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1Centrum Fizyki Teoretycznej, Polska Akademia Nauk, Al. Lotników 32/44, 02-668 Warszawa, Poland
2Fachbereich Physik, Universität Duisburg-Essen, CampusDuisburg, 47048 Duisburg, Germany and

3Instytut Fizyki im. Smoluchowskiego, Uniwersytet Jagielloński, ul. Reymonta 4, 30-059 Kraków, Poland
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Average entanglement of random pure states of anN × N composite system is analyzed. We compute the
average value of the determinantD of the reduced state, which forms an entanglement monotone.Calculating
higher moments of the determinant we characterize the probability distribution P(D). Similar results are ob-
tained for the rescaledNth root of the determinant, calledG–concurrence. We show that in the limitN → ∞
this quantity becomes concentrated at a single pointG⋆ = 1/e. The position of the concentration point changes
if one consider an arbitraryN × K bipartite system, in the joint limitN,K → ∞, K/N fixed.
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I. INTRODUCTION

Designing protocols of quantum information processing oneusually deals with some particular initial states. One is then
interested in describing the evolution of such a concrete quantum state and its properties in time. For instance, one studies the
time dependence of the degree of quantum entanglement, which characterizes the non–classical correlations between subsystems
and is treated as a crucial resource in the theory of quantum information [1].

As a reference point one may compare the degree of entanglement of the analyzed state with analogous properties of a typical,
random state. Such random states are also of a direct physical interest since they arise under the action of a typical quantum
chaotic system – see e.g. [2]. In this work we investigate mean values of certain measures of quantum entanglement, averaged
over the entire space of pure states of a Hilbert space of a given size.

There exist several measures of quantum entanglement whichdo not increase under local operations and satisfy the required
properties listed in [3, 4], but it is hardly possible to single out the “best” universal quantity. On the contrary, different en-
tanglement measures occurred to be optimal for various tasks, so it is likely we will have to learn to live with quite a few of
them [5, 6].

The measures of quantum entanglement for a pure state of a bipartite system,|ψ〉 ∈ H = HA ⊗ HB, rely on its Schmidt
coefficients [7] equivalent to the spectrum~Λ of the reduced system,ρ = TrB(|ψ〉〈ψ|). By construction the sum of all Schmidt
coefficients equals unity,

∑N
i=1Λi = 1, so just(N − 1) of them are independent. To quantify entanglement of a pure state one uses

entanglement monotones [8], defined as quantities which do not increase underLocalOperations andClassicalCommunication
(the so–calledLOCC operations). Entanglement of a pure state of aN×N system is therefore completely described by a suitable
set of(N − 1) independent entanglement monotones.

It is convenient to work with the ordered set of coefficients,Λ1 > Λ2 > . . . > ΛN > 0. The first example of such a set of
entanglement monotones found by Vidal consists of sums ofk largest coefficients,Ek :=

∑k
i=1Λi with k = 1, . . . ,N − 1 [8].

Alternatively, one can use Rényi entropies of(N − 1) different orders. Another set of monotones may be constructed out of
symmetric polynomials of the Schmidt coefficients of orderk = 2, . . . ,N [9],

τ2 =

N∑

k=1

N∑

l=k+1

ΛkΛl ,

τ3 =

N∑

k=1

N∑

l=k+1

N∑

m=l+1

ΛkΛlΛm,

...
...

τN =

N∏

k=1

Λk ·

For largeN these polynomials become small, so it is of advantage to consider cognate quantities,τ′k = (τk)1/N. Gour noted
that taking theN-th root of the polynomials does not spoil the monotonicity and proposed to used normalized quantitiesτ′k as
alternative measures of quantum entanglement [10]. In particular he found unique properties of the last polynomialτN, equal to
the determinant of the reduced matrix,D = detρ. Its rescaledN–th root,

G := ND1/N , (1.1)
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proportional to the geometric mean of all Schmidt coefficients, was calledG–concurrence in [10], where its operational inter-
pretation as a type of entanglement capacity was suggested.This quantity extended by the convex roof construction for mixed
states, played a crucial role in demonstration of an asymmetry of quantum correlations [11] and was used to characterizethe
entanglement of assistance [12].

