# The $L$-function of the quintic 

Fernando Rodriguez Villegas<br>University of Texas at Austin<br>villegas@math.utexas.edu

June 26, 2012

## 1 Introduction

This is a report on work our group did at the workshop Higher rank L-functions in Benasque, July 2009. Our group consisted of: Sal Baig, Philip Candelas, Henri Cohen, Xenia de la Ossa, Fernando Rodriguez Villegas and Mark Watkins. The goal was to compute the full $L$-function of the principal piece of the middle cohomology of the quintic

$$
X_{\psi}: \quad x_{1}^{5}+\cdots+x_{5}-5 \psi x_{1} \cdots x_{5}=0
$$

for arbitrary $\psi \in \mathbb{Q}$.
Concretely, fix $\psi \in \mathbb{Q}$ with $\psi^{5} \neq 1$. Then $X_{\psi}$ is a smooth projective Calabi-Yau threefold. Consider the abelian subgroup of automorphisms

$$
A:=\left\{\left(\zeta_{1}, \ldots, \zeta_{5}\right) \mid \zeta_{i}^{5}=1, \zeta_{1} \cdots \zeta_{5}=1\right\}
$$

acting by $x_{i} \mapsto \zeta_{i} x_{i}$ and let $V=V_{\psi}$ be the subspace of $H^{3}\left(X_{\psi}, \mathbb{C}\right)$ fixed by $A$.
Our goal is to:
i) Compute the complete $L$-function $\Lambda(V, s)$ of $V$, i.e, compute all of its Euler factor including those for bad primes and at infinity.
ii) Check numerically the functional equation of $\Lambda(V, s)$ and determine the corresponding sign.
iii) Check, if possible, the modularity of $L(V, s)$.

## 2 The $L$-function

By the general recipe (described in Serre [?] for the total space $H^{k}(X)$ of a smooth projective variety $X$ ) the shape of the $L$-function is as follows

$$
\Lambda(V, s)=N^{s / 2} L_{\infty}(V, s) \prod_{p} L_{p}\left(V, p^{-s}\right)^{-1},
$$

where $N$ is the conductor, a positive integer, $L_{\infty}$ is a product of gamma factors and $L_{p}(V, T)$ is a polynomial, generically of degree equal to $\operatorname{dim} V$.

### 2.1 Gamma factors and numerical test of the functional equation

The gamma factors are determined by the Hodge numbers of $V$. It is known that $\operatorname{dim} V=4$ and that in fact $h^{p, q}(V)=1$ for $p=0,1, \ldots, 3$ and $p+q=3$. This yields the following value for the Euler factor at $\infty$.

$$
L_{\infty}(V, s)=(2 \pi)^{-2 s} \Gamma(s) \Gamma(s-1)
$$

Let

$$
L(V, s):=\prod_{p} L_{p}\left(V, p^{-s}\right)^{-1}=\sum_{n \geq 1} \frac{a_{n}}{n^{s}} .
$$

By using the Mellin transform we can write

$$
\Lambda(V, s)=\int_{0}^{\infty} \varphi(t) t^{s} \frac{d t}{t}
$$

where

$$
\begin{equation*}
\varphi(t):=\sum_{n \geq 1} a_{n} k\left(\frac{n t}{\sqrt{N}}\right), \quad k(t):=\frac{1}{\pi \sqrt{t}} K_{1}(4 \pi \sqrt{t}) \tag{1}
\end{equation*}
$$

and $K_{1}$ is the usual $K$-Bessel function. The point is that $k(t)$ is the inverse Mellin transform of $L_{\infty}(V, s)$.

It is know that

$$
K_{1}(x) \approx \sqrt{\frac{\pi}{2 x}} e^{-x}, \quad x \rightarrow \infty
$$

Since $V$ is pure of weight 3 , being a subspace of $H^{3}\left(X_{\psi}\right)$ where $X_{\psi}$ is smooth and projective, we know that

$$
a_{n}=O\left(n^{3 / 2+\epsilon}\right),
$$

for any $\epsilon>0$. Hence the definition (1) gives $\varphi$ as a sum of exponentially decaying terms. To compute it to a given accuracy we will need, as a rule of thumb, a number of terms in the series proportional to $\sqrt{N}$. The size of $N$ will therefore be crucial for the feasibility of the calculations.

Since $V$ is a piece of $H^{3}$ the expected functional equation is

$$
\Lambda(4-s)=\epsilon \Lambda(s), \quad \epsilon= \pm 1
$$

By taking the inverse Mellin transform this is equivalent to

$$
\varphi\left(t^{-1}\right)=\epsilon t^{4} \varphi(t)
$$

Our numerical test will be to compute an approximation to the ratio

$$
\varphi\left(t^{-1}\right) / t^{4} \varphi(t)
$$

for $t \approx 1$. The result should be close to $\epsilon= \pm 1$.

