
ar
X

iv
:0

71
1.

33
45

v2
  [

nl
in

.S
I] 

 2
4 

A
ug

 2
00

9

Random bistochastic matrices

Valerio Cappellini1, Hans-Jürgen Sommers2, Wojciech Bruzda3 and KarolŻyczkowski3,4
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Abstract

Ensembles of random stochastic and bistochastic matrices are investigated. While all columns of a ran-
dom stochastic matrix can be chosen independently, the rowsand columns of a bistochastic matrix have to
be correlated. We evaluate the probability measure inducedinto the Birkhoff polytope of bistochastic ma-
trices by applying the Sinkhorn algorithm to a given ensemble of random stochastic matrices. For matrices
of orderN = 2 we derive explicit formulae for the probability distributions induced by random stochastic
matrices with columns distributed according to the Dirichlet distribution. For arbitraryN we construct an
initial ensemble of stochastic matrices which allows one togenerate random bistochastic matrices according
to a distribution locally flat at the center of the Birkhoff polytope. The value of the probability density at
this point enables us to obtain an estimation of the volume ofthe Birkhoff polytope, consistent with recent
asymptotic results.
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1 Introduction

A stochasticmatrix M is defined as a square matrix of sizeN, consisting of non–negative elements, such that the sum
in each column is equal to unity. Such matrices provide an important tool often applied in various fields of theoretical
physics, since they represent Markov chains. In other words, any stochastic matrix maps the set of probability vectors
into itself. Weak positivity of each element ofM guarantees that the image vectorp′ = Mp does not contain any negative
components, while the probability is preserved due to the normalization of each column ofM.

A stochastic matrixB is calledbistochastic(or doubly stochastic) if additionally each of its rows sums up to unity, so
that the map preserves identity and for this reason it is given the nameunital. Bistochastic matrices are used in the theory
of majorization[1–3] and emerge in several physical problems [4]. For instance they may represent a transfer process at
an oriented graph consisting ofN nodes.
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The setBN of bistochastic matrices of sizeN can be viewed as a convex polyhedron inR
(N−1)2

. Due to the Birkhoff
theorem, any bistochastic matrix can be represented as a convex combination of permutation matrices. This (N − 1)2

dimensional set is often calledBirkhoff polytope. Its volume with respect to the Euclidean measure is known [5–7] for
2 6 N 6 10.

To generate a random stochastic matrix one may take an arbitrary square matrix with non-negative elements and renor-
malize each of its columns. Alternatively, one may generateindependently each column according to a given probability
distribution defined on the probability simplex. A standardchoice is the Dirichlet distribution (14), which depends on
the real parameters > 0 and interpolates between the uniform measure obtained fors = 1 and the statistical measure for
s= 1/2 — see e.g. [8].

Random bistochastic matrices are more difficult to generate, since the constraints imposed for the sumsin each column
and each row imply inevitable correlations between elements of the entire matrix. In order to obtain a bistochastic matrix
one needs to normalize all its rows and columns, and this cannot be performed independently. However, since the both
sets of stochastic and unital matrices are convex, iterating such a procedure, converges [9] and yields a bistochastic matrix.
Note that initializing the scheme of alternating projections with different ensembles of initial conditions leads to various
probability measures on the set.

The aim of this work is to analyze probability measures inside the Birkhoff polytope. In particular we discuss methods
of generating random bistochastic matrices according to the uniform (flat) measure in this set. Note that the brute force
method of generating random points distributed uniformly inside the unit cube of dimension (N − 1)2 and checking if the
bistochasticity conditions are satisfied, is not effective even forN of order of 10, since the volume of the Birkhoff polytope
BN decreases fast with the matrix size.

The paper is organized as follows. In Section 2 we present after Sinkhorn [10] two equivalent algorithms producing a
bistochastic matrix out of any square matrix of non-negative elements. An implicit formula (13) expressing the probability
distribution in the set of bistochastic matrices for arbitrary N is derived in Sec. 3.1, while exact formulas for the case
N = 2 are presented in Section 3.2. Furthermore, we obtain its power series expansion around the centerB⋆N of the
Birkhoff polytope and for eachN we single out a particular initial distribution in the set ofstochastic matrices, such that
the output distribution is flat (at least locally) in the vicinity of B⋆N. Finally, in section 5 we compute the value of the
probability density at this very point and obtain an estimation of the volume of the set of bistochastic matrices, consistent
with recent results of Canfield and McKay [12]. In Appendix A we demonstrate equivalence of two algorithms used to
generate random bistochastic matrices. The key expressionof this paper (36) characterising the probability distribution
for random bistochastic matrices in vicinity of the center of the Birkhoff polytope is derived in Appendix B, while the
third order expansion is worked out in Appendix C.