The aim of this work is to compute mean values and to describe probability distributions for the determinantD and its root
G of random pure states of a bipartite system, generated with respect to the natural, unitary invariant measure on the space of
pure states, also calledFubini–Study (FS) measure. Our analysis is performed for a bipartite system of an arbitrary sizeN, and
in particular we treat in detail the interesting limiting caseN → ∞. Although our study directly concerns bipartite systems, one
may infer some statements valid also in the general case of multipartite systems.

The paper is organized as follows. In section II we review a concept of a random pure state and describe certain probability
measures in this set. Average values of theG–concurrence are computed in section III, while the subsequent section concerns
with probability distribution of this measure of quantum entanglement. The paper is concluded with some final remarks while
the discussion of the asymptotics of probability distributions is postponed to an appendix.

II. RANDOM PURE STATES AND INDUCED MEASURES

Consider a pure state of a bipartiteN × K system represented in a product basis

|ψ〉 =
N∑

i=1

K∑

j=1

Ai j |i〉 ⊗ | j〉 .

The Schmidt coefficientsΛi coincide with the eigenvalues of a positive matrixρN = AA†, equal to the density matrix obtained
by a partial trace on theK–dimensional space. The matrixA needs not to be Hermitian, the only constraint is the trace condition,
Tr AA† = 1. Furthermore, the natural unitarily invariant measure onthe space of pure states corresponds to takingA as a matrix
from the Ginibre ensemble [13]. Thus our problem consists inanalyzing the distribution of determinants of random Wishart
matricesAA† normalized by fixing its trace. Schmidt coefficients’s distributions are given by [14]

P(β)
N,K(Λ1, . . . ,ΛN) = B(β)

N,K δ

1−
∑

i

Λi


∏

i

Λ
[β(K−N)+β−2]/2
i θ(Λi)

∏

i< j

|Λi − Λ j |β , (2.1a)

in which the cases of real or complexA are distinguished by therepulsion exponentβ [15] being equal 1, respectively 2 and the
normalizationB(β)

N,K reads [13]

B(β)
N,K :=

Γ(KNβ/2)
[
Γ(1+ β/2)

]N
∏N−1

j=0 Γ
[
(K − j)β/2

]
Γ
[
1+ (N − j)β/2

] . (2.1b)

Formulae (2.1) describe a family of probability measures inthe simplex of eigenvalues of a density matrix of sizeN. The integer
numberK, determining the size of the ancilla, can be treated as a freeparameter.

Another important probability measure in the space of mixedquantum states is induced by the Euclidean geometry and the
Hilbert–Schmidt (HS) distance. Assuming that each ball of a certain radius contains the same volume, one arrives at theHS
measure [16]

P(β)
HS(Λ1, . . . ,ΛN) := H(β)

N δ


N∑

i=1

Λi − 1


N∏

i=1

θ(Λi)
∏

i< j

|Λi − Λ j |β , (2.2a)

where the parameterβ distinguishes as before between the real and the complex cases. The above normalization constantH(β)
N

reads

1

H(β)
N

:=
1

Γ[N + βN(N − 1)/2]

N∏

j=1

[
Γ(1+ jβ/2)Γ[1 + ( j − 1)β/2]

Γ(1+ β/2)

]
· (2.2b)

We observe that the distribution (2.2), normalization constants included, can be recasted into the form (2.1), provided that we
chooseK = N − 1+ 2/β, that is

K =


N for complexρN, (with β = 2)
N + 1 for realρN, (with β = 1)

· (2.3)
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Using this observation, one can get a useful procedure for generating random density matrices distributed according tothe
HS–measure taking normalized Wishart matricesAA†, with A belonging to the Ginibre ensemble of Hermitian matrices of
appropriate dimension.

Aiming to derive the averaged moments needed in Section III,it is convenient to change variable in (2.1) by puttingK =
2α/β + N − 1 and obtaining:

P(α,β)
N (Λ1, . . . ,ΛN) := C(α,β)

N δ


N∑

i=1

Λi − 1


N∏

i=1

Λα−1
i θ(Λi)

∏

i< j

|Λi − Λ j |β , (2.4a)

with

1

C(α,β)
N

:=
1

Γ[αN + βN(N − 1)/2]

N∏

j=1

[
Γ(1+ jβ/2)Γ[α + ( j − 1)β/2]

Γ(1+ β/2)

]
· (2.4b)

In the above formula the real variableα can be used as a free parameter instead of the integerK.