### 2.2 Hypergeometric trace and Euler factors

Let $S$ be the finite set of primes $p$ consisting of $p=5$ and those satisfying $\psi^{5} \equiv 1 \bmod p$ or $\psi \equiv \infty \bmod p$ (i.e., such that $p$ divides the denominator of $\psi$ ). Any prime $p$ outside $S$ is a good prime and the corresponding Euler factor has the form

$$
\begin{equation*}
L_{p}(T)=1+a T+b p T^{2}+a p^{3} T^{3}+p^{6} T^{4}, \quad a, b \in \mathbb{Z}, \quad p \notin S \tag{2}
\end{equation*}
$$

The coefficients $a$ and $b$ that determine the whole polynomial can be computed using the $p$-adic methods of Dwork. We will give the final expression obtained in [?] in terms of the hypergeometric trace of Katz, which we now define.

Let $\mathbb{Q}_{(p)}$ be the ring of rational numbers with denominator coprime to $p$. Fix $\alpha=\left(\alpha_{1}, \ldots, \alpha_{r}\right)$ and $\beta=\left(\beta_{1}, \ldots, \beta_{r}\right)$ vectors in $\mathbb{Q}_{(p)}^{r}$ with $0 \leq \alpha_{j}, \beta_{j}<1$ and $f$ a positive integer. For $m=$ $0,1, \ldots, q-2$, with $q:=p^{f}$, we define a $p$-adic analogue of the Pochammer symbol

$$
\begin{equation*}
(x)_{m, q}^{*}:=\frac{\Gamma_{q}^{*}\left(x+\frac{m}{1-q}\right)}{\Gamma_{q}^{*}(x)}, \quad x \in \mathbb{Q}_{(p)} \subseteq \mathbb{Z}_{p} \tag{3}
\end{equation*}
$$

where to simplify the notation we set

$$
\Gamma_{p}^{*}(x):=\Gamma_{p}(\{x\}), \quad \Gamma_{q}^{*}(x):=\prod_{v=0}^{f-1} \Gamma_{p}^{*}\left(p^{v} x\right), \quad x \in \mathbb{Q}_{(p)} \subseteq \mathbb{Z}_{p}
$$

To alleviate the notation we will drop the dependence on $q$ when there is no risk of confusion.
For $x \in \mathbb{Q}_{(p)}$ and $m=0,1, \ldots, q-2$ we let

$$
\eta_{m}(x):=\sum_{v=0}^{f-1}\left\{p^{v}\left(x+\frac{m}{1-q}\right)\right\}-\left\{p^{v} x\right\}
$$

and extend the definition to $x=\left(x_{1}, \ldots, x_{r}\right) \in \mathbb{Q}_{(p)}^{r}$ by setting

$$
\eta_{m}(x):=\sum_{j=1}^{r} \eta_{m}\left(x_{j}\right)
$$

We assume now that for all $m=0,1, \ldots, q-2$ we have

$$
\begin{equation*}
\eta_{m}(\alpha)-\eta_{m}(\beta) \in \mathbb{Z} \tag{4}
\end{equation*}
$$

and define

$$
H_{q}\left(\left.\begin{array}{c}
\alpha  \tag{5}\\
\beta
\end{array} \right\rvert\, z\right):=\frac{1}{1-q} \sum_{m=0}^{q-2}(-p)^{\eta_{m}(\alpha)-\eta_{m}(\beta)} q^{\xi_{m}(\beta)} \prod_{j=1}^{r} \frac{\left(\alpha_{j}\right)_{m}^{*}}{\left(\beta_{j}\right)_{m}^{*}} \operatorname{Teich}(z)^{m} .
$$

where

$$
\xi_{m}(\beta):=\#\left\{j \mid \beta_{j}=0\right\}-\#\left\{j \left\lvert\, \beta_{j}+\frac{m}{1-q}=0\right.\right\} .
$$

Remark 2.0.1 We have normalized the hypergeometric trace $H_{q}$ of Katz so that it resembles the classical hypergeometric series. We should point, however, that $\alpha$ gives the exponents of the local monodromy at $\infty$ and $\beta$ those at 0 , whereas classically the exponents at 0 would be given as $1-\beta_{j}$ instead of $\beta_{j}$.

