p-adic Methods/L-functions

People

- Salman Butt
- Philip Candelas
- Henri Cohen
- Xenia de la Ossa
- Fernando Rodriguez Villegas
- Mark Watkins

Goals

Compute (conjectural) formulas for the conductor of the following Calabi-Yau manifold cut out by the equation

$$
\sum_{i=1}^{d} x_{i}^{d}-d \psi \prod_{i=1}^{d} x_{i}=0
$$

For example, for $d=3$ we have the elliptic curve given in Weierstrass form by

$$
y^{2}-3 \psi x y+9 y=x^{3}-27\left(\psi^{3}+1\right)
$$

with discriminant $\Delta=\left(\psi^{3}-1\right)^{3} \cdot 3^{9}$. We write $\psi^{3}-1=3^{a} v$ with $(3, v)=1$ and conjecture that the formula for the conductor is

$$
N= \begin{cases}3^{3} \cdot \operatorname{sqf}(v) & a \leq 2 \\ 3^{2} \cdot \operatorname{sqf}(v) & a \geq 3\end{cases}
$$

where $\operatorname{sqf}(v)$ is the square-free part of v. This formula has been verified for all integral $\psi \in[-10000,10000]$ not equal to 1 (though it was not investigated why a power of 3 is lost whenever $\left.\psi^{3}-1 \equiv 0 \quad(\bmod 27)\right)$.

The goal is to fill in the following table of local factors of the conductor (for $\psi \in \mathbf{Q}$):

d	$p \mid\left(\psi^{d}-1\right)$	2	3	5
2				
3				

4				
5				

Such a formula will give us an idea (via the conductor) of the Siegel modular forms of interest to us.

Activities

Thursday, July 30

- Fernando, inspired by DNA, made a conjecture for the L-function associated to $\psi=\infty$ and, with some input from Mark, guessed the gamma factor was simply $\Gamma(s / 2)$. This allowed us to guess that the local factor for a prime occurring in the denominator of $\psi^{5}-1$ is $1-T$. Henri then ran some numerical computations to determine the appropriate conductor as well determining the correct local factor for when 5 was in the denominator of $\psi^{5}-1$, leading to the following numerically verified table:

ψ	$\psi^{5}-1$	N	ε
$1 / 2$	$2^{-5} .31$	$2^{3} .31 .5^{5}$	+
$1 / 3$	$2.3^{-5} .11^{2}$	$2.3^{3} \cdot 11.5^{5}$	+
$1 / 4$	$2^{-10} .3 .11 .31$	$2^{3} .3 .11 .31 .5^{\wedge} 5$	-
$-1 / 3$	$2^{2} .3^{-5} .61$	$2.3^{3} .61 .5^{5}$	+
$2 / 3$	$3^{-5} .211$	$3^{3} .211 .5^{5}$	+
5	$2^{2} .11 .71$	$2.11 .71 .5^{5}$	+
-5	2.3 .521	$2.3 .521 .5^{5}$	-
$1 / 5$	$2^{2} .5^{-5} .11 .71$	2.11 .71	-
$-3 / 5$	$2^{3} .5^{-5} .421$	2.421	+

- Considering the rational ψ 's, we conjecture the following formula for the sign of the functional equation:

$$
\varepsilon=\varepsilon_{\psi}=\left(\frac{*}{5}\right) \times \prod_{v_{p}\left(\psi^{5}-1\right)<0, p \neq 5}\left(\frac{5}{p}\right) \times \prod_{v_{p}\left(\psi^{5}-1\right)>0, p \neq 5}\left(-\left(\frac{5}{p}\right)\right)
$$

where $*$ is to be determined.

Wednesday, July 29

- Henri and Salman developed code to test out conjectural conductors for varying ψ, allowing them to fill in the following table using numerical experiments

ψ	$\psi^{5}-1$	N	ε
-1	2	2.5^{5}	+
2	31	31.5^{5}	-
-2	3.11	$3.11 .5^{5}$	-
3	2.11^{2}	$2.11 .5^{5}$	-
-3	$2^{2} .61$	$2.61 .5^{5}$	-
4	3.11 .31	$3.11 .31 .5^{5}$	+
-4	$5^{2} .41$	41.5^{4}	+
6	$5^{2} .311$	311.5^{4}	+
-6	7.11 .101	$7.11 .101 .5^{5}$	+
7	2.3 .2801	$2.3 .2801 .5^{5}$	-
-7	$2^{3} .11 .191$	$2.11 .191 .5^{5}$	+
8	3.7 .151	$7.31 .151 .5^{5}$	+
-8	$3^{2} .11 .331$	$3.11 .331 .5^{5}$	+
-15	$2^{4} .31 .1531$	$2.31 .1531 .5^{5}$	+
$1 / 3$	$2.3^{-5} .11^{2}$	$?$	$?$
$1 / 11$	$2.5^{2} .11^{-5} .3221$	$?$	$?$
			+

We conjecture the sign of the functional equation is simply

$$
\prod_{p \mid N, p \neq 5}\left(-\left(\frac{5}{p}\right)\right)
$$

For integral ψ, we conjecture N is just $5^{5-i} \cdot \operatorname{sqf}(\psi)$ where $\operatorname{sqf}(\psi)$ is just the squarefree part of ψ and $i=1$ if 5 divides $\psi^{5}-1$ and $i=0$ otherwise. The case of rational ψ is still left unresolved.

