
ar
X

iv
:q

ua
nt

-p
h/

05
06

25
4 

v2
   

30
 J

ul
 2

00
5

Quantum dynamial entropies for disrete lassialsystems: a omparisonVALERIO CAPPELLINIDipartimento di Fisia TeoriaUniversità di TriesteStrada Costiera 11, 34014 Trieste, Italyvalerio.appellini�ts.infn.it23rd January 2006AbstratOn a family of lassial dynamial systems on the 2�torus, we perform a disretiza-tion proedure similar to the Anti�Wik quantization. Suh a disretization is per-formed by using a partiular lass of states, ful�lling an appropriate dynamialloalization property, typial of quantum Coherent States. The same set of states isinvolved in the onstrution of a quantum entropy, that we test on the disrete ap-proximants; a orrespondene with the lassial metri entropy of Kolmogorov�Sinaiis found only over time sales that are logarithmi in the disretization parameter.Short Title: Quantum dynamial entropies for disrete lassial systemsKeywords: KS�Entropy, Quantum Dynamial Entropies, Chaos, Disrete SystemsPACS numbers: 05.45.A, 05.45.Mt, 03.65.Fd, 45.05.+xMathematis Subjet Classi�ation 2000: 37D20; 54C70, 28D20, 81Q20, 81R30Contents1 Introdution 22 Classial Dynamial Systems and Phase�Spae disretization 42.1 Disretization of phase�spae . . . . . . . . . . . . . . . . . . . . . . . . . 62.2 Lattie States on HN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72.3 Anti�Wik Disretization and its ontinuous limit on T2 . . . . . . . . . . 83 Disretization of the Dynamis 93.1 General properties of matrix ations on the plane . . . . . . . . . . . . . . 91



2 V. Cappellini3.2 Algebrai desription of disretized UMG . . . . . . . . . . . . . . . . . . . 134 Continuous limit of the dynamis 144.1 Continuous limit of disretized UMG . . . . . . . . . . . . . . . . . . . . . 155 Dynamial Entropy on Disrete Systems 225.1 A lassial one: Kolmogorov�Sinai metri entropy . . . . . . . . . . . . . . 235.2 Dynamis and Information in the Quantum Setting . . . . . . . . . . . . . 235.3 CS Quantum Entropies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255.4 CS Entropies for disrete lassial systems . . . . . . . . . . . . . . . . . . 276 Conlusions 31A Sketh of the proofs of Propositions 3.1, 3.2 and 3.3 32Referenes 341. IntrodutionUnder the term of lassial haos goes a rih phenomenology of lassial dynamial sys-tems on a ompat phase spae haraterized by a high sensitivity to initial onditions:if very small initial errors exponentially amplify during the temporal evolution, the sys-tems is alled haoti [1�7℄. Nevertheless, being the motion on�ned within a boundedregion, the exponential divergene of trajetories has to be tested in a �nite domain.This leads to de�ne the (maximal) oe�ient of suh exponential ampli�ation, whih isalled Lyapunov exponent, as ξ := lim
n→∞

(1/n) lim
δ→0

log (δn/δ) , where we onsider the initialerror δ growing as δn under a disrete�time evolution. When the ampli�ation of errors isexponential, the Lyapunov exponent ξ is positive and the system is lassi�ed as haoti.
ξ = 0 is typial of regular time�evolutions, but this also happens if we forbid δ to go tozero; indeed, δn 6 ∆ and lim 1

n vanishes. This ours for instane in the ase of quantumdynamial systems, where the unertainly priniple naturally endows the phase�spaewith a ~�dependent granularity, and the δ → 0 limit an not be ahieved for �nite ~ > 0,but only if we perform the lassial limit ~ → 0 before the time one. Although this showsthe non ommutativity of the lassial and the time limits [2, 6℄, the temporal evolutionof a �nite dimensional quantization ompared with its lassial ounterpart exhibits agood agreement on a time�sale bounded by the so alled breaking time τB (~): usually,



Quantum dynamial entropies for disrete lassial systems: a omparison 3when the lassial system is haoti, τB sales logarithmially in ~ [1,2,6,8�10℄, whereasfor regular systems the saling is ~
−α for some α > 0 [1℄.A similar phenomena an be observed in disrete lassial systems, that are obtainedfor instane by foring a lassial system to live on a square lattie of N2 points, whoseminimal spaing a = 1

N ats as a lower bound for δ → 0: in this ase 1
N plays in thedisrete domain the same role that ~ plays in the quantum one and an be interpretedas a quantization�like parameter.By using this analogy of behaviours between quantum and disrete lassial systems,the study of the latters result quite interesting and promising, indeed we an get allbene�ts arising from lassiality, that is the simpliity due to ommutativity, and deeplyinquire the haoti property in this kinds of �toy models�.Sine �nite dimensional quantizations of lassial dynamial systems have an al-gebrai formulation, this an be easily extended to disretization proedures when werestrit from the full matrix algebra of bounded operators on a Hilbert spae, typial ofquantum systems, to a ommutative algebra of diagonal operators desribing a lassialsystem [11℄.A very useful tool of the semi�lassial analysis of quantum systems is represented bythe use of Coherent States and a standard quantization sheme, the Anti�Wik one [12℄,is based on them: by mimiking this proedure we set up a disretization involving alass of states that we will refer to as Lattie States, suitably de�ned on our Hilbertspae. Of ourse, in order to have a good quantization, the lassial limit ~ → 0 has tobe tested [13℄ and large part of this work has been devoted to give and prove a onsistentde�nition of a ontinuous limit N → ∞, suited for a reasonable algebrai disretizationsheme.A �rst result in this diretion is that the onvergene of the disrete to the ontinuousdynamis is due to a very speial property of Lattie States, that is known as dynamialloalization property [14℄.We apply our disretization proedure to a well known lass of lassial systems [7℄,that are represented by integer�matrix ation on the 2�torus; suh systems an be rigor-ously divided into three families, namely hyperboli, paraboli and ellipti, haraterizedby di�erent haoti properties. As expeted, di�erenes in the behaviour of the breaking�times τB (N) (now of disrete/ontinuous orrespondene) are found on the three di�erentregimes.The Lyapunov exponent is zero on systems with �nite number of states (both dis-rete and quantum) beause it is an asymptoti quantity: an alternative approah is to



4 V. Cappelliniinquire the haoti properties of a system during its temporal evolution, and whetherthe system exhibits some kind of �nite�time haos. For lassial dynamial systems thePesin�Ruelle Theorem [15℄ establish a bridge between haos and information, giving arelation between the Kolmogorov�Sinai metri entropy and the sum of all positive Lya-punov exponent. Moreover, although the metri entropy is de�ned as a (partial) entropyprodution on the long run [7, 16℄, suh a partial entropy an be observed and analyzedeven during the temporal evolution, that is on �nite times.With the aim of using entropy to detet haos, several quantum dynamial entropieshave been introdued. In a reent work [14℄, two of them, alled CNT (Connes, Narnhoferand Thirring) [17℄ and ALF (Aliky, Lindblad and Fannes) [18℄ are showed to onverge tothe KS invariant (but only in a joint time and lassial limit) when applied to the Anti�Wik quantization of the hyperboli family of the lassial dynamial systems mentionedabove. Only the hypothesis of dynamial loalization for Coherent States was used inobtaining that result. Instead of extending suh a result to our disretization sheme, wediretly study another quantum dynamial entropy, onstruted by means of CoherentStates and so alled CS�quantum entropy [19℄.What we show is that the CS�entropy prodution of a disrete lassial system doesonverge to the KS�entropy prodution of the ontinuous limit, but only over time saleslogarithmi in the quantization�like parameter 1
N . This on�rms the numerial resultsobtained in [20℄ for the ALF�entropy on a similar lass of disrete systems, but withinthe Weyl quantization�like sheme instead of the Anti�Wik.Finally, we divided the CS�quantum entropy in its dynamial and measure�dependentparts, and we show how the latter does not play a role in the (positive) entropy rate.2. Classial Dynamial Systems and Phase�Spae disretiza-tionThe typial desription of a Classial Dynamial System is given by means of a measurespae X , the phase�spae, endowed with the Borel σ�algebra of its measurable subsetsand a normalized measure µ, (µ(X ) = 1). The probability that phase�points belong tomeasurable subsets E ⊆ X is given by the �volumes� µ(E) =

∫
E µ (dx); so the measure

µ de�nes the statistial properties of the system and represents a possible �state�.Every reversible disrete time dynamis amounts to an invertible measurable map
T : X 7→ X suh that µ ◦ T = µ, and to its iterates {T k | k ∈ Z}: T�invariane of themeasure µ ensure that the state de�ned by µ an be taken as an equilibrium state with



Quantum dynamial entropies for disrete lassial systems: a omparison 5respet to the given dynamis.All phase�trajetories passing through x ∈ X at time 0 an be enoded into se-quenes {T k x
}

k∈Z [7℄.Classial dynamial systems are thus onveniently desribed by measure�theoretitriplets (X , µ, T ). In partiular, in the present work, we shall fous upon the followinghoies:
X : the 2�dimensional torus T2 = R2/Z2 =