We then have that the trace of the geometric Frobenius $\mathrm{Frob}_{q}$ on $V$ is given as a number in $\mathbb{Q}_{p}$ by

$$
\operatorname{Tr}\left(\left.\operatorname{Frob}_{q}\right|_{V_{\psi}}\right)=H_{q}\left(\begin{array}{rrrr|r}
\frac{1}{5} & \frac{2}{5} & \frac{3}{5} & \frac{4}{5} & \psi^{-5}  \tag{6}\\
0 & 0 & 0 & 0
\end{array}\right), \quad \psi \not \equiv 0 \bmod p
$$

If we abbreviate the right hand side by $H_{q}$ then we have

$$
a=-H_{p}, \quad b=\frac{1}{2 p}\left(H_{p}^{2}-H_{p^{2}}\right)
$$

For a prime $p \neq 5$ such that $\psi^{5} \equiv 1 \bmod p$ we may still compute the right hand side of (6). These are the traces of an operator with characteristic polynomial

$$
\begin{equation*}
L_{p}(T)=\left(1-\left(\frac{5}{p}\right) p T\right)\left(1-a_{p} T+p^{3} T^{2}\right), \quad p \neq 5, \quad \psi^{5} \equiv 1 \bmod p \tag{7}
\end{equation*}
$$

where $a_{p}$ is the $p$-th coefficient of the Hecke eigenform of weight 4 and level 25 discovered by Schoen, which gives the trace of Frobenius acting on $H^{3}$ of a resolutions of singularities of the conifold $X_{1}$. Again, with the above notation

$$
a_{p}+\left(\frac{5}{p}\right) p=-H_{p}, \quad\left(\frac{5}{p}\right) a_{p}+p^{2}=\frac{1}{2 p}\left(H_{p}^{2}-H_{p^{2}}\right)
$$

For a prime $p \neq 5$ such that $\psi \equiv \infty \bmod p$ the right hand side of (6) gives the constant value 1 for all $f$. Hence the associated characteristic polynomials is simply

$$
\begin{equation*}
L_{p}(T)=1-T, \quad p \neq 5, \quad \psi \equiv \infty \bmod p \tag{8}
\end{equation*}
$$

This seems to be the right answer.
If $\psi \equiv 0 \bmod p$ the formula (6) breaks down. However, the variety $X_{0}$ is the Fermat hypersurface

$$
x_{1}^{5}+\cdots x_{5}^{5}=0
$$

whose $L$-series was calculated by Weil in terms of Hecke characters. It is not difficult to work out the Hecke character corresponding to $V_{0}$. Let $K:=\mathbb{Q}\left(\zeta_{5}\right)$, where $\zeta_{5}$ is a primitive fifth root of unity and let $\mathcal{F}=\left(1-\zeta_{5}\right)^{2}$. A prime $p \neq 5$ factors in the ring of integers $O_{K}$ of $K$ into primes

$$
(p)=\prod_{i=1}^{s} \mathcal{P}_{i},
$$

where $s \mid$. The class number of $K$ is 1 and we can in fact choose generators $\alpha_{i}$ of $\mathcal{P}_{i}$ such that

$$
\begin{equation*}
\alpha_{i} \equiv 1 \bmod \mathcal{F}, \quad i=1,2, \ldots, s \tag{9}
\end{equation*}
$$

Indeed, it is not hard to verify that a generator $\epsilon$ of $O_{K}^{\star}$ generates $\left(O_{K} / \mathcal{F}\right)^{\star}$ and hence given any generator of $\mathcal{P}_{i}$ we can multiply it by an appropriate power of $\epsilon$ to obtain $\alpha_{i}$.

Let $\sigma$ be the generator of $\operatorname{Gal}(K / \mathbb{Q})$ that takes $\zeta_{5}$ to $\zeta_{5}^{2}$. We define the Hecke character $\phi$ by setting

$$
\phi\left(\mathcal{P}_{i}\right):=\alpha_{i}^{1+2 \sigma^{2}+3 \sigma^{3}} .
$$

It is a short calculation to verify that this is well defined independent of the choice of $\alpha_{i}$ satisfying (9). Then the Euler factor at $p$ is

$$
L_{p}(T):=\prod_{i=1}^{s}\left(1-\phi\left(\alpha_{i}\right) T^{4 / s}\right) .
$$

For $p=5$ we have

$$
L_{5}(T)=1 .
$$

The $L$-function of this Hecke character has functional equation of the form

$$
\Lambda(s):=N^{s / 2} L_{\infty}(s) L(\phi, s)=\Lambda(4-s)
$$

where $L(\phi, s):=\prod_{p} L_{p}\left(p^{-s}\right)$. It is known that

$$
N=\operatorname{disc}(K / \mathbb{Q}) \cdot \mathbb{N}_{K / \mathbb{Q}}(\mathcal{F})=5^{3} \cdot 5^{2}=5^{5}
$$