III. AVERAGE MOMENTS OF G–CONCURRENCE

In this Section we are going to compute averages over an ensemble of random density matrices distributed according to the
HS–measure, which is induced by the Euclidean geometry. This corresponds to fixing the sizeK of the ancilla according to (2.3),
depending on whether the real or the complex case is concerned.

Denoting the eigenvalues of the density matrixρN by
{
Λ j

}
, the moments of the determinantsD(Λ1, . . . ,ΛN) =

∏N
j=1Λ j read

〈DM
(β)〉N :=

∫ ∞

−∞
dΛ1 · · ·

∫ ∞

−∞
dΛN DM(Λ1, . . . ,ΛN) P(β)

HS(Λ1, . . . ,ΛN) · (3.1)

The product of Heaviside step functions, present in the definition (2.2a) ofP(β)
HS, allows us to extend the domain of integration on

the entire axis. The integrand of (3.1) coincides with the factor present in the right hand side of equation (2.4a), provided that
the parameterα is set there to 1+ M. Using this the integral (3.1) can be computed from (2.4b), and reads



〈DM
C
〉N =

C(1,2)
N

C(1+M,2)
N

=
Γ(N2)

Γ(MN+N2)
∏N

j=1
Γ(M+ j)
Γ( j)

〈DM
R
〉N =

C(1,1)
N

C(1+M,1)
N

=
Γ

(
N2+N

2

)

Γ

(
MN+ N2+N

2

)
∏N

j=1
Γ
(
M+ j+1

2

)

Γ
(

j+1
2

)
· (3.2)

For sake of clarity, from now on the sub– and super–script (β = 2) and (β = 1) will be often replaced byC, respectivelyR.
Making use of equation (1.1), one obtains the moments of theG–concurrence by imposingα = 1+M/N in the ratiosC(1,β)

N /C(α,β)
N ,

rescaled by a factorNM. Thus we get now


〈GM
C
〉N = NM C(1,2)

N

C(1+M/N,2)
N

= NM Γ(N2)
Γ(M+N2)

∏N
j=1
Γ( M

N + j)
Γ( j)

〈GM
R
〉N = NM C(1,1)

N

C(1+M/N,1)
N

= NM
Γ

(
N2+N

2

)

Γ

(
M+ N2+N

2

)
∏N

j=1
Γ
(

M
N +

j+1
2

)

Γ
(

j+1
2

)
; (3.3)

in FIG. 1 the mean values〈G(β)〉N and varianceσ2
N = 〈G2

(β)〉N − 〈G(β)〉
2

N
are represented as a function ofN for both complex and

real cases.

IV. PROBABILITY DISTRIBUTION P(β)

N
(G)

This Section is devoted to the study of probability distributions. We shall start with the simplest problem of determining the
distribution of the determinantD of a 2× 2 density matrixρ2 distributed according to the (HS)–measure. In this case an explicit
solution is easily obtained by integrating the Dirac deltaδ(D − Λ1Λ2) over the distributionP(β)

HS(Λ1,Λ2) of (2.4), that is

P(β)
2 (D) := C(1,β)

2

∫ ∞

−∞
dΛ1

∫ ∞

−∞
dΛ2 δ(Λ1 + Λ2 − 1)θ(Λ1) θ(Λ2) |Λ1 − Λ2|β δ(D − Λ1Λ2) ·



4

FIG. 1: Average ofG–concurrence for(a) complex and(b) real random mixed states of aN × (N + 2− β) system distributed according to
theHS measure. The average is computed by means of equation (3.3);error bars represent the variance ofP(β)

N (G). Dashed line represent the
asymptoteG⋆ = 1/e, whose explanation is given in Section V.

It is a very simple distribution since (Λ1 − Λ2)2 = (Λ1 + Λ2)2 − 4D = 1− 4D. Thus


PC

2 (D) = 6
√

1− 4D
PR

2 (D) = 4
, D ∈

[
0,

1
4

]
· (4.1)

TheG–concurrence distributionP(β)
2 (G) can be computed either by integratingδ(G − 2

√
Λ1Λ2) over P(β)

HS(Λ1,Λ2), or simply

using the latter result (4.1) together withP(β)
2 (G) dG = P(β)

2 (D) dD; in both cases (see FIG. 2)


PC

2 (G) = 3 G
√

1−G2

PR

2 (G) = 2 G
, G ∈ [0, 1] · (4.2)

Note that, due toΛ1 + Λ2 = 1, (only) for the caseN = 2 theG–concurrence given by (1.1) reduces to the standard concur-

rence [17],C =
√

2
(
1− Tr ρ2

2

)
. Thus formula (4.2) for the complex case coincides with the distribution of concurrenceP(C)

obtained in [13].