{
x = (x1, x2) ∈ R2 (mod 1)

};
µ: the Lebesgue measure, µ(dx) = dx1 dx2, on T2;
T : the invertible measurable transformations on T2 represented by a modular matrixation, as follows:

T (x) =

(
t11 t12

t21 t22

)(
x1

x2

)
(mod 1) ,

tı ∈ Z , ∀ (ı, ) ∈ {1, 2}2

det (T ) = t11t22 − t21t12 = 1
(1a)

T−1 (x) =

(
t22 −t12

−t21 t11

)(
x1

x2

)
(mod 1) · (1b)Remarks 2.1i. In the following, a point x of the torus, will orrespond to an equivalenelass of R2 points whose oordinates di�er by integer values;ii. in (1) we use brakets to distinguish between the mere matrix ation T ·xand the (mod 1) one T (x);iii. T = ( 2 1

1 1 ) is known as Arnold CatMap [7℄, and it is an element of SL2 (Z) ⊂GL2 (Z) ⊂ M2 (Z), where the latter is the subset of 2 × 2 matries withinteger entries, GL2 (Z) the subset of invertible matries and SL2 (Z) thesubset of matries with determinant one;iv. the dynamis generated by T ∈ SL2 (Z), that is the one we are fousingon, is alled Unimodular Group [7℄ (UMG for short);v. sine det (T ) = 1, the Lebesgue measure µ is invariant for all T n ∈ SL2 (Z),
n ∈ Z.In order to develop an algebrai disretization proedure as in [21℄, it proves onve-nient to follow an algebrai approah and replae (T2, µ, T ) with the algebrai triple(

L∞
µ

(T2
)
, ωµ,Θ

), where



6 V. Cappellini
L∞

µ

(T2
) is the (Abelian) Von Neumann *-algebra of (equivalene lasses of) essentiallybounded funtions on T2 [22, 23℄, equipped with the so-alled essential supremumnorm ‖ · ‖∞ [24℄;

ωµ is the state (expetation) on L∞
µ

(T2
), de�ned by the referene measure µ as

ωµ : L∞
µ

(T2
)
∋ f 7−→ ωµ(f) :=

∫T2

µ(dx) f(x) ∈ R+ ; (2)
Θ is the automorphism of L∞

µ

(T2
) de�ned by Θj (f) := f ◦ T j, satisfying ω ◦ Θj = ω.2.1. Disretization of phase�spaeFrom an algebrai point of view, a disretization proedure resembles very muh quanti-zation. Given the lassial algebrai triple (L∞

µ

(T2
)
, ωµ,Θ

), the ore of a quantization�dequantization proedure (spei�ally an N�dimensional quantization) is twofold:
• �nding a pair of *-morphisms, JN ,∞ mapping L∞

µ

(T2
) into a �nite dimensionalalgebra MN (in general a full N ×N matrix algebra) and J∞,N mapping bakward

MN into L∞
µ

(T2
);

• providing an automorphism ΘN , the quantum dynamis, ating on MN suh thatit approximates in a suitable sense the lassial one, Θ, on L∞
µ

(T2
) as follows

J∞,N ◦ Θj
N ◦ JN ,∞ −−−−→

N→∞
Θj ·The latter requirement an be seen as a modi�ation of the so alled Egorov's property(see [25℄).A similar proedure, that we will all disretization, an be obtained if we replaethe full matrix algebra MN with a �nite abelian one, namely the algebra DN onsistingof N2 × N2 diagonal matries.In order to give to elements of DN the meaning of disrete observables, we de�ne asuitable Hilbert spae: to do this , we onsider a disretized version of (T2, µ, T ) whiharises by foring the ontinuous lassial system to live on a square lattie LN ⊆ T2 ofspaing 1

N :
LN :=

{ p

N

∣∣∣ p ∈ (Z/NZ)2
}

, (3)where (Z/NZ) denotes the residual lass (mod N), that is 0 6 pi 6 N − 1.



Quantum dynamial entropies for disrete lassial systems: a omparison 7Now we take the N := N2 points of LN as labels of the elements {|ℓ〉}ℓ∈(Z/NZ)2 ofan orthonormal basis (o.n.b.) of the N dimensional Hilbert spae HN , and we onsiderdisrete algebrai triples (DN , τN ,ΘN
), onsisting of

DN : an N ×N matrix algebra diagonal in the orthonormal basis introdued above;
τN : the uniform state (expetation) on DN de�ned by

τN : DN ∋ D 7−→ τN (D) :=
1

N Tr (D) ∈ R+ ; (4)
ΘN : an automorphism of DN suitably reproduing Θ when N −→ ∞ (see Setion 3.2).In partiular, as the Anti�Wik quantization an be obtained by means of CoherentStates [12℄, a similar Anti�Wik disretization of (L∞

µ

(T2
)
, ωµ,Θ

) in (DN , τN ,ΘN
) anbe performed [21℄ one that we spei�ed what we onsider as �Coherent States� on HN ,and this is the purpose of next Setion.Intuitively, a disrete desription of (T2, µ, T

) beomes �ner when we inrease N ,the number of points per linear dimension on the grid LN in (3): this orresponds toenlarging the dimension of the Hilbert spae HN assoiate to the orresponding algebraitriple (DN , τN ,ΘN
). In this sense, the lattie spaing a := 1

N of the grid LN is a naturaldisretization parameter playing an analogous role to the quantization parameter ~.2.2. Lattie States on HNIn analogy with the the properties of quantum Coherent States, we shall look for anal-ogous states on the torus, that we shall all Lattie States [21℄. For the bene�ts of thereader, we list below the set of properties whih make quantum Coherent States suh auseful tool in semilassial analysis.Properties 2.1 (of Quantum Coherent States)A family {|CN (x)〉 | x ∈ T2} ∈ HN of vetors, indexed by points x ∈ T2,onstitutes a set of Coherent States on the torus if it satis�es the followingrequirements:1. Measurability: x 7→ |CN (x)〉 is measurable on T2;2. Normalization: ‖CN (x)‖2 = 1, x ∈ T2;3. Completeness: N ∫T2

µ(dx) |CN (x)〉〈CN (x)| = 1;



8 V. Cappellini4. Loalization: given ε > 0 and d0 > 0, there exists N0(ε, d0) suh that for
N ≥ N0(ε, d0) and dT2(x,y) ≥ d0 one has N |〈CN (x), CN (y)〉|2 ≤ ε.The symbol dT2(x,y) used in the loalization property stands for the length of the shortersegment onneting the two points x,y ∈ T2, namely we shall denote by

dT2 (x,y) := min
n∈Z2

‖x − y + n‖R2 (5)the distane on T2.Remarks 2.2 (Topology of the UMG on the torus)i. Notie that dT2 (a, b) = ‖a − b‖R2 if ‖a − b‖R2 6
1
2ii. All the automorphisms T ∈ SL2 (Z) de�ned in (1) at ontinuously on thetorus, when the topology is given by the distane (5).Resorting to the deomposition T2 ∋ x =

(
⌊Nx1⌋

N , ⌊Nx2⌋
N

)
+
(
〈Nx1〉

N , 〈Nx2〉
N

)
=: ⌊Nx⌋

N + 〈Nx〉
N ,where ⌊·⌋ and 〈·〉 denote the integer, respetively frational, part of a real number, wenow make use of the de�nition of the family |CN (x)〉 of Lattie States given in [21℄, thatonsists in assoiating to points of T2 spei� lattie points (see [21℄, Fig. 1).De�nition 2.1 (Lattie States)Given x ∈ T2, we shall denote by x̂N the element of (Z/NZ)2 given by

x̂N = (x̂N,1, x̂N,2) :=
(
⌊Nx1 + 1

2
⌋ , ⌊Nx2 + 1

2
⌋
)

, (6)and all Lattie States on T2 the vetors |CN (x)〉 de�ned byT2 ∋ x 7→ |CN (x)〉 := | x̂N 〉 ∈ HN · (7)The reader an hek in [21℄ that family {|CN (x)} satis�es Properties 2.1. In partiular,in the last proof, it is also shown that, due to our partiular hoie of Lattie States, wehave a stronger loalization than in Property 2.1.4., namely
4′. Loalization: given d0 > 0, there exists N0(d0) suh that for N ≥ N0(d0)and dT2(x,y) ≥ d0 one has 〈CN (x), CN (y)〉 = 0 .2.3. Anti�Wik Disretization and its ontinuous limit on T2In order to study the ontinuous limit and, more generally, the quasi�ontinuous be-haviour of (DN , τN ,ΘN

) when N → ∞, we follow the semi�lassial tehnique known



Quantum dynamial entropies for disrete lassial systems: a omparison 9as Anti�Wik quantization. Therefore, we start hoosing onrete disretization/de�disretization *-morphisms.De�nitions 2.2Given the family of Lattie States {|CN (x)〉} ∈ HN of previous Setion, theAnti-Wik�like disretization sheme (AW, for short) is desribed by a oneparameter family of (ompletely) positive unital map JN ,∞ : L∞
µ