We can verify that $L_{\infty}(s)$ is our previously computed factor $(2 \pi)^{-2 s} \Gamma(s) \Gamma(s-1)$ directly. Indeed, the infinite type of $\phi$ is $\mu:=1+2 \sigma^{2}+3 \sigma^{3}$ and $1, \sigma^{2}$ and $\sigma, \sigma^{3}$ correspond to pairs of complex conjugate embeddings of $K$. For the first pair we have $\left(1, \sigma^{2}\right)+\left(0, \sigma^{2}\right)$ in $\mu$. This contributes a factor of $\Gamma_{\mathbb{C}}(s-1)$. For the second pair we have $\left(0,3 \sigma^{3}\right)$ in $\mu$, which contributes a factor of $\Gamma_{\mathbb{C}}$.

### 2.3 The conductor

The conductor $N$ is defined as a product over primes $\prod_{p} p^{f_{p}}$, where $f_{p}=0$ for all but finitely many primes. The exponent $f_{p}$ itself is a sum of two terms: $r_{p}:=\operatorname{dim} V-\operatorname{dim} V^{I}$, where $I$ is the inertia group at $p$, and a wild contribution $\delta_{p}$. Since

$$
L_{p}(T):=\operatorname{det}\left(I-\left.\operatorname{Frob}_{q}\right|_{V^{\prime}}\right)
$$

we see that $r_{p}=\operatorname{dim} V-\operatorname{deg} L_{p}$.

### 2.4 Modularity

We would like to test whether $L(V, s)$ is modular. A natural choice of automorphic $L$-function to compare $L(V, s)$ with is the spinor $L$-function of a Siegel modular form. For $g=2$ this $L$-function has an Euler factor for good primes $p$ of the form

$$
L_{p}(T)=1-\lambda_{p} T+\left(\lambda_{p}^{2}-\lambda_{p^{2}}-p^{2 k-4}\right) T^{2}-\lambda_{p} p^{2 k-3} T^{3}+p^{4 k-6} T^{4},
$$

where $k$ is the weight of the Siegel modular form and $\lambda_{p}$ and $\lambda_{p^{2}}$ are the eigenvalues of the Hecke operators $T_{p}$ and $T_{p^{2}}$.

For a Siegel modular $F$ form of level 1 Andrianov showed that the $L$-function

$$
Z_{F}(s):=(2 \pi)^{-2 s} \Gamma(s) \Gamma(s-1) \prod_{p} L_{p}\left(p^{-s}\right)^{-1},
$$

has a meromorphic continuation to all $s \in \mathbb{C}$ and satisfies a functional equation

$$
Z_{F}(k+1-s)=(-1)^{k} Z_{F}(s)
$$

So if we expect $Z_{F}(s)$ to equal $L(V, s)$ we need the weight $k$ to equal 3. However, one needs to be aware that if $F$ is in the Maass space $L_{p}(T)$ is not pure of weight 3. Indeed in that case the $Z_{F}$ factors as $\zeta(s-k+1) \zeta(s-k+2) L(f, s)$ for an eigenform of weight $2 k-2$ on $\Gamma_{0}(N)$. It is a conjecture of Arthur that if $F$ is not in the Maass space then there is an associated motive of $V$ rank 4 and pure weight 3 such that $L(V, s)=Z_{F}(s)$. Hence it is natural to expect that our $V$ is such a motive for some $F$.

Our situation is similar to the case of elliptic curves since a Siegel modular form $F$ of $g=2$ and weight 3 determines a holomorphic differential in the corresponding Siegel threefold

$$
F(z) d z_{1,1} \wedge d z_{1,2} \wedge d z_{2,2}, \quad z=\left(z_{i, j}\right) \in \mathcal{H}_{2}
$$

Other than quadratic twists of $Z_{F}(s)$ for $F$ a Siegel eigenform of level 1 I could not find in the literature a description of the Euler factors for primes dividing the conductor.