For higherN we will construct the distributionP(β)
N (D) from all moments〈DM

(β)〉N given by equation (3.2); indeed

〈DM
(β)〉N =

∫ 1

0
dD DM P(β)

N (D) =
∫ ∞

0
dx e−x(1+M)P(β)

N (e−x) ,

with D = e−x and dD = −dx e−x, and so we can obtainPN(D) by inverse Laplace transform or inverse Mellin transform as
integral along the imaginaryM–axis:

P(β)
N (D) =

∫ +i∞

−i∞

dM
2πi

D−(1+M) 〈DM
(β)〉N (4.3)

Although equations (4.3) and (3.2) allow us to compute theP(β)
N (D) probabilities, the cognate quantitiesP(β)

N (G) can be determined
as well by using

P(β)
N (G) dG = P(β)

N (D) dD ;

by taking from (1.1) the explicit expression for dD/dG, one can indeed get the simple expression

G · P(β)
N (G) = N · D · P(β)

N (D) · (4.4)

From now on formulae and figures will be given indifferently for bothG andD distribution, being clear their mutual relation. In
particular theD–distribution is more indicated in showing details of calculation, for its simpler form, whereas theG–distribution
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FIG. 2: G–concurrence’s distributionsP(β)
N (G) are compared for differentN in the case of(a) complex and(b) real random pure states. The

distributions are obtained by performing numerically [18]the inverse Laplace transform of equation (4.3). Dashed vertical line centered in
G⋆ = 1/e denotes the position of the Dirac–delta corresponding toP(β)

N→∞(G), as it is shown in section V.

better shows features in the pictures, for its domain being independent ofN. Important is the asymptotic behavior of the Gamma
function for large argument (Stirling’s formula)

Γ(z) = z(z−1/2)
√

2π e−z

1+
1

12z
+ O

(
1
z

)2

for |z| → ∞ and arg(z) < π. This implies the asymptotic behavior of (3.2) for large|M|:


〈DM
C
〉N ≃ DS

C
(M,N) := AC

N · e−MN logN

M(N2−1)/2

〈DM
R
〉N ≃ DS

R
(M,N) := AR

N · e−MN logN

M(N2+N−2)/4

, with



AC

N := (2π)(N−1)/2Γ(N2)
NN2−1/2 ∏N

j=1 Γ( j)

AR

N :=
(2π)(N−1)/2Γ[(N2+N)/2]

N(N2+N−1)/2 ∏N
j=1 Γ[( j+1)/2]

· (4.5)

As a consequence the integral (4.3) converges and moreover it vanishes ifx < N logN or D > (1/N)N, because in that case we
can close the contour in (4.3) in the rightM–halfplane according to the Jordan’s Lemma [19]. Physically this means that there
are no density matrices with determinants greater than the one with maximal entropy.

In the rest of this section we will give the asymptotic behavior of distributionsP(β)
N (D) for the two edges of the domain, that

is D → 0 andD → (1/N)N. The details of calculation, together with the explicitN–dependence of all coefficients listed here in
the following, are collected in Appendix A.

In particular, when very close to the completely mixed state, that isD ≃ (1/N)N, we have the result (see FIG. 3)



PC

N(D) ≃ AC

N ·
(− logD−N logN)(N2−3)/2

D
[
(N2−3)/2

]
!

PR

N (D) ≃ AR

N ·
(− logD−N logN)(N2+N−6)/4

D
[
(N2+N−6)/4

]
!

· (4.6)

Moreover, using (4.4) together with

− logD − N logN ≃ 1− D NN = 1−GN ,

we simply find



PC

N(G) ≃ ÃC

N ·
(1−GN )(N2−3)/2

G

PR

N (G) ≃ ÃR

N ·
(1−GN)(N2+N−6)/4

G

, with



ÃC

N := AC

N · N

Γ
[
(N2−1)/2

]

ÃR

N := AR

N · N

Γ
[
(N2+N−2)/4

]
·
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FIG. 3: In panel(a) a 100 bins histogram of 108 determinants of 3× 3 complex density matrices distributed accordingly to theHS measure
is compared with the right asymptote given by equation (4.6)(plotted in solid line). Same analysis is depicted in panel(b), but for 3× 3 real
density matrices.

