit model for Xψ (for the first thirteen cases as com-
plete intersections in weigted projective spaces [?]; the fourteenth case is described in []) . The
family carries a period satisfiying the corresponding hypergeometric differential equation with
parameters α, β. We again obtain a motive Vψ of rank 4 and pure weight 3 for good primes p
coming from a piece of the middle cohomology of Xψ. The trace of Frobq on Vψ is given by

Tr
(
Frobq

∣∣∣
Vψ

)
= Hq

(
α

β

∣∣∣∣∣∣ψ−m

)
, ψ . 0 mod p

for some positive integer m. (For the quintic case α = ( 1
5 ,

2
5 ,

3
5 ,

4
5 ) and m = 5.)

We posit that in fact for each choice of α from the above list there is a rank 4 motive Ht =

Ht(α, β), of pure weight 3 for good primes, such that for t ∈ Q we have

Tr
(
Frobq

∣∣∣
Ht

)
= Hq

(
α

β

∣∣∣∣∣∣ t
)
, p < S ,

where S is the finite set of primes dividing t, t − 1, t−1, denom(α) or denom(β).
Let us take, for example, α = ( 1

2 ,
1
2 ,

1
2 ,

1
2 ) and t = −1. Here are the first few values of Hp and

Hp2 .
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p Hp Hp2

3 0 −12
5 −4 276
7 0 −476

11 0 −4972
13 −84 −1420
17 36 7620
19 0 −21964
23 0 24932
29 140 −62412

From the traces we can compute the coefficients of the Euler factor

Lp(T ) = 1 + aT + pbT 2 + ap3 + p6T 4, a = −Hp, b = 1
2p (H2

p − Hp2).

p a b
3 0 2
5 4 −26
7 0 34

11 0 226
13 84 326
17 −36 −186
19 0 578
23 0 −542
29 −140 1414

If we compare these with the corresponding table 7.6 of van Geemen and van Straaten we see
that except for the signs of a (and the value of b for p = 11) they agree with those in the column
for the Siegel modular form F7. (Note that their polynomial is normalized as T 4−apT 3 +ap2T 2−

ap p3T + p6.)
Furhermore, they notice that Lp(T ) seems to be the Euler factor of the L-function associated to

f2⊗ f3 where f2 is a CM eigenform of weight 2, level 32 and trivial character and f3 an eigenform
of weight 3, level 32 and character

(
−4
.

)
. With this information we can extend their calculation

and check the agreement of this L-function with ours. Here is a table of the p-coefficients of f2

and f3 from Stein’s database.
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p f2 f3

2 0 0
3 0 4i
5 −2 2
7 0 −8i

11 0 4i
13 6 −14
17 2 18
19 0 12i
23 0 40i
29 −10 −14
31 0 32i
37 −2 −30

We see, for example, that the product of the p coefficients of f2 and f3 matches the values of
Hp.

3.1 Special cases

Inspired by this example we experimented with the motive H±1 where α = ( 1
2 , . . . ,

1
2 ) of length

r. Let us denote the motive by W±
r . Our previous example associated to f2 ⊗ f3 is then W−

4 . Here
is a table of the values of Hp.

W+
r

p\r 1 2 3 4 5 6
3 0 −1 0 −1 0 −1
5 0 1 −6 3 20 −59
7 0 −1 0 31 0 95

11 0 −1 0 −33 0 −481
13 0 1 10 35 −300 933
17 0 1 −30 67 −60 −59
19 0 −1 0 63 0 3519

W−
r
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p\r 1 2 3 4 5 6
3 −1 0 −1 0 −1 0
5 −1 −2 5 −4 −21 58
7 1 0 −7 0 −79 0

11 −1 0 −25 0 79 0
13 −1 6 13 −84 −101 −1102
17 −1 2 19 36 −699 614
19 −1 0 15 0 −161 0

There is a clear pattern that emerges, W±
r has Hp = 0 unless p ≡ 1 mod 4 when ±1 = (−1)r−1.

It would seem that the L-function of W+
5 equals L( f2 ⊗ f4, s), where f2 is our previous CM

form of weight 2 and f4 is a modular form of weight 4 and level 32 with eigenvalues

p f4

2 0
3 8
5 −10
7 16

11 −40
13 −50
17 −30
19 40
23 48
29 −34
31 320
37 310

3.2 Stirling and Dirichlet

It turns out that the discriminant D giving the Dirichlet character of the linear factor of Lp(T )
corresponding to ψ = 1 can be given directly in terms of α and β as follows.

The hypergeometric series F
(
α

β

∣∣∣∣∣∣ t
)

has a power series around t = 0 of the form

∑
n≥0

un

( t
K

)n
,

where
un :=

∏
ν≥1

(νn)!γν , K :=
∏
ν≥1

ννγν , (10)
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for certain integers γν, which are zero for almost all ν. The relation between the parameters α, β
and γ is the following∏
ν≥1

(1−T ν)γν =
q∞(T )
q0(T )

, q∞(T ) :=
∏

j

(1−e2πiα jT ), q0(T ) :=
∏

j

(1−e2πiβ jT ). (11)

(We are assuming that q0 and q∞ have coefficients in Z.)
By Stirling, as n→ ∞

un ∼

√
δ

(2πn)d/2 Kn,

where
δ :=

∏
ν≥1

νγν , d := −
∑
ν≥1

γν.