## 3 Other analogous families

There turn out to be fourteen families $X_{\psi}$ of Calabi-Yau threefolds analogue to the quintic; i.e., hypergeometric and with $\beta=(0,0,0,0)$, (maximally unipotent monodromy at $\psi=\infty$ ). The values of $\alpha$ are given in the following table together with the level $N_{1}$ of the weight 4 modular form and the conductor $D$ of the Dirichlet character associated with the singularity at $\psi=1$.

| $\alpha$ | $N_{1}$ | $D$ |
| :---: | ---: | ---: |
| $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$ | 8 | 1 |
| $\left(\frac{1}{3}, \frac{2}{3}, \frac{1}{4}, \frac{3}{4}\right)$ | 9 | 24 |
| $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{4}, \frac{3}{4}\right)$ | 16 | 8 |
| $\left(\frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5}\right)$ | 25 | 5 |
| $\left(\frac{1}{3}, \frac{2}{3}, \frac{1}{3}, \frac{1}{3}\right)$ | 27 | 1 |
| $\left(\frac{1}{4}, \frac{3}{4}, \frac{1}{4}, \frac{3}{4}\right)$ | 32 | 1 |
| $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{3}, \frac{2}{3}\right)$ | 36 | 12 |
| $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{6}, \frac{5}{6}\right)$ | 72 | 1 |
| $\left(\frac{1}{3}, \frac{2}{3}, \frac{1}{6}, \frac{5}{6}\right)$ | 108 | 12 |
| $\left(\frac{1}{8}, \frac{3}{8}, \frac{5}{8}, \frac{7}{8}\right)$ | 128 | 8 |
| $\left(\frac{1}{4}, \frac{3}{4}, \frac{1}{6}, \frac{5}{6}\right)$ | 144 | 8 |
| $\left(\frac{1}{10}, \frac{3}{10}, \frac{7}{10}, \frac{9}{10}\right)$ | 200 | 1 |
| $\left(\frac{1}{6}, \frac{5}{6}, \frac{1}{6}, \frac{5}{6}\right)$ | 216 | 1 |
| $\left(\frac{1}{12}, \frac{5}{12}, \frac{7}{12}, \frac{11}{12}\right)$ | 864 | 1 |

For all of these cases we can write an explicit model for $X_{\psi}$ (for the first thirteen cases as complete intersections in weigted projective spaces [?]; the fourteenth case is described in []) . The family carries a period satisfiying the corresponding hypergeometric differential equation with parameters $\alpha, \beta$. We again obtain a motive $V_{\psi}$ of rank 4 and pure weight 3 for good primes $p$ coming from a piece of the middle cohomology of $X_{\psi}$. The trace of $\mathrm{Frob}_{q}$ on $V_{\psi}$ is given by

$$
\operatorname{Tr}\left(\left.\operatorname{Frob}_{q}\right|_{V_{\psi}}\right)=H_{q}\left(\left.\begin{array}{c}
\alpha \\
\beta
\end{array} \right\rvert\, \psi^{-m}\right), \quad \psi \not \equiv 0 \bmod p
$$

for some positive integer $m$. (For the quintic case $\alpha=\left(\frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5}\right)$ and $m=5$.)
We posit that in fact for each choice of $\alpha$ from the above list there is a rank 4 motive $\mathcal{H}_{t}=$ $\mathcal{H}_{t}(\alpha, \beta)$, of pure weight 3 for good primes, such that for $t \in \mathbb{Q}$ we have

$$
\operatorname{Tr}\left(\left.\operatorname{Frob}_{q}\right|_{\mathcal{H}_{t}}\right)=H_{q}\left(\left.\begin{array}{c|c}
\alpha \\
\beta
\end{array} \right\rvert\, t\right), \quad p \notin S,
$$

where $S$ is the finite set of primes dividing $t, t-1, t^{-1}, \operatorname{denom}(\alpha)$ or denom $(\beta)$.
Let us take, for example, $\alpha=\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$ and $t=-1$. Here are the first few values of $H_{p}$ and $H_{p^{2}}$.

| $p$ | $H_{p}$ | $H_{p^{2}}$ |
| ---: | ---: | ---: |
| 3 | 0 | -12 |
| 5 | -4 | 276 |
| 7 | 0 | -476 |
| 11 | 0 | -4972 |
| 13 | -84 | -1420 |
| 17 | 36 | 7620 |
| 19 | 0 | -21964 |
| 23 | 0 | 24932 |
| 29 | 140 | -62412 |

From the traces we can compute the coefficients of the Euler factor

$$
L_{p}(T)=1+a T+p b T^{2}+a p^{3}+p^{6} T^{4}, \quad a=-H_{p}, \quad b=\frac{1}{2 p}\left(H_{p}^{2}-H_{p^{2}}\right)
$$

| $p$ | $a$ | $b$ |
| ---: | ---: | ---: |
| 3 | 0 | 2 |
| 5 | 4 | -26 |
| 7 | 0 | 34 |
| 11 | 0 | 226 |
| 13 | 84 | 326 |
| 17 | -36 | -186 |
| 19 | 0 | 578 |
| 23 | 0 | -542 |
| 29 | -140 | 1414 |

If we compare these with the corresponding table 7.6 of van Geemen and van Straaten we see that except for the signs of $a$ (and the value of $b$ for $p=11$ ) they agree with those in the column for the Siegel modular form $F_{7}$. (Note that their polynomial is normalized as $T^{4}-a_{p} T^{3}+a_{p^{2}} T^{2}-$ $a_{p} p^{3} T+p^{6}$.)