For the other part of the spectrum, that is for very smallD, the probabilityPC

N(D) can be expanded in a power series with some
logarithmic corrections, as follows:

PC

N(D) ≃ ZC

N + XC

N · D logD + X̃C

N · D + VC

N · D2 (
logD

)2
+ ṼC

N · D2 (
logD

)
+

˜̃VC

N · D2 + O
(
D3(logD)3

)
(4.7)

In particular, coefficientsZC

N ,X
C

N , X̃
C

N are computed in appendix A for allN > 3, whereas forVC

N , Ṽ
C

N and˜̃VC

N we limit ourself to
explicitly solve the caseN = 3 (the caseN = 2 is simply given by formula (4.1)).

The situation is similar when we do consider, in the same region of the domain, the probabilityPR

N (D), corresponding to small
determinants of reducedN × N real density matricesHS–distributed. The expansion is still a power series (plus logarithmic
corrections) but the exponents are now semi–integer, according to the mechanism described in Appendix A, thus the probability
reads:

PR

N (D) ≃ ZR

N + YR

N · D
1
2 + XR

N · D logD + X̃R

N · D +WR

N · D
3
2 logD + W̃R

N · D
3
2 + O

(
D2(logD)2

)

V. CONCENTRATION OF G–CONCURRENCE FOR LARGE SYSTEM SIZE

Iterating the recursion relation for the Gamma functionΓ (n+ 1) = n Γ (n), we can recast expression (3.3) of theM– moment
of theG–concurrence of complex random pure state as

〈
GM

C

〉
N
=


M−1∏

k=0

N
N2 + k



{[ M
N
Γ

( M
N

)]N} 
N−1∏

k=1

(
1+

M
kN

)N−k
 ,

with the asymptotics characterized with help of the Euler constantγ ≈ 0. 577 215 665. . .,

M−1∏

k=0

N
N2 + k

−−−−−→
N→∞

1
NM

,

[ M
N
Γ

( M
N

)]N

−−−−−→
N→∞

e−γM

and

N−1∏

k=1

(
1+

M
kN

)N−k

−−−−−→
N→∞

NMeM(γ−1) ,
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FIG. 4: In panel(a), formula (4.2) is compared with a 100 bins histogram of 106 G–concurrence of 2× 2 complex density matrices distributed
according to theHS measure. The other panels(b) (c) and (d) shows histograms (for different N) together with the distribution ofG–
concurrence obtained by inverse Laplace transforming as inequation (4.3) (plotted in solid lines). The left asymptotegiven by eq. (4.7),

computed up toO (D), is also plotted in dashed line for comparison; in panel(b) we also add the contribution given byVC

N , Ṽ
C

N ,
˜̃VC

N coefficients,
using a dotted line.

so that finally

〈
GM

C

〉
N
−−−−−→

N→∞
e−M · (5.1)

For the analogue moments ofG–concurrence of real random pure state, some technicality requires that the sequence of odd and
evenN has to be analyzed separately, although it is not hard to prove that the limit is the same. For that reason, we will simply
illustrate the caseN = 2p, p ∈ N, for which (3.3) gives

〈
GM

R

〉
N
=

(
2
√
π

)p


M−1∏

k=0

2p
2p2 + p+ k



{[
M
2p
Γ

(
M
2p

)]p} {[(
M
2p
+

1
2

)
Γ

(
M
2p
+

1
2

)]p}
×

×


p−1∏

k=1

(
1+

M
2pk

)p−k




p− 1
2∏

k= 3
2

(
1+

M
2pk

)p−k− 1
2


,
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with

M−1∏

k=0

2p
2p2 + p+ k

−−−−−→
p→∞

(
2

2p+ 1

)M

,

[
M
2p
Γ

(
M
2p

)]p

−−−−−→
p→∞

e−γ
M
2 ,

[(
M
2p
+

1
2

)
Γ

(
M
2p
+

1
2

)]p

−−−−−→
p→∞

π
p
2

2(p+M)
eM(1− γ

2) ,

p−1∏

k=1

(
1+

M
2pk

)p−k

−−−−−→
p→∞

p
M
2 e

M
2 (γ−1)

and

p− 1
2∏

k= 3
2

(
1+

M
2pk

)p−k− 1
2

−−−−−→
p→∞

e
M
2 (γ−1)e−M 2M

(
p+

1
2

) M
2

·

Putting all factors together we arrive at the general result(compare with (5.1))

