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People

Salman Butt
Philip Candelas
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Xenia de la Ossa
Fernando Rodriguez Villegas
Mark Watkins

Goals
Compute (conjectural) formulas for the conductor of the following Calabi-Yau manifold
cut out by the equation

ψ .

For example, for d  we have the elliptic curve given in Weierstrass form by

y ψxy y 7(ψ )

with discriminant Δ ψ ) . We write ψ v with (3, )  and
conjecture that the formula for the conductor is

where sqf (v) is the square-free part of v. This formula has been verified for all integral
ψ −10000, 0000] not equal to 1 (though it was not investigated why a power of 3 is
lost whenever ).

The goal is to fill in the following table of local factors of the conductor (for ψ ):
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4

5

Such a formula will give us an idea (via the conductor) of the Siegel modular forms of
interest to us.

Activities

Thursday, July 30

Fernando, inspired by DNA, made a conjecture for the L-function associated to
ψ  and, with some input from Mark, guessed the gamma factor was simply
Γ(s/2). This allowed us to guess that the local factor for a prime occurring in the
denominator of ψ  is 1 . Henri then ran some numerical computations to
determine the appropriate conductor as well determining the correct local factor for
when 5 was in the denominator of ψ , leading to the following numerically
verified table:

ψ ψ N ε

1/2 2-5.31 23.31.55 +

1/3 2.3-5.112 2.33.11.55 +

1/4 2-10.3.11.31 23.3.11.31.5^5 -

-1/3 22.3-5.61 2.33.61.55 +

2/3 3-5.211 33.211.55 +

5 22.11.71 2.11.71.55 +

-5 2.3.521 2.3.521.55 -

1/5 22.5-5.11.71 2.11.71 -

-3/5 23.5-5.421 2.421 +

Considering the rational ψ's, we conjecture the following formula for the sign of the
functional equation:

where  is to be determined.

= ∞

5 − 1 − T

5 − 1

5 − 1

ε  = εψ = (5
*) × ∏

v (ψ −1)<0,p=5p 5 /
(p5) × ∏

v (ψ −1)>0,p=5p 5 /

−( (p5))
*

Benasque09/p-adic - L-Functions Wiki http://wiki.l-functions.org/Benasque09/p-adic?action=print

2 of 7 5/20/10 3:58 PM



Wednesday, July 29

Henri and Salman developed code to test out conjectural conductors for varying ψ,
allowing them to fill in the following table using numerical experiments

ψ ψ N ε

-1 2 2.55 +

2 31 31. 55 -

-2 3.11 3.11.55 -

3 2.112 2.11.55 -

-3 22.61 2.61.55 -

4 3.11.31 3.11.31.55 +

-4 52.41 41.54 +

6 52.311 311.54 +

-6 7.11.101 7.11.101.55 +

7 2.3.2801 2.3.2801.55 -

-7 23.11.191 2.11.191.55 +

8 3.7.151 7.31.151.55 +

-8 32.11.331 3.11.331.55 +

-15 24.31.1531 2.31.1531.55 +

1/3 2.3-5.112 ? ?

1/11 2.52.11-5.3221 ? ?

We conjecture the sign of the functional equation is simply

For integral ψ, we conjecture N  is just 5 qf (ψ) where sqf (ψ) is just the squarefree
part of ψ and i  if 5 divides ψ  and i  otherwise. The case of rational ψ is still
left unresolved.

Tuesday, July 28

5 − 1

 ∏
p|N,p=5/

−( (p5)) .

5−i · s
= 1 5 − 1 = 0
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Following a suggestion of David Farmer, Henri and Salman wrote gp code to
compute only the a coefficient out to 105, which took 6.5 hours. At the same time,
they optimized the code heavily by performing all the computations mod p  instead
of p-adically, which reduced the computation of the a's from 6.5 hours to about 11
minutes.

Mark and Henri numerically verified independently that the gamma factors and
conjectural conductor was correct for ψ 1 (or was it ψ ?).