Furhermore, they notice that $L_{p}(T)$ seems to be the Euler factor of the $L$-function associated to $f_{2} \otimes f_{3}$ where $f_{2}$ is a CM eigenform of weight 2 , level 32 and trivial character and $f_{3}$ an eigenform of weight 3 , level 32 and character $\left(\frac{-4}{4}\right)$. With this information we can extend their calculation and check the agreement of this $L$-function with ours. Here is a table of the $p$-coefficients of $f_{2}$ and $f_{3}$ from Stein's database.

| $p$ | $f_{2}$ | $f_{3}$ |
| ---: | ---: | ---: |
| 2 | 0 | 0 |
| 3 | 0 | $4 i$ |
| 5 | -2 | 2 |
| 7 | 0 | $-8 i$ |
| 11 | 0 | $4 i$ |
| 13 | 6 | -14 |
| 17 | 2 | 18 |
| 19 | 0 | $12 i$ |
| 23 | 0 | $40 i$ |
| 29 | -10 | -14 |
| 31 | 0 | $32 i$ |
| 37 | -2 | -30 |

We see, for example, that the product of the $p$ coefficients of $f_{2}$ and $f_{3}$ matches the values of $H_{p}$.

### 3.1 Special cases

Inspired by this example we experimented with the motive $\mathcal{H}_{ \pm 1}$ where $\alpha=\left(\frac{1}{2}, \ldots, \frac{1}{2}\right)$ of length $r$. Let us denote the motive by $W_{r}^{ \pm}$. Our previous example associated to $f_{2} \otimes f_{3}$ is then $W_{4}^{-}$. Here is a table of the values of $H_{p}$.

$$
W_{r}^{+}
$$

| $p \backslash r$ | 1 | 2 | 3 | 4 | 5 | 6 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 3 | 0 | -1 | 0 | -1 | 0 | -1 |
| 5 | 0 | 1 | -6 | 3 | 20 | -59 |
| 7 | 0 | -1 | 0 | 31 | 0 | 95 |
| 11 | 0 | -1 | 0 | -33 | 0 | -481 |
| 13 | 0 | 1 | 10 | 35 | -300 | 933 |
| 17 | 0 | 1 | -30 | 67 | -60 | -59 |
| 19 | 0 | -1 | 0 | 63 | 0 | 3519 |

$W_{r}^{-}$

| $p \backslash r$ | 1 | 2 | 3 | 4 | 5 | 6 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 3 | -1 | 0 | -1 | 0 | -1 | 0 |
| 5 | -1 | -2 | 5 | -4 | -21 | 58 |
| 7 | 1 | 0 | -7 | 0 | -79 | 0 |
| 11 | -1 | 0 | -25 | 0 | 79 | 0 |
| 13 | -1 | 6 | 13 | -84 | -101 | -1102 |
| 17 | -1 | 2 | 19 | 36 | -699 | 614 |
| 19 | -1 | 0 | 15 | 0 | -161 | 0 |

There is a clear pattern that emerges, $W_{r}^{ \pm}$has $H_{p}=0$ unless $p \equiv 1 \bmod 4$ when $\pm 1=(-1)^{r-1}$.
It would seem that the $L$-function of $W_{5}^{+}$equals $L\left(f_{2} \otimes f_{4}, s\right)$, where $f_{2}$ is our previous CM form of weight 2 and $f_{4}$ is a modular form of weight 4 and level 32 with eigenvalues

| $p$ | $f_{4}$ |
| ---: | ---: |
| 2 | 0 |
| 3 | 8 |
| 5 | -10 |
| 7 | 16 |
| 11 | -40 |
| 13 | -50 |
| 17 | -30 |
| 19 | 40 |
| 23 | 48 |
| 29 | -34 |
| 31 | 320 |
| 37 | 310 |

### 3.2 Stirling and Dirichlet

It turns out that the discriminant $D$ giving the Dirichlet character of the linear factor of $L_{p}(T)$ corresponding to $\psi=1$ can be given directly in terms of $\alpha$ and $\beta$ as follows.