G(M) := lim
N→∞

〈
GM

(β)

〉
N
= e−M · (5.2)

The above expression, valid for bothβ ∈ {1, 2}, is useful to derive the limiting distribution

P(β)(G) := lim
N→∞

P(β)
N (G) ·

We see from (5.2) that its average is 1/e = 0. 367 879 441. . . and its variance is 0; such behavior can be recognized in FIG 1.
Moreover, by fixingG = e−x, one can see thatG(M) of (5.2) is nothing but the Laplace transform of the function

η(x) := e−xP(β)(e−x)

so that, by inverse Laplace transforming, we obtain

e−xP(β)(e−x) = G P(β)(G) = δ(− log(G) − 1) ·

Rewriting the argument of the Dirac delta we finally arrive at

P(β)(G) = δ(G− e−1) · (5.3)

In other words, we have shown that for large systems the G–concurrence of random states is localized arbitrarily close tothe
averaged value.

A similar concentration effect has recently been quantified [20] for bipartiteN × K systems. In particular the Von Neumann
entropy of the reduced density matrix of the first subsystem concentrates around the entropy of the maximally mixed state,
S (1/N) = logN, if we let the dimensionK of the auxiliary subsystem to go to infinity faster thanN. WhenK = N, so that
the induced distribution coincides with theHilbert–Schmidt distribution, andN → ∞, then von Neumann entropy concentrate
around logN − 1/2 [20, 21]. Remarkably,G–concurrence displays a similar concentration effect; moreover, we are in position
to prove the convergence of its distribution to a Dirac deltacentered at a non trivial value 1/e.

The determinants andG–concurrence may be also averaged in the general case of asymmetric induced measure (2.1). Consider
an interesting caseK > N. As for theHS–distribution discussed in Section II the expectation value and the higher moments may
be expressed as a ratio of normalization constants (2.1b) and (2.4b). For instance, the moments read



〈GM
C
〉N,K = NM B(2)

N,K

C(M/N+K−N+1 , 2)
N

= NM Γ (NK)
Γ (NK + M)

N∏

j=1

Γ (K − N + j + M/N)
Γ (K − N + j)

〈GM
R
〉N,K = NM B(1)

N,K

C(M/N+(K−N+1)/2 , 1)
N

= NM Γ (NK/2)
Γ (NK/2+ M)

N∏

j=1

Γ
[
(K − N + j) /2+ M/N

]

Γ
[
(K − N + j) /2

]

· (5.4)
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Let us now study a particular case of the induced measure, forwhich we consider bipartite systems of arbitrarily large dimension,
with the only constraint that the ratio between the sizeK of the ancilla and the sizeN of the principal subsystem are fixed and
greater than one. Let this ratio be expressed by the rationalnumberq = ℓ2/ℓ1, with theℓ1 andℓ2 integers; this means that we are
considering systems withN = Jℓ1 < K = Jℓ2.
With the same tools used in computing (5.2), one can letJ go to infinity and obtain

G(M) ≔ lim
J→∞

〈
GM

(β)

〉
Jℓ1,Jℓ2

= X−M
q , ∀ β ∈ {1, 2} , (5.5)

with

Xq ≔
1
e

(
q

q− 1

)q−1

, q > 1 · (5.6)

The limiting distributionPq(G), can be earned as before and reads

P(β)
q (G) ≔ lim

J→∞
P(β)

Jℓ1,Jℓ2
(G) = δ(G− Xq) ,

for the complex as well as for the real case. Although the accumulation pointXq is not defined for the caseq = 1 (that is the
case in which states in the principal system areHS–distributed), we find however limq→1 Xq = 1/e, confirming our previous
result (5.3). Moreover such values represent an infimum forXq, whereas it attains the supremum on the other part of the domain,
that is forq→ ∞. Such case correspond an extremely large environment, for whichX∞ = 1, that is in turn theG–concurrence of
the completely mixed state. Thus we find another evidence that large environment concentrates reduced density matricesaround
the maximally mixed states [20].