Tuesday, July 28

- Following a suggestion of David Farmer, Henri and Salman wrote gp code to compute only the a coefficient out to 10^{5}, which took 6.5 hours. At the same time, they optimized the code heavily by performing all the computations mod p^{2} instead of p-adically, which reduced the computation of the a 's from 6.5 hours to about 11 minutes.
- Mark and Henri numerically verified independently that the gamma factors and conjectural conductor was correct for $\psi=-1$ (or was it $\psi=2$?).

Friday, July 24

- Henri and Fernando worked out the formulas for the approximal functional equation in the case of our L-function in the most naive way (setting the smoothing function g in Mike's notation to be 1). Let $W(s)$ encapsulate the gamma factors, conductor, and power of 2π for our L-function:

$$
W(s):=\left(\frac{2 \pi}{a}\right)^{-2 s} \Gamma(s-1) \Gamma(s)
$$

where our functional equation will send s to $4-s$. Then the Mellin transform of W is given by the K-Bessel function:

$$
\mathcal{M}^{-1}(W)=Y(x)={ }_{\pi}^{a} x^{-1 / 2} K_{1}\left(\begin{array}{c}
4 \pi \\
a
\end{array} x^{1 / 2}\right)
$$

The incomplete Mellin transform is then

$$
F(x, s)=\int_{x}^{\infty} t^{s} Y(t) \frac{d t}{t}=W(s)-\int_{0}^{t^{s}} t^{s} Y(t) \frac{d t}{t}
$$

Setting $W(x, s)=\int_{0}^{x} t^{s} Y(t) \frac{d t}{t}$, we find

$$
W(x, s)=8\left(\frac{a}{4 \pi}\right)^{2 s}\left[-\left(\frac{4 \pi}{a} x^{1 / 2}\right)^{2 s-2} K_{0}\left(\frac{4 \pi}{a} x^{1 / 2}\right)+(2 s-2) I\left(\frac{4 \pi}{a} x^{1 / 2}, 2 s-2\right)\right]
$$

where

$$
I(x, s)=\int_{0}^{t} t^{s} K_{0}(t) \frac{d t}{t}
$$

A little work shows that
$I(x, s)=(\log 2-\gamma-\log x) \sum_{k \geq 0} \begin{gathered}x^{2 k+s} \\ (2 k+s) 2^{2 k} k!^{2}\end{gathered}+\sum_{k \geq 0}\left[\begin{array}{c}x^{2 k+s} \\ (2 k+s) 2^{2 k} k!^{2}\end{array}\left(\begin{array}{c}1 \\ H_{k}+ \\ 2 k+s\end{array}\right)\right]$,
where γ is Euler's constant and $H_{k}=1+\frac{1}{2}+\cdots+\frac{1}{k}$ is the harmonic series truncated at k. Putting all this together allows us to compute $F(x, s)$, and using the coefficients of our L-function for the quintic surface, we aim to determine the unknown a (and hopefully the conductor) by varying x and s.

Thursday, July 23

- Fernando presented a p-adic hypergeometric function (following Katz): Fix p a prime and set

$$
H\binom{\alpha}{\left.\beta\right|^{2}}={ }_{(1-p) c_{0}\binom{\alpha}{\beta} \sum_{m=0}^{p-2} c_{m}\binom{\alpha}{\beta} \operatorname{Teich}(\lambda)^{-m}, . .}
$$

where α, β are are sequences of rational numbers, λ is a parameter, and the c_{m} 's are given below.

$$
c_{m}\binom{\alpha}{\beta}=\prod_{j=1}^{r} \frac{\Gamma_{p}\left(\left\{\alpha_{j}+\frac{m}{p-1}\right\}\right)}{\Gamma_{p}\left(\left\{1-\beta_{j}+{ }_{p-1}^{m}\right\}\right)} \times(-p)^{\mathcal{L}_{0}(\alpha, \beta, m)} \times p^{-\mathcal{L}_{1}(\beta, m)} \times \Gamma_{p}(1 / 2)^{d}
$$

where r is the length of α and β, Γ_{p} is the p-adic gamma function, $\{a\}$ is the fractional part of a,

$$
\begin{gathered}
\mathcal{L}_{0}(\alpha, \beta, m)=\sum_{j=1}^{r}\left(\left\{\alpha_{j}+\frac{m}{p-1}\right\}-\left\{1-\beta_{j}+\frac{m}{p-1}\right\}\right)+\frac{d}{2} \\
\mathcal{L}_{1}(\beta, m)=\#\left\{j \left\lvert\,\left\{1-\beta_{j}+\begin{array}{c}
m \\
p-1
\end{array}\right\}=0\right.\right\}
\end{gathered}
$$

and

$$
d=\#\left\{j \mid \beta_{j}=1\right\}
$$

Using this, we were able to show computationally that for $w \neq 0,1,1 / 2$

$$
H\left(\left.\begin{array}{cc}
1 / 4 & 3 / 4 \\
1 & 1
\end{array} \right\rvert\, w\right)^{2}=p+H\left(\left.\begin{array}{ccc}
1 / 4 & 1 / 2 & 3 / 4 \\
1 & 1 & 1
\end{array} \right\rvert\, 4 w(1-w)\right)
$$

The left hand side of the above equation is the square of the trace of Frobenius on H^{1} (of ?) while the right hand side is the trace of Frobenius on H^{2} (of ?).