The hypergeometric series $F\left(\begin{array}{c|c}\alpha & \\ \beta & t\end{array}\right)$ has a power series around $t=0$ of the form

$$
\sum_{n \geq 0} u_{n}\left(\frac{t}{K}\right)^{n},
$$

where

$$
\begin{equation*}
u_{n}:=\prod_{v \geq 1}(v n)!^{\gamma_{v}}, \quad K:=\prod_{v \geq 1} v^{v \gamma_{v}}, \tag{10}
\end{equation*}
$$

for certain integers $\gamma_{v}$, which are zero for almost all $v$. The relation between the parameters $\alpha, \beta$ and $\gamma$ is the following

$$
\begin{equation*}
\prod_{v \geq 1}\left(1-T^{v}\right)^{\gamma_{v}}=\frac{q_{\infty}(T)}{q_{0}(T)}, \quad \quad q_{\infty}(T):=\prod_{j}\left(1-e^{2 \pi i \alpha_{j}} T\right), \quad q_{0}(T):=\prod_{j}\left(1-e^{2 \pi i \beta_{j}} T\right) \tag{11}
\end{equation*}
$$

(We are assuming that $q_{0}$ and $q_{\infty}$ have coefficients in $\mathbb{Z}$.)
By Stirling, as $n \rightarrow \infty$

$$
u_{n} \sim \frac{\sqrt{\delta}}{(2 \pi n)^{d / 2}} K^{n},
$$

where

$$
\delta:=\prod_{v \geq 1} v^{\gamma_{v}}, \quad d:=-\sum_{v \geq 1} \gamma_{v} .
$$

Numerically, it seems that $D$ is the discriminant of the quadratic extension of $\mathbb{Q}$ given by adjoining a square root of $(-1)^{d} \delta$.

## 4 Hypergeometric motives

### 4.1 Hodge numbers

We expect the above situation to be true in greater generality. Let $\gamma$ be a non-zero sequence of integers $\gamma=\left(\gamma_{v}\right)$ for $v \geq 1$, only finitely many of which are non-zero, and satisfying

$$
\begin{equation*}
\sum_{v \geq 1} \gamma_{v} v=0 \tag{12}
\end{equation*}
$$

a condition we will call regularity. We associate to $\gamma$ a family of motives $V_{t}$ with $t \in \mathbb{P}^{1}$ defined over $\mathbb{Q}$. Our goal is to describe the $L$-function of $V_{t}$ completely.

To this end, define

$$
\mathcal{L}^{+}(x):=\sum_{v \geq 1} \gamma_{v}\left(\frac{1}{2}-\{v x\}\right), \quad x \in \mathbb{R}
$$

where $\{\cdot\}$ denotes the ordinary fractional part of a real number. It is easy to check that $\mathcal{L}^{+}$is periodic of period 1 , locally constant, right continuous and satisfies

$$
\begin{equation*}
\mathcal{L}^{+}(-x)=-\mathcal{L}^{-}(x), \tag{13}
\end{equation*}
$$

where $\mathcal{L}^{-}(x):=\lim _{y \rightarrow x^{-}} \mathcal{L}^{+}(y)$. Also, $\mathcal{L}^{+}$has only finitely many discontinuities. If we let $l(x):=$ $\mathcal{L}^{+}(x)-\mathcal{L}^{-}(x)$ then $l$ takes integer values and is zero away from these discontinuities. In other words, the functions $\mathcal{L}^{ \pm}$have only jump discontinuities and the jumps are integral. We have $\sum_{x \in[0,1)} l(x)=0$ and by (13) the symmetry $l(-x)=l(x)$.

Define the weight of $\gamma$ by

$$
w:=\max _{x \in[0,1)} \mathcal{L}^{+}(x)-\min _{x \in[0,1)} \mathcal{L}^{+}(x)-1 .
$$

Clearly, $w$ is an integer and is in fact non-negative since $\mathcal{L}$ is not identically zero (we have assumed $\gamma$ is not zero). Note that $\max _{x \in[0,1)} \mathcal{L}^{ \pm}(x)=-\min _{x \in[0,1)} \mathcal{L}^{ \pm}(x)=(w+1) / 2$ and hence $\mathcal{L}^{ \pm}(x)+(w+1) / 2$ takes values in $\mathbb{Z}_{\geq 0}$.

Define the Hodge polynomial of $\gamma$ by

$$
h(T):=\sum_{l(x)>0} T^{\mathcal{L}^{-}(x)+(w+1) / 2}[l(x)] \in \mathbb{Z}[T],
$$

where $[l]:=1+T+\cdots+T^{l-1}$ and the sum is over the finitely many $x \in[0,1)$ with $l(x)>0$.
Lemma 4.1. The Hodge polynomial is reciprocal of degree $w$ and has non-negative integer coefficients.

$$
h\left(T^{-1}\right)=T^{-w} h(T)
$$

Proof. It is clear from the definition that the coefficients of $h(T)$ are non-negative integers. Let $x$ be the left endpoint of an interval in $(0,1)$ where $\mathcal{L}^{+}(x)$ achieves its maximum. Then $l(x)>0$ and the corresponding term in the sum defining $h(T)$ has degree $\mathcal{L}^{-}(x)+(w+1) / 2+l(x)-1=w$. Hence the degree of $h$ is $w$.