VI. CONCLUDING REMARKS

The generalizedG–concurrence is likely to be the first measure of pure state entanglement for which one could find not
only the mean value over the set of random pure states, but also compute explicitly all moments and describe its probability
distribution, deriving an analytic expression in the largeN limit. This offers for our work various potential applications. On one
hand, analyzing a concrete quantum state and its entanglement we may check, to what extend its properties are non typical. In
practice this can be done by a comparison of itsG–concurrenceG with the mean value〈G〉, and by comparing its deviation from
the average,|G− 〈G〉|, with the root of the variance of the distribution.

On the other hand, if one needs a quantum state of some particular properties, one may estimate how difficult it is to obtain
such a state at random. For instance, looking for a state of a large degree of entanglement, with concurrence greater thana
given valueG̃, one can make use of the derived probability distribution byintegrating it fromG̃ to unity in order to evaluate the
probability to generate the desired state by a fully uncontrolled, chaotic quantum evolution.

Although in this work we have concentrated our attention on pure states of bipartite systems, the averages obtained for the
asymmetric induced measures (2.1) withK > N may be easily applied for the more general, multipartite case. Consider a system
containingn qudits (particles described in ad–dimensional Hilbert space). This system may be divided by an arbitrary bi–partite
splitting into m and (n − m) particles, and one can study entanglement between both subsystems – see e.g. [22]. The partial
trace overm qudits is equivalent to the partial trace performed over a single ancilla of sizeK = dm, so setting size of the system
N = dn−m one may read out the average concurrence from eq. (5.4). In particular, if n is even and we putm = n/2 + k, then
the ratioq = K/N is equal tod2k and in the asymptotic limitn→ ∞ the concurrence concentrates around the mean (5.6) which
depends only on the asymmetryk of the splitting.

Our research may also be considered as a contribution to the random matrix theory: we have found the distribution of the
determinants of random Wishart matricesAA†, normalized by fixing their trace. Furthermore, the analysis of the distribution
of G-concurrence in the limit of large system sizes provides an illustrative example of the geometric concentration effect, since
in high dimensions the distribution of the determinant is well localized around the mean value. This observation can also be
related to the central limit theorem applied to logarithms of the eigenvalues of a density matrix, the sum of which is equal to the
logarithm of the determinant.

It is a pleasure to thank P. Hayden and P. Horodecki for stimulating discussions. This work was financed by the
SFB/Transregio–12 project financed byDFG. We also acknowledge support provided by the EU research project COCOS
and the grant 1P03B 042 26 of Polish Ministry of Science and Information Technology.
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APPENDIX A: COEFFICIENTS OF ASYMPTOTIC EXPANSIONS OF PROBA BILITY

1. Right asymptote ofP(β)

N
(D): proof of equation (4.6)

The starting point is integral (4.3). Since all the poles of the integrand are in the left half–plane (see it in (3.2)), thecontour
integration along the imaginary axis can be modified into theone along the right asymptotic half–plane, that is on a very
large semicircle connecting−i∞ to +i∞; this allow us to use the Stirling’s formula for replacing〈DM

(β)〉N with DS
(β) (M,N) (see

formula (4.5)) in the integrand of (4.3). Of course we made anapproximation, but we know that the formula we ended up
matches the correct result (P(β)

N (D) = 0 for D > (1/N)N) in the point(1/N)N, so that such approximation would hold close to that
point. Now we observe thatDS

(β) (M,N) has poles only inM = 0, so that our contour of integration can be modified provided
that we do not cross the origin, and we do so obtaining

P(β)
N (D) =

∫

γ

dM
2πi

D−(1+M) DS
(β) (M,N) =

A(β)
N

2πiD

∫

γ

dM eM(− logD−N logN)M−
(N2−1)

2 ,

whereγ is now the contour that, starting from−i∞ get close to the negative real axis on the asymptotic left–lower quarter–plane,
winds aroundR− ∪ {0} in the counterclockwise direction, and then approaches+i∞ on the asymptotic left–upper quarter–plane.
But now we apply once more Jordan’s Lemma and we remove the asymptotic semi–circle fromγ. After rescalingM → −M/ε,
with the latter defined byε = − logD − N logN and close to 1, we arrive at the well known Hankel’s contour integral for the
inverse of the Gamma function (1/Γ) [23], that leads to (4.6) and gives the asymptotic behaviorfor D→ (1/N)N.