Wednesday, July 22

- We pushed to the $d=4$ case (we switch from ψ to t):

$$
S_{t}: x_{1}^{4}+x_{2}^{4}+x_{3}^{4}+x_{4}^{4}-4 t x_{1} x_{2} x_{3} x_{4}=0
$$

This surface has periods corresponding to the hypergeometric sum

$$
{ }_{3} F_{2}\left(\left.\begin{array}{c}
\frac{1}{4} \frac{3}{4} \\
1
\end{array} \right\rvert\, 4^{4} \lambda\right)
$$

where $\lambda=1 /(4 t)^{4}$. We have

$$
{ }_{3} F_{2}\left(\begin{array}{c}
\frac{1}{4} \frac{3}{4} \\
1
\end{array} 4^{4} \lambda\right)={ }_{2} F_{1}\left(\begin{array}{c}
\frac{1}{8} \frac{3}{8} \\
1
\end{array} 4^{4} \lambda\right)^{2}
$$

Using some relations on hypergeometric sums, we determined

$$
{ }_{2} F_{1}\left(\left.\begin{array}{cc}
1 & 3 \\
8 & 8 \\
1 & 1
\end{array} \right\rvert\, 4 z(z-1)\right)={ }_{2} F_{1}\left(\left.\begin{array}{lll}
1 & 3 \\
4 & 4 & \\
1 & 1
\end{array} \right\rvert\, z\right) .
$$

Moreover

$$
{ }_{2} F_{1}\left(\left.\begin{array}{c}
\frac{1}{4} \frac{3}{4} \\
1
\end{array} \right\rvert\, z\right)=\sum \frac{(4 n)!}{(2 n)!n!^{2}}\left(\frac{z}{4^{3}}\right)^{n}=\omega_{E}\left(\frac{z}{4^{3}}\right)
$$

where ω_{E} is the period of the elliptic curve given by the equation

$$
E: x^{2} y+y^{2}+1=u x y
$$

and $z=4^{3} / u^{4}$. In Weierstrass form,

$$
E: y^{2}-u x y=x^{3}+x
$$

with discriminant $u^{4}-4^{3}$. Moreover, we have the following relations on our parameters:

$$
\lambda=\frac{u^{4}-4^{3}}{u^{8}}, \quad t^{4}-1=\frac{\left(u^{4}-128\right)^{2}}{4^{4}\left(u^{4}-4^{3}\right)}
$$

We can make a further change of variables by setting $u=1 / v$ to get

$$
E_{v}: y^{2}-x y=x^{3}+v x
$$

In this form we have

$$
\sum_{n \geq 0} \frac{(4 n)!}{n!^{4}}\left(v\left(1-4^{3} v\right)\right)^{n}=\left(\sum_{n \geq 0} \frac{(4 n)!}{(2 n)!n!^{2}} v^{n}\right)^{2}
$$

We know hope to compute the conductor of the symmetric square of E with Mark's help.

Tuesday, July 21

- Xenia (and Philip) introduced Calabi-Yau manifolds on a "baby-baby" level as a precursor/preview of the later workshop talk. They also discussed why Calabi-Yau manifolds are interesting to physicists and why they would be interested in the number of their \mathbf{F}_{p}-solutions (which are intimately related to the periods of the manifold, which are of prime importance to Calabi-Yau manifolds).
- Philip discussed the complex structure and Kahler class of the moduli spaces of Calabi-Yau manifolds. He also discussed mirror symmetry and its implications for the associated zeta functions, as well as motivating the interest in Siegel modular forms.
- The group set up a goal to determine the size of the conductor of the Siegel modular forms that may be related to Siegel modular forms. Henri ran some (very quick!) experiments in Pari/GP to see what happens in the elliptic curve case from which we settled on the formula above.

Monday, July 20

- Fernando discussed some (number-theoretic) motivation for why we want to look at p-adic methods to compute L-functions. In particular, he gave an overview of how to count the number of points on the Legendre family of elliptic curves

$$
E_{\lambda}: y^{2}=x(x-1)(x-\lambda)
$$

using the p-adic gamma function. He also suggested an overarching strategy of computing traces of Frobenius using p-adic methods and without knowing anything about the geometric object on which Frobenius is acting.

- Henri presented the p-adic gamma function, using a construction using the Hurwitz ζ-function and Volkenborn integral that avoids viewing the gamma function initially as an interpolation. One can recover interpolation however with a little bit of care.