(T2
)
→ DN

L∞
µ

(T2
)
∋f 7→ N

∫T2

µ(dx) f(x) |CN (x)〉〈CN (x)| =: JN ,∞(f) ∈ DN .The orresponding de�disretization operation is desribed by the (ompletely)positive unital map J∞,N : DN → L∞
µ

(T2
)

DN ∋ X 7→ 〈CN (x),X CN (x)〉 =: J∞,N (X)(x) ∈ L∞
µ

(T2
)

.Both maps are identity preserving (unital) beause of the onditions satis�ed by thefamily of Lattie States and ompletely positive too, sine both L∞
µ

(T2
) and DN areommutative algebras. The reader an found in [21℄ and [14℄ a list of simple properties ofthese maps, that inorporate minimal requests for rigorously de�ning the sense in whihthe disrete dynamial systems (DN , τN ,ΘN

) tends to (L∞
µ

(T2
)
, ωµ,Θ

), when 1
N → 0.3. Disretization of the Dynamis3.1. General properties of matrix ations on the planeThe next natural step in our disretization proedure will be the de�nition of a suitabledisrete dynamis ΘN on the abelian algebra DN of Setion 2.1. Before doing this weshall fous on some basi properties of the (integer) matrix ation on the plane, that areR2 ∋ x 7−→ T x =

(
t11 t12

t21 t22

)(
x1

x2

)
∈ R2,

tı ∈ Z , ∀ (ı, ) ∈ {1, 2}2

det (T ) = t11t22 − t21t12 = 1Note that in this Setion we begin by onsidering integer matries T , with determinantone, mapping the plane onto itself; in Setion 3.2 we will go bak to ations on the torusT2, as in (1a).De�nitions 3.1 (Families of matrix ations)



10 V. CappelliniWe exlude from now on the ases T = ±12, the identity on the plane, thatare trivial. Depending on the trae of T we have three families of maps,haraterized by their spetral properties; in partiular, denoting with t :=
Tr(T )

2 the semi�trae of T , the eigenvalues are given by t ±
√

t2 − 1 and wehave:
|t | > 1 � Hyperboli family: One eigenvalue of T , λ, is greater than 1 (inmodulus) and the other one is λ−1. In this ase, distanes are strethedalong the diretion of the eigenvetor |e+〉, T |e+〉 = λ|e+〉, ontrated alongthat of |e−〉, T |e−〉 = λ−1|e−〉. The (positive) Lyapunov exponent is givenby ξ = log |λ | .
|t | = 1 � Paraboli family: There is only one eigenvalue, whose modulusis equal to one, whih orresponds to an eigenvetor |e0〉.
|t | < 1 � Ellipti family: The two eigenvalues are onjugate omplex num-bers eiφ and e−iφ, whose orresponding eigenvetors |e+ 〉 and |e− 〉 are om-plex onjugate vetors of C2. On the (non�orthogonal) basis {|eR 〉 , |eI 〉} :=

{Re (|e+ 〉) , Im (|e+ 〉)}, T n is represented by means of the rotation matrix:
Rn =

(
cos (nφ) sin (nφ)

− sin (nφ) cos (nφ)

)
· (8)Before exploring the properties of the three regimes given above, we list now some moreDe�nitions 3.2Let BT (0) :=

{
x ∈ R2

∣∣ ‖x‖R2 6 1
} be the unitary ball on the plane and

BT (p) :=
{
x ∈ R2

∣∣ T−px ∈ BT (0)
} (9)be the p�evolved ball (p ∈ Z). Then de�ne as

B
(n)
T :=

n⋃

p=−n

BT (p) (10)the union of all evolved balls from time −n up to time n (n ∈ N) and let
D

(n)
T := diam

[
B

(n)
T

] be its diameter, so as DT (p) := diam [BT (p)] will be thediameter of the p�evolved ball (diam [E] := supx,y∈E ‖ x − y ‖R2). Further,we denote by η the largest eigenvalue of the matrix |T | =
√

T †T .



Quantum dynamial entropies for disrete lassial systems: a omparison 11Using this notation we now list three Propositions, one for eah family, that inorporatethe main properties; a sketh of their proofs is given in Appendix A.



12 V. CappelliniProposition 3.1 (Hyperboli family)Let T be a matrix belonging to the hyperboli family of De�nitions 3.1.Without loss of generality we hoose |e+ 〉 and |e− 〉 of in suh a way that theangle β from the former to the latter lies in (0, π) and we �x an orthogonalreferene system (x̂, ŷ) with x-axis oriented along the eigenvetor |e+ 〉: insuh a system all orbits of the (disrete) group {T k
}

k∈Z lie on hyperbolas
y2 cos β − xy sin β = Const. · (11)The angle β, whose sine is positive aording to our hoie of |e+ 〉 and |e− 〉,is related with η of De�nitions 3.2 by

sinβ =
λ − λ−1

η − η−1
; (12)moreover, for every n ∈ N, the set B

(n)
T is on�ned into the hyperboli regiondelimited by the four branhes of the two hyperbolas

2 y2 cos β − 2 xy sin β − (cos β ± 1) = 0 · (13)For the diameters, we have
D

(n)
T = DT (n) =

λn − λ−n

2 sin β



1 +

√

1 +

(
2 sin β

λn − λ−n

)2


 (14)or, resorting to the expression for the Lyapunov exponent ξ given in De�ni-tion 3.1:

sin β sinh
{
log
[
D

(n)
T

]}
= sinh (n ξ) · (15)Moreover

∀ n ∈ N , D
(n)
T 6

λn

sinβ
and D

(n)
T −−−−→

n−→∞
λn

sin β
· (16)

Proposition 3.2 (Paraboli family)Let T be a matrix belonging to the paraboli family of De�nitions 3.1.We �x an orthogonal referene system (x̂, ŷ) with x-axis oriented along theeigenvetor |e0 〉: in suh a system all orbits of the (disrete) group {T k
}

k∈Z



Quantum dynamial entropies for disrete lassial systems: a omparison 13lie on the 


line y = Const. if t = +1two lines y2 = Const. if t = −1

· (17)For every n ∈ N the set B
(n)
T is on�ned into the stripe delimited by the twolines

y2 = 1 · (18)Resorting to η of De�nitions 3.2, we introdue a positive real parameter
J =

η − η−1

2
(19)that is used in the expression for the diameters, that is

D
(n)
T = DT (n) = nJ +

√
n2J2 + 1 (20)or, equivalently,

sinh
{

log
[
D

(n)
T

]}
= nJ · (21)Moreover

∀ n ∈ N , D
(n)
T 6 2nJ + 1 (22)and

D
(n)
T −−−−→

n−→∞
2nJ · (23)Proposition 3.3 (Ellipti family)Let T be a matrix belonging to the ellipti family of De�nitions 3.1; if theentries of this matrix are integer, it holds true:

∀ n ∈ N , DT (n) 6 η , (24)
∀ n ∈ N+ , D

(n)
T = η , (25)where η is the one introdued in De�nitions 3.2.3.2. Algebrai desription of disretized UMGOur aim is now to de�ne a suitable disrete evolution ΘN on DN (see Setion 2.1 for thede�nitions), suh that the disretized triplets (DN , τN ,ΘN

) onverge to the ontinuous



14 V. Cappellinione (L∞
µ

(T2
)
, ωµ,Θ

).We start by introduing a new family of maps {U j
T

}
j∈Z, de�ned on the torusT2 ([0, N)), given by the ation determined by the matrix T (mod N), that isT2 ([0, N)) ∋ x 7−→ U j

T (x) := N T j
( x

N

)
∈ T2 ([0, N)) , j ∈ Z , (26)where T (·) is the map de�ned in (1). The U j

T (·) maps are extensions of the T j (·) mapson the enlarged torus T2 ([0, N)); moreover, they do map the lattie (Z/NZ)2 into itself,so as the maps T j (·) do it with the lattie LN of (3).Note that the map (Z/NZ)2 ∋ ℓ 7−→ UT (ℓ) ∈ (Z/NZ)2 is a bijetion.De�nition 3.3
ΘN will denote the map:

DN ∋ X 7−→ ΘN (X) :=
∑

ℓ∈(Z/NZ)2

XUT (ℓ),UT (ℓ) |ℓ〉 〈ℓ | ∈ DN ·The map ΘN is a *-automorphism of DN ; indeed
ΘN (X) =

∑

U−1
T

(s)∈(Z/NZ)2

Xs,s

∣∣U−1
T (s)

〉 〈
U−1

T (s)
∣∣ =

= WT,N




∑all equiv.lasses Xs,s |s〉 〈s |


W ∗

T,N =

= WT,N X W ∗
T,N ,where the operators WT,N , de�ned by linearly extending the maps

HN ∋
∣∣ℓ
〉
7−→ WT,N

∣∣ℓ
〉
:=
∣∣U−1

T (ℓ)
〉
∈ HN (27)toHN , are unitary: W ∗

T,N

∣∣ℓ
〉
:= |UT (ℓ) 〉. For the same reason τN is a ΘN�invariant state.4. Continuous limit of the dynamisOne of the main issues in the semi-lassial analysis is to ompare if and how the quantumand lassial time evolutions mimi eah other when the quantization parameter goes tozero.