Numerically, it seems that D is the discriminant of the quadratic extension of Q given by adjoin-
ing a square root of (−1)dδ.

4 Hypergeometric motives

4.1 Hodge numbers

We expect the above situation to be true in greater generality. Let γ be a non-zero sequence of
integers γ = (γν) for ν ≥ 1, only finitely many of which are non-zero, and satisfying∑

ν≥1

γνν = 0, (12)

a condition we will call regularity. We associate to γ a family of motives Vt with t ∈ P1 defined
over Q. Our goal is to describe the L-function of Vt completely.

To this end, define

L+(x) :=
∑
ν≥1

γν
(

1
2 − {νx}

)
, x ∈ R,

where {·} denotes the ordinary fractional part of a real number. It is easy to check that L+ is
periodic of period 1, locally constant, right continuous and satisfies

L+(−x) = −L−(x), (13)

where L−(x) := limy→x− L
+(y). Also, L+ has only finitely many discontinuities. If we let l(x) :=

L+(x) − L−(x) then l takes integer values and is zero away from these discontinuities. In other
words, the functions L± have only jump discontinuities and the jumps are integral. We have∑

x∈[0,1) l(x) = 0 and by (13) the symmetry l(−x) = l(x).
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Define the weight of γ by

w := max
x∈[0,1)

L+(x) − min
x∈[0,1)

L+(x) − 1.

Clearly, w is an integer and is in fact non-negative since L is not identically zero (we have
assumed γ is not zero). Note that maxx∈[0,1)L

±(x) = −minx∈[0,1)L
±(x) = (w + 1)/2 and hence

L±(x) + (w + 1)/2 takes values in Z≥0.
Define the Hodge polynomial of γ by

h(T ) :=
∑

l(x)>0

TL
−(x)+(w+1)/2[l(x)] ∈ Z[T ],

where [l] := 1 + T + · · · + T l−1 and the sum is over the finitely many x ∈ [0, 1) with l(x) > 0.

Lemma 4.1. The Hodge polynomial is reciprocal of degree w and has non-negative integer
coefficients.

h(T−1) = T−wh(T ).

Proof. It is clear from the definition that the coefficients of h(T ) are non-negative integers. Let
x be the left endpoint of an interval in (0, 1) where L+(x) achieves its maximum. Then l(x) > 0
and the corresponding term in the sum defining h(T ) has degree L−(x) + (w + 1)/2 + l(x)−1 = w.
Hence the degree of h is w.

We have

h(T−1) =
∑

l(x)>0

T−L
−(x)−(w+1)/2T 1−l(x)[l(x)] =

∑
l(x)>0

TL
−(−x)+l(−x)−(w+1)/2T 1−l(x)[l(x)]

by (13) and the right hand side simplifies to give T−wh(T ) finishing the proof. �

We refine the Hodge polynomial by definining for every m ∈ Z≥0

h(m)
0 (T ) :=

∑
l(x)=m

TL
−(x)+(w+1)/2 ∈ Z[T ]

so that h(T ) =
∑

m≥0 h(m)(T )[m]. As in the proof of Lemma 4.1 we find

h(m)
0 (T−1) =

∑
l(x)=m

T−L
−(x)−(w+1)/2 =

∑
l(x)=m

TL
+(−x)−(w+1)/2 =

∑
l(x)=m

TL
−(x)+m−(w+1)/2

so that
h(m)

0 (T−1) = T−w+m−1h(m)
0 (T ).

An alternative way to compute the Hodge polynomial of γ is as follows.

Proposition 4.2. We have

h(T ) =
∑

l(x)<0

= TL
+(x)+(w+1)/2[−l(x)]. (14)
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Proof. Slightly deform L+ to a continuous function L as follows. Replace a jump of L+ with
l(x) > 0 by an increasing function in a small interval (x − ε, x + ε) for some ε > 0 going from
L−(x) to L+(x). Similarly replace a jump with l(x) < 0 by a decreasing function going from
L+(x) to L−(x).

Then
h(T ) =

∑
T L(x)+(w+1)/2,

where the sum is over x ∈ [0, 1) such that L(x) ∈ Z and L(x) < L(x′) for x < x′. Call such an x a
point of increase.

On the other hand the right hand side of (14) is a similar sum over x ∈ [0, 1) such that
L(x) ∈ Z and L(x) > L(x′) for x′ < x. Call such an x a point of decrease. By periodicity, for a
given y ∈ Z the number of points of increase with x ∈ [0, 1) with L(x) = y is the same as those of
decrease. This proves our claim. �

We define a new refinement of the Hodge polynomial. For m ∈ Z≥0 let

h(m)
∞ (T ) :=

∑
l(x)=−m

TL
+(x)+(w+1)/2 ∈ Z[T ].

Then
h(T ) =

∑
m≥0

h(m)
∞ (T )[m].

Note that if we replace γ by −γ then L also changes sign and h(m)
0 turns into h(m)

∞ . Hence

h(m)
∞ (T−1) = T−w+m−1h(m)

∞ (T ).

4.2 Tame primes

We will say that a prime p is tame if it does not divide the denominators of α or β and one of
vp(t), vp(t−1) or vp(t − 1) is positive. We would like to describe the Euler factor Lp(T ) and power
fp of p in the conductor of the L-function associated to the motive Ht(α, β).