Friday, July 24

Henri and Fernando worked out the formulas for the approximal functional equation
in the case of our L-function in the most naive way (setting the smoothing function
g in Mike's notation to be 1). Let W (s) encapsulate the gamma factors, conductor,
and power of 2π for our L-function:

where our functional equation will send s to 4 . Then the Mellin transform of W  is
given by the K-Bessel function:

The incomplete Mellin transform is then

Setting  we find

where

A little work shows that
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where γ is Euler's constant and H  is the harmonic series truncated at
k. Putting all this together allows us to compute F (x, ), and using the coefficients of our
L-function for the quintic surface, we aim to determine the unknown a (and hopefully the
conductor) by varying x and s.

Thursday, July 23

Fernando presented a p-adic hypergeometric function (following Katz): Fix p a
prime and set

H eich(λ) ,

where α,  are are sequences of rational numbers, λ is a parameter, and the c 's are given
below.

c −p) (1/2) ,

where r is the length of α and β, Γ  is the p-adic gamma function, {a} is the fractional
part of a,

and

d {j }.

Using this, we were able to show computationally that for w = , , /2

The left hand side of the above equation is the square of the trace of Frobenius on H  (of
?) while the right hand side is the trace of Frobenius on H  (of ?).

Wednesday, July 22
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We pushed to the d  case (we switch from ψ to t):

S tx x x x .

This surface has periods corresponding to the hypergeometric sum

where λ /(4t) . We have

Using some relations on hypergeometric sums, we determined

Moreover

where ω  is the period of the elliptic curve given by the equation

E y xy,

and z /u . In Weierstrass form,

E xy

with discriminant u . Moreover, we have the following relations on our parameters:

λ , .

We can make a further change of variables by setting u /v to get

E y x.

In this form we have

= 4

t : x41 + x42 + x43 + x44 − 4 1 2 3 4 = 0
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1
4
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|
|
|
4 )

= 1 4
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|
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|
4 )2 .
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8
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|
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1
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3

1 
|
| ) .

F  2 1 z(   4
1
4
3

1 
|
| ) =∑ (4n)!

(2n)!n!2 (
z

43)
n

= ωE ( z43)
E
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= 43 4
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=
u8
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t4 − 1 =

4 (u )4 4 − 43
(u 28)4 − 1 2

= 1

v : y2 − x = x3 + v

(v(1 v))  ∑
n≥0

n!4
(4n)!

− 43 n = v(∑
n≥0

(4n)!
(2n)!n!2

n)2 .
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Benasque09/p-adic (last edited 2009-07-30 17:28:16 by SalmanButt)

We know hope to compute the conductor of the symmetric square of E with Mark's help.

Tuesday, July 21

Xenia (and Philip) introduced Calabi-Yau manifolds on a "baby-baby" level as a
precursor/preview of the later workshop talk. They also discussed why Calabi-Yau
manifolds are interesting to physicists and why they would be interested in the
number of their F -solutions (which are intimately related to the periods of the
manifold, which are of prime importance to Calabi-Yau manifolds).

Philip discussed the complex structure and Kahler class of the moduli spaces of
Calabi-Yau manifolds. He also discussed mirror symmetry and its implications for
the associated zeta functions, as well as motivating the interest in Siegel modular
forms.

The group set up a goal to determine the size of the conductor of the Siegel modular
forms that may be related to Siegel modular forms. Henri ran some (very quick!)
experiments in Pari/GP to see what happens in the elliptic curve case from which we
settled on the formula above.

Monday, July 20

Fernando discussed some (number-theoretic) motivation for why we want to look at
p-adic methods to compute L-functions. In particular, he gave an overview of how to
count the number of points on the Legendre family of elliptic curves

E (x )(x )

using the p-adic gamma function. He also suggested an overarching strategy of
computing traces of Frobenius using p-adic methods and without knowing anything
about the geometric object on which Frobenius is acting.

Henri presented the p-adic gamma function, using a construction using the Hurwitz
ζ-function and Volkenborn integral that avoids viewing the gamma function initially
as an interpolation. One can recover interpolation however with a little bit of care.

p

λ : y2 = x − 1 − λ
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