Quantum dynamial entropies for disrete lassial systems: a omparison 15In this paper we are instead onsidering the possible agreement between the dy-namis of ontinuous lassial systems and that of a lass of disrete approximants. Inpratie, in our ase, we will study the di�erene
Θj − J∞,N ◦ Θj

N ◦ JN ,∞ (28)whih represents how muh the disrete dynamis at timestep j di�ers from the ontin-uous one at the same timestep.For quantum systems, whose lassial limit is haoti, the situation is strikinglydi�erent from those with regular lassial limit. In the former ase, lassial and quantummehanis agree, that is a di�erene as in (28) is negligible, only over times j whih salelogarithmially (and not as a power law) in the quantization parameter.As we shall see, suh kind of saling is not exlusively related with non�ommutativity;in fat, the quantization�like proedure developed so far, exhibits a similar behaviourwhen N → ∞ and we reover (L∞
µ

(T2
)
, ωµ,Θ

) as a ontinuous limit of (DN , τN ,ΘN
).4.1. Continuous limit of disretized UMGWe want to show that the di�erene in (28) goes to zero in a suitable topology, at least ona ertain time�sale. Suh sales, ommonly alled breaking times, depend on the familyof the onsidered map T . In the following, we give three di�erent saling funtions of n,one per eah family of matrix ation, that will be ompared with log N in the joint limitsin n and N that we will onstrut in this Setion.De�nition 4.1We shall denote by ΓT (n) the saling funtion of time assoiate to a map T .In partiular, on the di�erent families of De�nition 3.1, it is given by

ΓT (n) =





log (λn) for the hyperboli family of T

log n for the paraboli family of T

0 for the ellipti family of TWe shall onretely show that the di�erene (28) goes to zero with N → ∞ in the strongtopology over the Hilbert spae L2
µ

(T2
). More preisely, we haveTheorem 1Let (DN , τN ,ΘN

) be a sequene of disretized dynamial systems as de�ned



16 V. Cappelliniin Setion 3: for all γ > 1,
∀f ∈ L∞

µ

(T2
)

, s–lim
j,N→∞

ΓT (j)< log N
γ

(
Θj − J∞,N ◦ Θj

N ◦ JN ,∞
)

(f) = 0 , (29)where the limit is in the strong topology over the Hilbert spae L2
µ

(T2
).The previous Theorem indiates that the time limit and the ontinuous limit do notommute in the paraboli and hyperboli ases. In partiular, the di�erene betweenthe disretized dynamis and the ontinuous one an be made small by inreasing N ,while it beomes large beyond the time sale ΓT (j) ≃ log N . This phenomenon is thesame as in quantum haos and points to disretization of phase spae (in the traditionalsemi�lassial treatment of quantum systems), rather than to non�ommutativity, as thesoure of the so�alled logarithmi breaking time for hyperboli systems. The onstant

γ is a form fator, whih re�ets the �ne struture of the dynamis: for instane, in thease of Quantum Cat Maps [14℄, γ = 2.For the ellipti ase s–lim
j,N→∞

ΓT (j)< log N
γ

= s–lim
j,N→∞
0< log N

γ

means s–lim
j,N→∞

; 0 < log N is just a way towrite that we do not onsider any relation between j and N . We adopted this, in orderto have uniformity among the notations in the three di�erent family of matrix ation.The onstraint j ≤ C logN is typial of hyperboli behaviour with Lyapunov expo-nent log λ and omes heuristially as follows: the expansion of an initial small distane
δ an be exponential until the distane beomes the largest possible, namely δλTB ≃ 1(on the torus). After disretization, the minimal distane gives δ = 1

N , therefore oneestimates TB ≃ log N
log λ , whih is alled breaking time and sets the time�sale over whihontinuous and disretized dynamis mimi eah other.In quantum haos, the semi�lassial analysis leads to an estimate of TB exatly asabove; further, the logarithmi dependene on ~ of TB is a signature of the hyperboliharater of the lassial limit. Conversely, if the lassial limit is regular (paraboli andellipti ase), then the time sale when quantum and lassial behaviours are more orless indistinguishable goes in general as ~

−b, b > 0.The proof of Theorem 1 onsists of several steps, among whih the most importantis a property, satis�ed by our hoie of Lattie States, whih we shall all DynamialLoalization. We give a full proof that the Lattie States satis�es suh property, sine itrepresents a natural request that should be ful�lled by any onsistent disretization/de�disretization (quantization/de�quantization) sheme; before giving the statement of the



Quantum dynamial entropies for disrete lassial systems: a omparison 17dynamial loalization ondition, let us introdue one moreDe�nition 4.2We shall denote by KN,n(x,y) the quantity
KN,n(x,y) :=

〈
CN (x) , W n

T,N CN (y)
〉

=
〈
Un

T (x̂N ) , ŷN

〉
,where W j

T,N is the unitary operator de�ned in (27) and {|CN (x)〉} is the setof LS of De�nition 2.1.Theorem 2 (Dynamial loalization with {|CN(x)〉} states)For every γ > 1 and d0 > 0, there exists N0 = N0(γ, d0) ∈ N+ with thefollowing property: if N > N0 and ΓT (n) < log N
γ , then

dT2 (T n (x) ,y) > d0 =⇒ KN,n(x,y) = 0 ,for all x,y ∈ T2, where KN,n(x,y) are those of De�nition 4.2 and the salingfuntion of time ΓT (n) has been introdued in De�nition 4.1.In analogy to the quantum ase, dynamial loalization is what one expets from a goodhoie of states suited the study of the ontinuous limit: in fat, it essentially amountsto asking that LS remain deently loalized around the ontinuous trajetories whileevolving with the orresponding disrete evolution. As we shall see this is the aseonly on time suh that ΓT (n) < (log N) /γ. Informally, when N → ∞, the quantities
KN,j(x,y) should behave as if N|KN,j(x,y)|2 ≃ δ(T j (x)− y) and this is the ontent ofnext Proposition 4.1, that will be of use in Setion 5.4.This would make the disretization analogous to the notion of regular quantizationdesribed in Setion V of [19℄. Atually, with our hoie of LS, the quantity KN,j(x,y)is a Kroneker delta.Proposition 4.1Using the same notation of Theorem 2 we have that, for any given real number

γ > 1 and f ∈ L∞
µ

(T2
), it holds true:

lim
n,N→∞

ΓT (n)< log N
γ

wwwwN
∫T2

f (y) |KN,n ( · ,y) |2 µ (dy) − f (T n ( · ))

wwww
2

= 0 ,where ‖·‖2 denotes the L2
µ

(T2
)�norm.



18 V. CappelliniProof:The equation of the statement an be expressed in terms of the disretization�dedisretizationoperator JN ,∞ and J∞,N of De�nition 2.2, the disrete evolution automorphism ΘN ofDe�nition 3.3 and the ontinuous one Θ of Setion 2, as follows:
lim

n,N→∞
ΓT (n)< log N

γ

∥∥∥ (Θn − J∞,N ◦ Θn
N ◦ JN ,∞) (f)

∥∥∥
2

= 0 ·The last equation is proved in proof of Theorem 1 (see (44)).In order to prove Theorem 2, we need the following auxiliary result.Proposition 4.2Resorting to the distane (5), x̂N of De�nition 2.1, UT of (26) and (λ, β, J, η)used in Propositions 3.1�3.3, the following three statements hold:For x ∈ T2 and n ∈ N+1) if T is hyperboli and N > Ñhyp (n) :=
√

2
λn

sin βthen dT2

(
T p (x) ,

Up
T (x̂N )

N

)
6

Ñhyp (n)

2N
, ∀p 6 n ; (30)2) if T is paraboli and N > Ñpar (n) :=

√
2 (2nJ + 1)then dT2

(
T p (x) ,

Up
T (x̂N )

N

)
6

Ñpar (n)

2N
, ∀p 6 n ; (31)3) if T is ellipti and N > Ñell := √

2 ηthen dT2

(
T p (x) ,

Up
T (x̂N )

N

)
6

Ñell
2N

, ∀p 6 n · (32)Proof:For every real number t, we have 0 6 〈Nt + 1/2〉 = Nt + 1/2 − ⌊Nt + 1/2⌋ < 1, so that∣∣∣ t − ⌊Nt+1/2⌋
N

∣∣∣ 6
1

2N , ∀ t ∈ R . From (6) in De�nition 2.1, we derive
dT2

(
x ,

x̂N

N

)
6

1√
2N

, ∀ x ∈ T2 · (33)Let us start by proving the �rst statement, being the other very similar to it. Using thede�nition of UT given in (26), we write
wwwwT p (x) − Up

T (x̂N )

N

wwwwR2

=

wwwwT p (x) − T p

(
x̂N

N

)wwwwR2

=

wwwwT p

(
x − x̂N

N

)wwwwR2

, (34)



Quantum dynamial entropies for disrete lassial systems: a omparison 19where in the latter equality we applied the linearity of T (·). As (16) was the maximumallowed spreading for the unit ball BT (0) under the ation of n power of the matrix T ,now we have
wwwwT p