2. Left asymptote of PC

N
(D) for complex random pure states

Now let us consider the behavior ofPC

N(D) at the lower edge of the spectrumD → 0. In that case one can close the
integral (4.3) in the left halfplane obtaining contributions from all the poles of the Gamma functions in〈DM

R
〉N (see (3.2)). Such

poles are located at each of the negative integersM = −1,−2,−3, . . .; fortunately there is the factorD−(1+M) such that we obtain
a series in powers ofD. Because of the multiple Gamma functions in (3.2), most of the poles are degenerate and the general
feature (for an arbitrary largeN) is that the pole in−ℓ is of orderℓ: due to this fact theD–powers in the expansion get in general
a logarithmic correction. The first pole atM1 = −1 is non degenerate and yields

PC

N(0) =
Γ(N2)

Γ(N2 − N) Γ(N)
= ZC

N ·

Including the next order–2 pole (M2 = −2) contribution we find the asymptotic expansion forD→ 0

PC

N(D) ≃ ZC

N + XC

N · D logD + X̃C

N · D

with


XC

N =
Γ(N2)

Γ(N2 − 2N) Γ(N) Γ(N − 1)

X̃C

N = XC

N

(
N + Nψ(N2 − 2N) − 4− 2ψ(1)− (N − 2)ψ(N − 2)

) · (A1)

Hereψ(x) is the Digamma function [24], or polygamma function of order 0, with

ψ(1) = −γ, ψ(n) = −γ +
n−1∑

k=1

1
k
, for n > 1 . (A2)

Note that the Euler constantγ cancels everywhere. By adding the next order–3 pole (M3 = −3) contribution one gets in

general the terms in (4.7) corresponding to theVC

N , Ṽ
C

N and˜̃VC

N coefficients, although the latter are in general rather complicated,
involving polygamma function of order higher than 0. This isnot the case whenN = 3, for which a cancelation makesM3 = −3
a pole of order 2, and the coefficients read :

VC

3 = 0 , ṼC

3 = 6 · 7! = 30 240 ,
˜̃VC

3 = 9 · 7! = 45 360 ·
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3. Left asymptote of PR

N
(D) for real random pure states

We will apply the same reasoning of the previous case, just now differing for the fact that, whenβ = 1, theℓth pole Mℓ of
the integrand of (4.3) is− ℓ+1

2 ; in general, for arbitrarily largeN, its corresponding order is given by
⌊
ℓ+1
2

⌋
, where⌊x⌋ means the

larger integer not exceedingx. In particular, the firsts two polesM1 = −1 andM2 = − 3
2 are non degenerate and yield [25]

ZR

N =
2N−1 Γ

(N2+N
2

)

Γ
(

N2−N
2

)
Γ (N)

and YR

N = −
√
π

2N−1 Γ
(N2+N

2

)

Γ
(

N2−2N
2

)
Γ
(

N+1
2

)
Γ (N − 1)

·

Including the next two 2–order poles contributions (M3 = −2 andM4 = − 5
2) we determine, forN > 3



XR

N = − 22N−3 Γ
(

N2+N
2

)

Γ

(
N2−3N

2

)
Γ(N) Γ(N−2)

X̃R

N = XR

N

{
N + Nψ

(
N2−3N

2

)
− 8− 3

2 ψ
(

1
2

)
− 2ψ (1) − N−3

2 ψ
(

N−3
2

)
− N−4

2 ψ
(

N−4
2

)} , (A3)

and forN > 4



WR

N = −
√
π

3
22N−3 Γ

(
N2+N

2

)

Γ

(
N2−4N

2

)
Γ( N+1

2 ) Γ(N−1) Γ(N−3)

W̃R

N =WR

N

{
N + Nψ

(
N2−4N

2

)
− 35

3 −
5
2 ψ

(
1
2

)
− 2ψ (1) − N−4

2 ψ
(

N−4
2

)
− N−5

2 ψ
(

N−5
2

)} , (A4)

where we made use once more of theψ–digamma function [26] of (A2). The caseN = 3 constitutes an exception forXR

3 and
WR

3 ’s coefficients, because of the lowering of the order ofM3 andM4 poles; moreover, for the latter pole, the same happens also
for N = 4. All these coefficients need separate calculations and read

X̃R

3 = 12 · 5! , W̃R

3 = 4 · 5! , W̃R

4 = 28 · 8! and XR

3 =WR

3 =WR

4 = 0 ·
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