We have

$$
h\left(T^{-1}\right)=\sum_{l(x)>0} T^{-\mathcal{L}^{-(x)-(w+1) / 2}} T^{1-l(x)}[l(x)]=\sum_{l(x)>0} T^{\mathcal{L}^{-}(-x)+l(-x)-(w+1) / 2} T^{1-l(x)}[l(x)]
$$

by (13) and the right hand side simplifies to give $T^{-w} h(T)$ finishing the proof.
We refine the Hodge polynomial by definining for every $m \in \mathbb{Z}_{\geq 0}$

$$
h_{0}^{(m)}(T):=\sum_{l(x)=m} T^{\mathcal{L}^{-}(x)+(w+1) / 2} \in \mathbb{Z}[T]
$$

so that $h(T)=\sum_{m \geq 0} h^{(m)}(T)[m]$. As in the proof of Lemma 4.1 we find

$$
h_{0}^{(m)}\left(T^{-1}\right)=\sum_{l(x)=m} T^{-\mathcal{L}^{-}(x)-(w+1) / 2}=\sum_{l(x)=m} T^{\mathcal{L}^{+}(-x)-(w+1) / 2}=\sum_{l(x)=m} T^{\mathcal{L}^{-(x)+m-(w+1) / 2}}
$$

so that

$$
h_{0}^{(m)}\left(T^{-1}\right)=T^{-w+m-1} h_{0}^{(m)}(T) .
$$

An alternative way to compute the Hodge polynomial of $\gamma$ is as follows.
Proposition 4.2. We have

$$
\begin{equation*}
h(T)=\sum_{l(x)<0}=T^{\mathcal{L}^{+}(x)+(w+1) / 2}[-l(x)] . \tag{14}
\end{equation*}
$$

Proof. Slightly deform $\mathcal{L}^{+}$to a continuous function $L$ as follows. Replace a jump of $\mathcal{L}^{+}$with $l(x)>0$ by an increasing function in a small interval $(x-\epsilon, x+\epsilon)$ for some $\epsilon>0$ going from $\mathcal{L}^{-}(x)$ to $\mathcal{L}^{+}(x)$. Similarly replace a jump with $l(x)<0$ by a decreasing function going from $\mathcal{L}^{+}(x)$ to $\mathcal{L}^{-}(x)$.

Then

$$
h(T)=\sum T^{L(x)+(w+1) / 2}
$$

where the sum is over $x \in[0,1)$ such that $L(x) \in \mathbb{Z}$ and $L(x)<L\left(x^{\prime}\right)$ for $x<x^{\prime}$. Call such an $x$ a point of increase.

On the other hand the right hand side of (14) is a similar sum over $x \in[0,1)$ such that $L(x) \in \mathbb{Z}$ and $L(x)>L\left(x^{\prime}\right)$ for $x^{\prime}<x$. Call such an $x$ a point of decrease. By periodicity, for a given $y \in \mathbb{Z}$ the number of points of increase with $x \in[0,1)$ with $L(x)=y$ is the same as those of decrease. This proves our claim.

We define a new refinement of the Hodge polynomial. For $m \in \mathbb{Z}_{\geq 0}$ let

$$
h_{\infty}^{(m)}(T):=\sum_{l(x)=-m} T^{\mathcal{L}^{+}(x)+(w+1) / 2} \in \mathbb{Z}[T] .
$$

Then

$$
h(T)=\sum_{m \geq 0} h_{\infty}^{(m)}(T)[m] .
$$

Note that if we replace $\gamma$ by $-\gamma$ then $\mathcal{L}$ also changes sign and $h_{0}^{(m)}$ turns into $h_{\infty}^{(m)}$. Hence

$$
h_{\infty}^{(m)}\left(T^{-1}\right)=T^{-w+m-1} h_{\infty}^{(m)}(T) .
$$

### 4.2 Tame primes

We will say that a prime $p$ is tame if it does not divide the denominators of $\alpha$ or $\beta$ and one of $v_{p}(t), v_{p}\left(t^{-1}\right)$ or $v_{p}(t-1)$ is positive. We would like to describe the Euler factor $L_{p}(T)$ and power $f_{p}$ of $p$ in the conductor of the $L$-function associated to the motive $H_{t}(\alpha, \beta)$.