(
x − x̂N

N

)wwwwR2

6
λp

sin β

wwwwx − x̂N

N

wwwwR2

6
1√
2N

λn

sin β
, (35)indeed p 6 n and we applied (33) together with Remark 2.2.i. In order to replae the�rst norm in (34) with the toral distane, we apply one more the same Remark 2.2.i,providing that 1√

2N
λn

sinβ 6
1
2 , that is N > Nhyp (n).The other statement (31�32) are proved in the same way, substituting in (35) theright expression for the diameters, given for paraboli and ellipti ase from (22), respe-tively (24).Proof of Theorem 2 :Using the de�nition of {|CN (x)〉} in (7), we easily ompute

〈
CN (x)

∣∣W n
T,N CN (y)

〉
=
〈
x̂N

∣∣∣ U−n
T (ŷN )

〉
= δ

(N)
Un

T
(x̂N ) , ŷN

· (36)Using the triangular inequality, we get
dT2

(
Un

T (x̂N )

N
,

ŷN

N

)
> dT2 (T n (x) , y)−

− dT2

(
T n (x) ,

Un
T (x̂N )

N

)
− dT2

(
ŷN

N
, y

)
· (37)Now we split the proof and we begin by fousing on theHyperboli ase:Sine dT2 (T n (x) , y) > d0 by hypothesis, using (33) of proof of Proposition 4.2 and (30),that is

N > Ñhyp (n) =⇒ dT2

(
T n (x) ,

Un
T (x̂N )

N

)
6

1√
2N

λn

sin β
, (38)we an derive from (37) that dT2

(
Un

T
(x̂N )
N , ŷN

N

)
> d0 − 1√

2N
λn

sin β − 1√
2N

·The r.h.s. of the previous inequality an always be made stritly larger than zero,
dT2

(
Un

T (x̂N )

N
,

ŷN

N

)
> 0 , (39)



20 V. Cappelliniby hoosing an N larger than
NM (n) = max

{
1

d0

√
2

(
1 +

λn

sin β

)
, Ñhyp (n) =

√
2

λn

sin β

}
, (40)so that the ondition on the l.h.s. of (38) is also satis�ed. From (36) and (39), we have

N > NM (n) =⇒
〈
CN (x)

∣∣W n
T,N CN (y)

〉
= 0 · (41)Indeed, if the toral distane between two grid points (ẑN , ŵN ) is di�erent from zero, theyan not by equal (mod N) and so the periodi Kroneker delta in (36) vanishes.Sine the (non�dereasing) funtion NM (n) in (40) is eventually bounded by λγn (γbeing stritly greater than one), we de�ne n as the time when NM (n) = λγn =: N0, andhoose N > N0. Thus, if 0 < n < n, then N > N0 = NM (n) > NM (n), whereas if

n 6 n < 1
γ

log N
log λ , then N > λγn > NM (n) and (41) holds for all 0 < n < 1

γ
log N
log λ , that is

ΓT (n) < log N
γ as in the statement.Paraboli ase:Using now (31), that is
N > Ñpar (n) =⇒ dT2

(
T n (x) ,

Un
T (x̂N )

N

)
6

1√
2N

(2nJ + 1) , (42)we earn from (37) that dT2

(
Un

T (x̂N )
N ,

ŷN

N

)
> d0 − 1√

2N
(2nJ + 1) − 1√

2N
·The r.h.s. of the previous inequality an be made stritly larger than zero, by hoosingan N larger than

NM (n) = max

{√
2

d0
(nJ + 1) , Ñpar (n) =

√
2 (2nJ + 1)

}
, (43)so that the ondition on the l.h.s. of (42) is also satis�ed. Reasoning as for the hyperboliase, we onlude that (41) still hold true in this ase and we hoose nγ as boundingfuntion of the (non�dereasing) NM (n) of (43).Finally, as for the hyperboli ase, we de�ne n as the time when NM (n) = nγ =: N0,and hoose N > N0. Thus, if 0 < n < n, then N > N0 = NM (n) > NM (n), whereasif n 6 n < N

1
γ , then N > nγ > NM (n) and (41) holds for all 0 < n < N

1
γ , that is

ΓT (n) < log N
γ as in the statement.



Quantum dynamial entropies for disrete lassial systems: a omparison 21Ellipti ase:The same strategy adopted in the previous two ases, lead now us to de�ne a new
NM, independent of n, given by NM = max

{
1

d0

√
2

(η + 1) , Ñell (n) = η
√

2
}; thus, for

N > NM, the periodi Kroneker delta in (36) vanishes.The absene of relation between N and n, for N > NM, is expressed in the relation
ΓT = 0 < log N

γ , always true for all N .We are �nally in position to onlude withProof of Theorem 1:We will onentrate on the ase of ontinuous f , that is f ∈ C0
(T2

) (
⊂ L2

µ

(T2
));the extension to essentially bounded f is straightforward and an be realized by applyingLusin's Theorem [23, 24, 26℄, as the reader an hek in [21℄.Let f ∈ C0

(T2
) and Opj,N (f) :=

(
Θj − J∞,N ◦ Θj

N ◦ JN ,∞
)

(f): notie that Opj,N (f)is a multipliation operator on L2
µ

(T2
), but also an L∞

µ

(T2
) (and thus also an L2

µ

(T2
))funtion. Aording to (29), we must show that

∀g ∈ L2
µ

(T2
)

, lim
j,N→∞

ΓT (j)< log N
γ

ww Opj,N (f) g
ww

2
= 0 ·Using Shwartz's inequality �rst with g in the lass of simple funtions and then usingtheir density in L2

µ

(T2
), we have just to show that

lim
j,N→∞

ΓT (j)< log N
γ

ww Opj,N (f)
ww

2
= 0 · (44)In [21℄ it is shown that

ww Opj,N (f)
ww2

2
= ωµ

(
|f |2

)
+ τN [JN ,∞ (f)∗ JN ,∞ (f)] − 2 Re (Ij,N (f)) ,with

Ij,N (f) := τN
[(

JN ,∞ ◦ Θj
)

(f)∗
(
Θj

N ◦ JN ,∞
)

(f)
]

= N
∫T2

µ(dx)

∫T2

µ(dy) f(y) f(T j (x))|〈CN (x),W j
T,NCN (y)〉|2 ,and that τN [JN ,∞ (f)∗ JN ,∞ (f)] −→ ωµ

(
|f |2

) for large N ; so now the strategy is toprove that also Ij,N (f) goes to ωµ

(
|f |2

)
=
∫T2 µ(dx)|f(x)|2 when j,N → ∞ with



22 V. Cappellini
ΓT (j) < log N

γ · We want to prove that the di�erene
∣∣∣∣Ij,N (f) −

∫T2

µ(dy) |f(y)|2
∣∣∣∣

=

∣∣∣∣
∫T2

µ(dx)

∫T2

µ(dy) f(y)
(
f(T j (x)) − f(y)

)
N|〈CN (x),W j

T,NCN (y)〉|2
∣∣∣∣is negligible for large N : seleting a ball B(T j (x) , d0), one derives

≤
∣∣∣∣∣

∫T2

µ(dx)

∫

B(T j (x),d0)
µ(dy) f(y)

(
f(T j (x)) − f(y)

)
N|〈CN (x),W j

T,NCN (y)〉|2
∣∣∣∣∣

+

∣∣∣∣∣

∫T2

µ(dx)

∫T2\B(T j(x),d0)
µ(dy)f(y)

(
f(T j (x)) − f(y)

)
N|〈CN (x),W j

T,NCN (y)〉|2
∣∣∣∣∣ .Applying the mean value theorem in the �rst double integral, we get that ∃ c ∈ B(T j (x) , d0)suh that

∣∣∣∣Ij,N (f)−
∫T2

µ(dy) |f(y)|2
∣∣∣∣

≤
∫T2

µ(dx)
∣∣∣f(c)

(
f(T j (x)) − f(c)

)∣∣∣
∫

B(T j (x),d0)
µ(dy) N |〈

(
W ∗

T,N

)j
CN (x), CN (y)〉|2

+ 2‖f‖ 2
0

∫T2

µ(dx)

∫T2\B(T j (x),d0)
µ(dy) N |〈CN (x),W j

T,NCN (y)〉|2 ,where we used the uniform norm ‖ · ‖0, indeed f ∈ C0
(T2

). Finally, using ompletenessand normalization (Properties 2.1), we arrive at the upper bound
≤ ‖f‖0 sup

z∈T2

c∈B(z,d0)

∣∣(f(z) − f(c)
)∣∣+ 2 ‖f‖ 2

0 N sup
x∈T2

y6∈B(T j(x),d0)

|〈CN (x),W j
T,NCN (y)〉|2 ·By uniform ontinuity, the �rst term an be made arbitrarily small, provided we hoose

d0 small enough. For the seond integral, we use Theorem 2, whih provides us with
N0 = N0(γ, d0) depending on the same d0 , suh that the seond term vanishes for all
N > N0 and for all j suh that ΓT (j) < log N

γ .5. Dynamial Entropy on Disrete SystemsDealing with hyperboli systems, one expets the instability proper to the presene ofa positive Lyapunov exponent to orrespond to some degree of unpreditability of the



