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The main goal of this workshop is to obtain concrete results (both theoretical and computational)
on the motives of the title, particularly, on their associated L-functions.

A hypergeometric motive is determined by very simple data, which can be given in various formats.
In one version, it consists of a polynomial γ(T ) ∈ Z[T ] with the property that γ(0) = γ′(1) = 0.
Attached to this data there is a family of motives F(γ|t) defined over Q depending on a parameter
t ∈ P1(Q) \ {0, 1,∞}. For each choice of t we obtain a global L-function

Λ(s) = Ns/2L∞(s)
∏
p

Lp(p−s)−1,

which is expected to satisfy a functional equation Λ(w + 1 − s) = εΛ(s) for some non-negative
integer w and some ε = ±1. A motivating example is the degree four L-function associated to the
4-dimensional piece V ⊆ H3 of a quintic in the pencil

(1) Xψ : x5
1 + · · ·x5

5 − 5ψx1 · · ·x5 = 0,

fixed by the automorphisms: xi 7→ ζai5 xi, where ζ5 is a primitive 5-th root of unity and
∑
i ai ≡

0 mod 5. Here w = 3 and γ(T ) = T 5 − 5T .
One of the fundamental questions we would like to address is this: how do we calculate all the

ingredients that define Λ(s)? It is not hard to describe and compute the Euler factors Lp for the
good primes (see below). As usual, it is more difficult to find the other Euler factors, including the
gamma factors L∞(s), and the conductor N .

In a workshop in Benasque, Spain in 2009 we succeded in computing the L-function Λ(s) of F(γ|t)
in the case of the quintic for a fairly large range of values of t. To compute the unknown Euler factors
for the bad primes, conductor and root number ε we used a test based on the purported functional
equation Λ(4 − s) = εΛ(s). (This is a very robust test and we feel confident that we indeed found
the right L-function.) Here is a short list of values of ψ and the corresponding conductor N and
root number for Λ(s).

ψ ψ5 − 1 N ε
−1 2 2 · 55 +

2 31 31 · 55 −
−2 3 · 11 3 · 11 · 55 −

3 2 · 112 2 · 11 · 55 −
−3 22 · 61 2 · 61 · 55 −

4 3 · 11 · 31 3 · 11 · 31 · 55 +
−4 52 · 41 41 · 54 +

6 52 · 311 311 · 54 +
−6 7 · 11 · 101 7 · 11 · 101 · 55 +

The motives F(γ|t) are related to the classical hypergeometric series as follows. Consider, for
example,

(2) rFr−1

[
α1 . . . αr
β1 . . . βr−1

| t
]
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with αj and βj in Q. Then γ(T ) =
∑
ν≥1 γν T

ν is such that∏
ν≥1

(T ν − 1)−γν =

∏r
j=1(T − e2πiαj )∏r

j=1(T − e2πi(1−βj))
, βr := 1.

In one of its incarnations F(γ|t) is the space of local solutions to the (hypergeometric) linear dif-
ferential equation satisfied by this series. The rank of F(γ|t) is r and hence generically the Euler
factors Lp(T ) have degree r.

For the running example of the quintic family Xψ the hypergeometric series is

4F3

[
1/5 2/5 3/5 4/5
1 1 1 | t

]
=
∑
n≥0

(5n)!
n!5

(
t

55

)n
and this period of the family can be explicitly computed in terms of

(3)
1

(2πi)5

∫
|x1|=···=|x5|=1

dx1 · · · dx5

x5
1 + · · ·x5

5 − 5ψx1 · · ·x5
, t = ψ−5.

The gamma factors for the corresponding degree four L-function can be deduced from the Hodge
numbers of V , which are h0,3 = h2,1 = h1,2 = h0,3 = 1. By the standard recipe this yields the
gamma factor L∞(s) = (2π)−2sΓ(s)Γ(s+1). (Since the weight w = 3 is odd there are no hp,p Hodge
numbers; these would require more information given by the action of complex conjugation.)