Quantum dynamial entropies for disrete lassial systems: a omparison 23dynamis: lassially, the metri entropy of Kolmogorov�Sinai provides the link [27℄.5.1. A lassial one: Kolmogorov�Sinai metri entropyFor ontinuous lassial systems (X , µ, T ) suh as those introdued in Setion 2, theonstrution of the dynamial entropy of Kolmogorov�Sinai is based on subdividing Xinto measurable disjoint subsets {Eℓ}ℓ=1,2,··· ,D suh that ⋃ℓ Eℓ = X whih form �nitepartitions (oarse graining s) E .Under the ation of dynamial maps T in (1), any given partition E evolves into
T−j(E) with atoms T−j(Eℓ) = {x ∈ X : T j (x) ∈ Eℓ}; one an then form �ner par-titions E[0,n−1] : =

∨n−1
j=0 T j(E) whose atoms Ei0 i1···in−1

: =
⋂n−1

j=0 T−jEij have volumes
µi0 i1···in−1

:= µ
(
Ei0 i1···in−1

).De�nitions 5.11) We shall set i = {i0 i1 · · · in−1} and denote by Ωn
D the set of Dn n_tupleswith ij taking values in {1, 2, · · · ,D}.2) The symbol ı̂ will indiate the string ı̂ := {in−1 in−2 · · · i1i0} ∈ Ωn

D; the twostring i and ı̂ are related by ij = ı̂n−1−j , ∀ j ∈ {0, . . . , n − 1}.The atoms of the partitions E[0,n−1] desribe segments of trajetories up to time n en-oded by the atoms of E that are traversed at suessive times; the volumes µi = µ (Ei)orresponds to probabilities for the system to belong to the atoms Ei0 , Ei1 , · · · , Ein−1
atsuessive times 0 6 j 6 n − 1. The rihness in diverse trajetories, that is the degreeof irregularity of the motion (as seen with the auray of the given oarse-graining)orrespond intuitively to our idea of �omplexity� and an be measured by the Shannonentropy [16℄ Sµ(E[0,n−1]) := −∑i∈Ωn

D
µi log µi.On the long run, the partition E attributes to the dynamis an entropy per unittime�step hµ(T, E) := limn→∞ 1

nSµ(E[0,n−1]).This limit is well de�ned [7℄ and the �average entropy prodution� hµ(T, E) measurehow preditable the dynamis is on the oarse grained sale provided by the �nite parti-tion E . To remove the dependene on E , the KS entropy hµ(T ) of (X , µ, T ) is de�ned asthe supremum over all �nite measurable partitions [7, 16℄ hµ(T ) := supE hµ(T, E).5.2. Dynamis and Information in the Quantum SettingFrom an algebrai point of view, the di�erene between a �quantum� triplet (M, ω,Θ)desribing a quantum dynamial system and lassial triplets like (L∞
µ

(T2
)
, ωµ,Θ

) of



24 V. CappelliniSetion 2 or (DN , τN ,ΘN
) of Setion 2.1 is that ω and Θ are now a Θ�invariant state,respetively an automorphism over a non�ommutative (C* or Von Neumann) algebra ofoperators M [11℄.

• In standard quantum mehanis the algebra M is the von Neumann algebra B(H)of all bounded linear operators on a suitable Hilbert spae H. If H has �nitedimension D, M is the algebra of D × D matries.
• The typial states ω are density matries ρ, namely operators with positive eigen-values ρℓ suh that Tr(ρ) =

∑
ℓ ρℓ = 1. Given the state ρ, the mean value of anyobservable X ∈ B(H) is given by ρ(X) := Tr(ρX).

• The ρℓ of previous point are interpreted as probabilities of �nding the system in theorresponding eigenstates. The unertainty prior to the measurement is measuredby the Von Neumann entropy of ρ given by H (ρ) := −Tr (ρ log ρ) = −∑ℓ ρℓ log ρℓ .
• The usual dynamis on M is of the form Θ(X) = UXU∗, where U is a unitaryoperator. If one has a Hamiltonian operator that generates the ontinuous group

Ut = exp i t H/~ then U := Ut=1 and the time-evolution is disretized by onsideringpowers U j.The idea behind the notion of dynamial entropy is that information an be obtainedby repeatedly observing a system in the ourse of its time evolution. Due to the uner-tainty priniple, or, in other words, to non-ommutativity, if observations are intendedto gather information about the intrinsi dynamial properties of quantum systems, thennon-ommutative extensions of the KS-entropy ought �rst to deide whether quantumdisturbanes produed by observations have to be taken into aount or not.Conretely, let us onsider a quantum system desribed by a density matrix ρ atingon a Hilbert spaeH. Via the wave paket redution postulate, generi measurement pro-esses may reasonably well be desribed by �nite sets Y = {y0, y1, . . . , yD−1} of boundedoperators yj ∈ B(H) suh that ∑j y∗j yj = 1. These sets are alled partitions of unity(p.u., for sake of shortness) and desribe the hange in the state of the system aused bythe orresponding measurement proess:
ρ 7−→ Γ∗

Y(ρ) :=
∑

j

yj ρ y∗j . (45)It looks rather natural to rely on partitions of unity to desribe the proess of olletinginformation through repeated observations of an evolving quantum system [18℄.



Quantum dynamial entropies for disrete lassial systems: a omparison 25Our intention is now to introdue a quantum dynamial entropy [19℄, based andonstruted by means of CS, and apply it to our families of disretized toral automor-phisms. We will show that this quantity does redue to the Kolmogorov�Sinai invariant,but only for time sales bounded by the logarithm of the disretization parameter N .It is worth mention that the same result has been proved in [14℄ for two di�erentsquantum dynamial entropies (alled ALF� and CNT�entropy) applied to �nite dimen-sional quantum ounterparts of the hyperboli family of UMG that we have onsideredwithin this paper. The only hypothesis used in [14℄ to get the above mentioned result,onsisted of a dynamial loalization property analogous to the one we proved in Theo-rem 2.As a onsequene, the same results of [14℄, that is the onvergene of ALF� andCNT�entropy to the KS one, an be obtained also in the present framework.5.3. CS Quantum EntropiesIn order to make the desription of a quantum system loser to that of a lassial one,the most useful tool onsists in using CS. The quantum measurement proess itself anbe depited in terms of CS in suh a way that lassial property an be reovered in thesemi�lassial limit.Let (M, ω,Θ) be a (�nite dimensional) quantum dynamial system as the onesintrodued in Setion 5.2, with N denoting the dimension of its Hilbert spae H, and
(X , µ, T ) be its lassial ounterpart, the latter endowed with a lassial partition E =

{Eℓ}ℓ=1,2,··· ,D on it (see Setion 5.1). Introdue on suh a system a family of CoherentStates endowed with properties 2.1.The map
I (C) (ρ) := N

∫

C
|CN (x)〉〈CN (x)| ρ |CN (x)〉〈CN (x)| µ (dx) , (46)for a measurable subset C ⊂ X and an operator ρ, is alled an instrument [19℄. The map

ρ 7−→ I (C) (ρ) desribe the hange in the state ρ of the system aused by a C�dependentmeasurement proess (ompare with (45)).If we take the expetation of I (C) (ρ), that is µ(ρ) (C) := ω [I (C) (ρ)] , we get theprobability that a measurement on the system by the instrument (46) give values in C,when the pre�measurement state is ρ. If we wonder what is the probability that severalmeasure, taken strobosopially at times t0 = 0 , t1 = 1 , . . . , tn−1 = n− 1, give values



26 V. Cappelliniin Ei0 , Ei1 , . . . , Ein−1
, we have to ompose the instrument ation (46) with the temporalevolution depited in Setion 5.2, obtaining

PCSi0,i1,...,in−1
:= µ

(ρ)
t0,t1,...,tn−1

(
Ei0 × Ei1 × · · · × Ein−1

)
=

= ω
[
I
(
Ein−1

)
◦ Θ ◦ I

(
Ein−2

)
◦ Θ ◦ · · · ◦ I (Ei1) ◦ Θ ◦ I (Ei0) (ρ)

] (47)Using in (47) the expression for the dynamial evolution Θ(X) = UXU∗ togetherwith (46), and replaing the expetation ω with the trae, (see Setion 5.2), we obtain
PCSi = PCSi0,i1,...,in−1

= N n

∫

Ei0

∫

Ei1

· · ·
∫

Ein−1

〈CN (x0) | ρ |CN (x0)〉 ×

×
n−1∏

j=1

[∣∣∣ 〈CN (xj) | U |CN (xj−1)〉
∣∣∣
2
]

µ (dx0) µ (dx1) · · · µ (dxn−1) , (48)where we have used the normalization property for the state |CN (xn−1)〉 and the notationgiven in De�nition 5.1 for the strings i.This quantities an be seen as quantum analogue to the lassial probability µi ofSetion 5.1 (in partiular they sum up to one) and thus an be used in omputing aShannon entropy, depending on the given dynamis U , the instrument (46), the lassialpartition E , the initial state ρ and the onsidered time of measuring n, whose expressionis
S(U,I, E , ρ, n) := −

∑

i∈Ωn
D

PCSi logPCSi . (49)The CS quantum entropy [19℄ is de�ned as the �average prodution� on the long run oflast quantity
H(U,I, E , ρ) := lim

n→∞
1

n
S(U,I, E , ρ, n) (50)and it is deomposable in two omponent. The �rst, alled measurement CS quantumentropy, is independent on the dynamis, originated by the pure measurement proess,and obtained by replaing the unitary operator U in (50) with the identity on H; itsexpression is

Hmeas(I, E , ρ) := H(1N ,I, E , ρ) · (51)The seond amount to the remaining part
Hdyn(U,I, E , ρ) = H(U,I, E , ρ) − Hmeas(I, E , ρ) (52)



Quantum dynamial entropies for disrete lassial systems: a omparison 27and is supposed to inorporate the dynami dependene.5.4. CS Entropies for disrete lassial systemsThe quantum entropy of last setion an be seen as an algebrai quantity, and does neednothing more that the algebrai framework already developed in Setions 2�4, in orderto be de�ned. In partiular, we are going to estimate the CS entropy of disrete lassialsystems (DN , τN ,ΘN
), using the Lattie States of De�nition 2.1Theorem 3 : Let (T2, µ, T

) be the lassial dynamial system of Setion 2,whih is the ontinuous limit of a sequene of �nite dimensional disrete dy-namial systems (DN , τN ,ΘN
). If1. WT,N is the unitary evolution operator of (27);2. I in the instrument (46) onstruted with the LS of De�nition 2.1;3. E = {E0, E1, . . . , ED−1} is a �nite measurable partition of T2;4. ρ is the traial state 1

N 1N ;then there exists an α suh that
lim

n,N→∞
n<α log N

1

n

∣∣S(WT,N ,I, E , ρ, n) − Sµ(E[0,n−1])
∣∣ = 0 ·In order to prove Theorem 3, we need the following auxiliary result.Lemma 5.1Suppose to have a sequene {gN} of L2

µ

(T2
) funtions suh that ‖gN‖2 6 1,

∀ N ∈ N+ (‖·‖2 meaning the L2
µ

(T2
)�norm).Using the quantities KN,n (x,y) of De�nition 4.2 we have that, for any given

A and B measurable subsets of T2, and N large enough, it holds
RN :=

∣∣∣∣∣

∫

B
µ (dx) gN (x)N

∫

A
µ (dy) |KN,1 (x,y) |2 −

∫

B ∩ T−1(A)
µ (dx) gN (x)

∣∣∣∣∣

6 εB (N) ,where εB (N) −→ 0 with N −→ ∞ .The symbol εB does not imply any dependene of the bounding term εB on the subset B;it is just a way of writing that will be of use in the following.



28 V. CappelliniProof of Lemma 5.1 :Resorting to the use of the harateristi funtions XA and XB , using triangular inequalityand olleting terms, RN an be rewritten as
RN 6

∫T2

µ (dx)
∣∣∣XB (x) gN (x)

∣∣∣ ·
∣∣∣∣N
∫T2

µ (dy)XA (y) |KN,1 (x,y) |2 −XT−1(A) (x)

∣∣∣∣

=

wwww XB gN

[
N
∫T2

µ (dy)XA (y) |KN,1 ( · ,y) |2 −XA (T ( · ))

]wwww
1

,and using the Cauhy�Shwartz inequality
6

∥∥∥ XB gN

∥∥∥
2
·
wwwwN

∫T2

µ (dy)XA (y) |KN,1 ( · ,y) |2 −XA (T ( · ))

wwww
2

· (53)Now we use the hypothesis, so that
∥∥∥ XB gN

∥∥∥
2

2
=

∫

B

∣∣∣gN (x)
∣∣∣
2

µ (dy) 6

∥∥∥ gN

∥∥∥
2

2
6 1 · (54)Putting together (53) and (54), and using Proposition 4.1 (with f = XA and n = 1) weget the result.We are now in position to onlude with:Proof of Theorem 3 :Let us start to ompute the expetation PCSi . In terms of the quantity introdued inpoints (1�4) of the statement, equation (48) an be rewritten as

PCSi = N n−1

∫

Ei0

∫

Ei1

· · ·
∫

Ein−1

〈CN (x0) | 1N |CN (x0)〉 ×

×
n−1∏

j=1

[∣∣∣ 〈CN (xj) | WT,N |CN (xj−1)〉
∣∣∣
2
]

µ (dx0) µ (dx1) · · ·µ (dxn−1)and using normalization property for the state |CN (x0)〉 and resorting to De�nition 4.2
=

∫

Ein−1

· · ·
∫

Ei1

∫

Ei0

µ (dxn−1) ×
n−1∏

j=1

[
N
∣∣∣KN,1 (xj,xj−1)

∣∣∣
2
µ (dxj−1)

]
· (55)Now it start an iterate proedures, onsisting of two points.
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1) onsider the funtion

gN (x1) :=

∫

Ein−1

· · ·
∫

Ei3

∫

Ei2

n−1∏

j=2

[
N
∣∣∣KN,1 (xj,xj−1)

∣∣∣
2
µ (dxj)

]
: (56)all the fators inside the integrals of (56) are positive, so that extending the integrationdomain and expliiting the form of KN,1 (xj,xj−1), we get the bound

gN (x1) 6

∫T2

· · ·
∫T2

∫T2

n−1∏

j=2

[
N
∣∣∣
〈
CN (xj) , WT,N CN (xj−1)

〉∣∣∣
2
µ (dxj)

]
= 1from ompleteness and normalization, so that it follows ‖gN‖2 6 1.

2) By means of (56), equation (55) an be rewritten as
PCSi =

∫

Ei1

µ (dx1) gN (x1)N
∫

Ei0

µ (dx0) |KN,1 (x1,x0) |2 ·Now Lemma 5.1 guarantees that there exists a positive sequene εEi1
(N) suh that,

∣∣∣∣∣P
CS
i −

∫

Ei1
∩ T−1(Ei0)

µ (dx1) gN (x1)

∣∣∣∣∣ 6 εEi1
(N) ,

with εEi1
(N) −→ 0 for N −→ ∞ . By iterating (n− 1)�times this proedure (onsistingin isolating a single KN,1 (xj ,xj−1) and grouping all the others in a single boundedfuntion gN (xj)) and using the triangle inequality for | · |, we �nally arrive to the result:

∣∣∣PCSi − µ
(
Ein−1

∩ T−1
(
Ein−2

)
∩ · · · ∩ T 1−n (Ei0)

)∣∣∣ =
∣∣∣PCSi − µı̂

∣∣∣ 6 ε (N) ,with
ε (N) :=

n−1∑

ℓ=1

εEiℓ
(N) −→ 0 for N −→ ∞ , (57)

µj meaning the lassial probability of Setion 5.1 and ı̂ denoting the string i reversed,as in De�nition 5.1.2.We now de�ne two density matries, with the aim to ompute their Von NeumannEntropy (see Setion 5.2), that are both diagonal in the basis {|i〉}i∈Ωn
D
of the Dn di-



30 V. Cappellinimensional Hilbert spae HDn :
ρ :=

∑

i∈Ωn
D

µı̂ |i〉 〈i | , σ :=
∑

i∈Ωn
D

PCSi |i〉 〈i | ·Resorting to the trae norm ‖A‖1 := Tr |A | = Tr
√

A†A, we use (57) to estimate ‖ρ − σ‖1,that is
∆ (n) := ‖ρ − σ‖1 6 Dnε (N)Finally, by the ontinuity of the von Neumann entropy [29℄, we get

|H (ρ) − H (σ)| 6 ∆(n) log Dn + η(∆(n)) ,that is ∣∣S(WT,N ,I, E , ρ, n) − Sµ(E[0,n−1])
∣∣ 6 ∆(n) log Dn + η(∆(n)), indeed the twoVon Neumann entropy H (ρ) and H (σ) are nothing but the Shannon entropy of there�nements E[0,n−1] of the lassial partition (see Setion 5.1), respetively the Shannonentropy (49) leading to the CS quantum entropy.Sine, from n ≤ α log N , Dn 6 Nα log D, if we want the bound Dnε(N) to onvergeto zero with N −→ ∞, the parameter α has to be hosen aordingly.By means of Theorem 3, a positive CS�entropy prodution is then assoiated to disretesystems whose ontinuous limit exhibit a positive KS�entropy prodution, whih orre-spond in turn to the sum of all positive Lyapunov exponent of the ontinuous lassialsystem, as stated by the Pesin's Theorem [15℄.This positive CS�entropy prodution is entirely due to the dynamial omponent

Hdyn(WT,N ,I, E , ρ) of (52), being the measurement CS�entropy (51) equal to zero, asstated in the next proposition:Proposition 5.1Let I and E be the instrument, respetively the �nite measurable partitionof the statement of Theorem 3 and let ρ be the traial state 1
N 1N . Thereexists an α′ suh that:

lim
n,N→∞

n<α′ log N

1

n
S(1N ,I, E , ρ, n) = 0 ·Proof:Performing a proof ompletely analogous to the one for Theorem 3, we �nd an α′ suh
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lim

n,N→∞
n<α′ log N

1

n

∣∣∣S(1N ,I, E , ρ, n) − Sµ(E ′
[0,n−1])