Conjecturally at least, the Hodge numbers (and hence almost all data to describe L∞(s)) can be
computed in a purely combinatorial way directly in terms of γ(T ). A convenient formulation is as
follows. Let

L+(x) :=
∑
ν≥1

γν
(
{νx} − 1

2

)
, x ∈ R.

and L−(x) := limy→x− L+(y) = −L+(−x). Then F(γ|t) is pure of weight

w := max
x∈[0,1)

L+(x)− min
x∈[0,1)

L+(x)− 1

and its Hodge polynomial is

h(T ) :=
∑

0≤i≤w

hi,w−i T i =
∑
l(x)>0

TL
−(x)+(w+1)/2[l(x)] =

∑
l(x)<0

TL
+(x)+(w+1)/2[−l(x)],

where l(x) := L+(x)−L−(x) is the jump at x ∈ [0, 1), and [l] := 1 + T + · · ·+ T l−1 (there are only
finitely many x ∈ [0, 1) with l(x) 6= 0). For the quintic family this gives

h(T ) = 1 + T + T 2 + T 3 = 1[1] + T [1] + T 2[2] + T 3[3] = [4].

A prime p not dividing a denominator of αj , βj nor dividing t, t−1, t− 1, is of good reduction for
F(γ|t). We may compute characteristic polynomial Lp(T ) of Frobenius via calculating the trace of
its powers. These traces are given by hypergeometric sums which are finite p-adic analogues of the
hypergeometric series (2). This fact is a p-adic version of the famous observation of Igusa that for
the Legendre family of elliptic curves the Hasse invariant is essentially the polynomial

(p−1)/2∑
n=1

(
2n
n

)2

λn mod p,

which satisfies the same linear (hypergeometric) differential equation as its periods. (In our setup
H1 of the Legendre family is the motive F(γ|t) for γ = T 2 − 2T .)

To compute the traces of powers of Frobenius we use the p-adic gamma function (as discussed
in Calabi–Yau manifolds over finite fields I & II by Candelas, de la Ossa and Rodriguez-Villegas).
The only issue here is to improve the speed of computation, as this is the bulk of it, in order to be
able to compute larger examples (larger values of t or larger rank).
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On the analytic side, the further development of efficient methods for computing the inverse Mellin
transform of L∞(s) is interesting per se. We have already used several approaches (generalized power
series expansions, doubly-exponential integration) and would like to try a few other promising ones.
To improve considerably the search for the bad Euler factors, we plan to implement the mollified
version of the approximate functional equation a la D. Farmer and M. Rubinstein,

There are 42 families of hypergeometric motives with the same characteristics as that of the
quintic above. Finding corresponding explicit families of varieties such as (1) for them is not a
simple matter. In a sense our main point is precisely that we do not actually need them. For each
family, a choice of t leads to a computable degree four L-function Λ(s). The procedure outlined
above does not require any direct counting of points of varieties over finite fields or the computation
of an automorphic form (the two standard ways of producing L-functions). However, one sees that
by the Langlands philosophy Λ(s) should be the spinor L-function of a Siegel modular forms of genus
2 and weight 3. It would be quite interesting to explore this relation further and try to confirm it
numerically in several examples (in fact, modularity of many of these L-functions should follow from
work of Harris and Taylor). We should point out, however, that the size of most of the conductors
in the above list for example are significantly larger that those that can be handled computationally
on the Siegel modular form side.

In summary, our approach yields a large supply of computable L-functions with Euler factors of
degree larger than two. Having these, it is natural to test numerically, within the scale of feasibility,
the standard conjectures (e.g., the location and distribution of their zeros) and this is ultimately the
main goal of this project.

We would like this workshop to be a healthy mixture of theory and computations. One one hand,
a great deal of theory is necessary in order to dig deep into the subtle features that determine, for
example, the nature of the Euler factors for the bad primes. On the other, to be able to carry
out concrete computations with the resulting L-functions (of degree at least four) requires highly
developed computational skills.

Our proposal is to bring together experts from these often disjoint communities (Galois represen-
tations, automorphic forms, computational number theory) to plan a two-pronged approach. In our
experience, bootstrapping by alternatively performing numerical experiments and discussing theory
is a very efficient way to achieve significant mathematical progress. In this regard, a workshop at
AIM seems to be a very natural venue for the style of work envisioned. In fact, the origin of this
project was the workshop along these lines held in Benasque, Spain in 2009 already mentioned. We
made significant progress then and expect a similar outcome for what we propose here.