∣∣∣ = 0 , (58)with E ′
[0,n−1] now given by E ′

[0,n−1]
:=
∨n−1

j=0 1j(E) = E ∨ E ∨ · · ·∨E (see Setion 5.1), sothat
Sµ(E ′

[0,n−1]) = Sµ(E) 6 log D , (59)independent of n.Now we use triangular inequality together with (59), obtaining
1

n
S(1N ,I, E , ρ, n) 6

1

n

∣∣∣S(1N ,I, E , ρ, n) − Sµ(E ′
[0,n−1])

∣∣∣+
log D

n
, (60)and so the result follows from (58).6. ConlusionsIn this work we studied the footprints of haos present in lassial dynamial systems onthe two dimensional torus after a disretization has fored these systems to move on aregular lattie of spaing 1

N , with �nite number of sites N2.Disretizing is similar to quantizing; in partiular, as for the lassial limit ~ → 0,we have set up a solid theoretial framework to disuss the ontinuous limit N → ∞.Inspired by the semi�lassial analysis, we developed an algebrai disretizationtehnique by mimiking the well known Anti�Wik shemes of quantization, in partiularwe made use of a family of suitably de�ned Lattie States with properties that, in aquantum setting, are typial of Coherent States.The result is the appearane of a logarithmi time�sale when the disrete hyperbolisystems tend to their ontinuous limit; namely, the ontinuous and disrete dynamisagree up to a breaking time whih is proportional to the logarithm of the lattie spaing.We also used the entropy prodution as a parameter of haoti behaviour. In par-tiular the notion of CS�quantum entropy has been used: this reprodue the lassialmetri entropy of Kolmogorov and Sinai if applied to lassial ontinuous systems.The CS�quantum entropy do onverge to the KS invariant, but on logarithmi timesales too.



32 V. CappelliniAknowledgmentsThe author wishes to thank Dr. F. Benatti for stimulating disussions and useful advie.A. Sketh of the proofs of Propositions 3.1, 3.2 and 3.3Proof of Proposition 3.1 :1) � Let us start by onsidering matries with positive trae, that is positive eigenvalues(
λ, λ−1

); the ase of negative trae will be onsidered in next point (2). In the (non�orthogonal) referene system (ĉ1, ĉ2) oriented along eigenvetors (|e+ 〉 , |e− 〉), the time�evolution is desribed by
(c1, c2)

T±n

−−−−−−→
n∈N (

λ±nc1, λ
∓nc2

)
, (61)thus orbits are simply given by c1c2 =Const., that in the referene system (x̂, ŷ) readsas (11), indeed the relation between oordinates in the two systems is:

(
x

y

)
=

(
1 cos β

0 sin β

)(
c1

c2

)
· (62)Among these orbits, we hoose the two that are tangent (and so losest) to the unit ball

BT (0): of ourse they remain tangent and losest even during evolution BT (0) 7−→ BT (n)and so they give us the the right expression for the surrounding orbits of B(n)
T , that is (13).By means of (61) and (62) we have an expression for the ±n-evolved unit ball, thatis BT (n); among its surfae's points we hoose the farthest ones and we determine theirnorm, getting the expression for DT (n) ontained in (14).Now we use the expression sinh−1 (q) = log

(√
q2 + 1 + q

), that holds for all q > 0,in partiular for q = (λn − λ−n) /sin β (sin β > 0), so that from (14) we get for DT (n)the expression given by (15), that shows the monotoniity in n of this funtion; thismonotoniity, together with the de�nitions (10) of B
(n)
T , give us the equivalene between

D
(n)
T and DT (n).The linear matrix ation T map the unit ball BT (0) in the ellipse BT (1) an DT (1)is its major semi�axis; from De�nition 3.2, we have

η2 = sup
|v 〉∈R2

〈
v
∣∣T †T

∣∣v
〉

= sup
|v 〉∈R2

∥∥∥T
∣∣v
〉∥∥∥

2R2
= [DT (1)]2 ,so that η = DT (1) and (12) follows from expression (14), with n = 1.



Quantum dynamial entropies for disrete lassial systems: a omparison 33Expressions in (16) an be easily dedued from (14).2) � Let us now notie that every map T , whose trae is negative, may be writtenas the omposition of −12 (the identity map) with the map −T , whih has positive trae;the same holds true for the iterates {T k
}

k odd. Sine multiplying by −12 amounts toperform the transformation (x, y) 7−→ (−x,−y), both the orbits (11) and the surroundingsurfae (12), whih exhibit a entral symmetry, remain the same also for negative traemaps. The same argument an be applied to the diameter DT (n) of (14), whih areinvariant for oordinates re�etion too.Proof of Proposition 3.2 :Let us onsider matries T with TrT = 2, that is t = 1, being the ase t = −1 equivalent,as it is possible to prove in the same way of point (2) of the proof of Proposition 3.1. Inthe orthogonal referene system (x̂, ŷ) of the statement, the ation of T n is desribed bya matrix in Jordan anonial form, that is
(

x

y

)
−−→
T n

(
x′

y′

)
=

(
1 nJ ′

0 1

)(
x

y

)
, (63)where J ′ = t12 − t21, thus orbits are simply given by y =Const. In order to apply theargument of point (2) of proof of Proposition 3.1, when t = −1, we endow this lass oforbits with a oordinate re�etion symmetry, and this leads to equation (17).Among these orbits, we hoose the one that is tangent (and so losest) to the unit ball

BT (0): of ourse it remains tangent an losest even during evolution BT (0) 7−→ BT (n)and so it give us the the right expression for the surrounding orbit of B
(n)
T , that is (18).By means of (63) we have an expression for the ±n-evolved unit ball, that is BT (n);among its surfae's points we hoose the farthest ones and we determine their norm,getting the expression for DT (n) ontained in (20), with J = |J ′ |.Using one more the expression sinh−1 (q) = log

(√
q2 + 1 + q

), that holds for all
q > 0, in partiular for q = nJ , from (20) we get for DT (n) the expression given by (21);using monotoniity we get the equivalene D

(n)
T = DT (n).From η = DT (1) (see proof of Proposition 3.1), equation (19) an be earned fromexpression (20), with n = 1.Expressions in (22) and (23) an be easily dedued and veri�ed from (20).Proof of Proposition 3.3 :The semi�trae t of the matrix T an only assume values in {−1

2 , 0, 1
2

}, indeed all entries



34 V. Cappelliniof T are integer and |t | < 1. We read from equation (8) that t = cos φ and so we have for
φ the only possible values {±2

3π,±1
2π,±1

3π
}; everyone of these values make the time�evolution periodi, as it an be dedued from equation (8). All these ases are similar;we now prove the statement for t = 1

2 .
t = 1

2
� We have φ = ±1

3π and so we get from equation (8) that T 3 = −12. Theperiod of evolution is six and the sequene of T�power is equivalent to 12, T , −T−1, −12,
−T , T−1, 12 and so on.By using equation (9) of De�nition 3.2 we see that the sequene {BT (n)}n∈N of
n�evolved ball is equivalent to BT (0), BT (1), BT (−1), BT (0), BT (1), BT (−1) . . ., thus,the sequene of diameter {DT (n)}n∈N, is given by DT (0), DT (1), DT (−1) . . ..As argued in the proof of Proposition 3.1 (point 1), DT (1) = η; moreover DT (−1) =

η too. Indeed, as the spetra of |T | onsists of the two eigenvalue (η, η−1
), the same istrue for the spetra of ∣∣T−1

∣∣.Using the last observation, the sequene of diameter beomes 0, η, η, 0, η, η . . . andso equations (24�25) hold true for the ase t = 1
2 .The ases t = −1

2
and t = 0 an be proved in a similar way.Referenes[1℄ G.M. Zaslavsky, Chaos in Dynami Systems, Harwood Aademi Publ., Chur, 1985.[2℄ M.�J. Giannoni, A. Voros and J. Zinn�Justin, editors, Chaos and Quantum Physis,volume 1989 Les Houhes Session LII of Les Houhes Summer Shool of TheoretialPhysis, Amsterdam, London, New York, Tokyo, 1991, North�Holland.[3℄ R. Devaney, An Introdution to Chaoti Dynamial Systems, Addison�Wesley, Read-ing, MA, 1989.[4℄ S. Wiggins, Dynamial Systems and Chaos, Springer�Verlag, New York, 1990.[5℄ H.G. Shuster, Deterministi Chaos, VCH, Weinheim, 3rd edition, 1995.[6℄ G. Casati and B. Chirikov, Quantum Chaos. Between Order and Disorder, Cam-bridge University Press, Cambridge, 1995.[7℄ A. Katok and B. Hasselblatt, Introdution to the Modern Theory of DynamialSystems, Enylopedia of Mathematis and its Appliations, Cambridge UniversityPress, Cambridge, 1999.[8℄ J. M. Boulet and S. De Bievre, Long time propagation and ontrol on sarring forperturbed quantized hyperboli toral automorphisms, Preprint math-ph/0409069,2004.
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