2 How to generate a bistochastic matrix?

2.1 Algorithm useful for numerical computation

In 1964 Sinkhorn [10] introduced the following iterative algorithm leading to a bistochastic matrix, based on alternating
normalization of rows and columns of a given square matrix with non-negative entries:

Algorithm 1 (rows/columns normalization)

1) take an inputN × N stochastic matrixM such that each row contains at least one positive element,

2) normalize each row-vector ofM by dividing it by the sum of its elements,

3) normalize each column-vector as in the previous point2),

4) stop if the matrixM is bistochastic up to certain accuracy in some norm‖ · ‖, otherwise go to point2) .
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The above algorithm is symbolically visualized in Fig. 1. For an initial pointM one may take an arbitrary matrix with
non-negative entries. To fix the scale we may assume that the sum of all entries is equal toN, soM belongs to interior of
the (N2−1) dimensional simplex∆N2−1. The transformationRof normalization of the rows ofM produces a unital matrix,
for which the sum of all (non-negative) entries in each row isequal to unity. Subsequent normalization of the columns of
R(M) maps this matrix into the set of stochastic matrices. This step can be rewritten asC = TRT, whereT denotes the
transposition of the matrix. Hence the entire map readsΠ ≔ CR= (T ◦ R)2. For instance ifN = 2 in the limit we aim to
get a bistochastic matrix

lim
n→∞
Πn (M) ≕ M∞ =

(
d 1− d

1− d d

)
, for somed ∈ [0, 1]. (1)

�ij ij� ��

Sstochastic : j ij� � ��
�

Sunital : j ij� � ��

Sbistochastic

�

���	

C

� ��	


R��	

R

Figure 1: Sketch of the iteration procedure: a matrixM consisting of non-negative entries is sent by the transformationR
(normalization of rows) into the set of unital matrices, andthen by the transformationC (normalization of columns) into
the set of stochastic matrices. Iterating the mapΠ = (T ◦ R)2 one arrives at a bistochastic matrixM∞.

Since both these sets are convex, our procedure can be considered as a particular example of a general construction
called ’projections on convex sets’. Due to convexity of these sets the procedure of alternating projections convergesto a
point belonging to the intersection of both sets [9]. An analogous method was recently used by Audenaert and Scheel to
generate quantum bistochastic maps [13].

2.2 Algorithm suitable for analytical calculation

To perform analytical calculations of probability distribution inside the Birkhoff polytope we are going to use yet another
algorithm to generate bistochastic matrix, the idea of which is due to Djokovíc [14]. Already in his earlier paper [10]
Sinkhorn demonstrated that for a given positive matrixM there exists exactly one doubly stochastic matrixB such that
B = DLMDR. In order to extend such important result from posistive matrices to non-negative ones, one has to introduce
the hypotesis offully indecomposability[11,14]. For the sake of clarity and reading, we prefer to mention here that the set
of non-fully indecomposable (stochastic) matrices constitute a zero measure set within the set of all stochastic matrices,
instead of going through the details of Sinkhorn’s proof. This means that the converge of our algorithms we will assume to
hold true from now onwards, has to be intendedalmost everywherein the compact set of stochastic matrices, with respect
to the usual Lebesgue measure.

HereDL andDR denote diagonal matrices with positive entries determineduniquely up to a scalar factor.
To set the notation, we will denote withR+ the positive semi-axis (0,∞) whereas, the symbolR+ will be used forR+ ∪
{0} = [0,∞) . Let us now consider the positive coneRN

+ and the set of endomorphisms over it,End
[
R

N
+

]
, representable
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by means ofN × N matricesM consisting of non negative elementsmi j > 0. For any given two vectorsL andR in R
N
+ ,

one can consider a mapΓL,R ∈ End
[
End

[
R

N
+

]]
, given by

End
[
R

N
+

]
∋ M 7−→ M′ = ΓL,R (M) ∈ End

[
R

N
+

]
(2a)

R+ ∋ mi j 7−→ m′i j = ΓL,R

(
mi j

)
≔ Li mi j Rj ∈ R+ . (2b)

Defining the positive diagonal matricesDL
i j ≔ Li δi j , andDR

i j ≔ Ri δi j respectively, one can observe thatΓL,R (M) =

DLM DR. Our purpose is to design an algorithm that takes a genericM ∈ End
[
R

N
+

]
as an input and produces as an output

an appropriate pair of vectorsL,R ∈ RN
+ such thatΓL,R (M) ≕ B is bistochastic.

Thestochasticitycondition implies

∑

i

Bi j = 1 =
∑

i

Li mi j Rj =⇒ Rj > 0 and
1
Rj
=

∑

k

Lk mk j . (3a)

Analogously,unitality implies

∑

j

Bi j = 1 =
∑

j

Li mi j Rj =⇒ Li > 0 and
1
Li
=

∑

j

mi j Rj , (3b)

so thatL,R ∈ (R+)N ⊂ R
N
+ . Both equations (3) can be merged together into a single equation for L ,

1
Li
=

∑

j

mi j
1∑

k Lk mk j
(4)

which can be interpreted as a kind ofequation of the motionfor L, as it corresponds to a stationary solution of the
action–likefunctional

Φ [L] = −
∑

i

ln (Li) +
∑

j

ln


∑

k

Lk mk j

 . (5)

Equations (4–5) imply that ifL is a solution, then for anyλ ∈ R the rescaled vectorλL is as well a solution of (5). Thus
we may fixLN = 1 and try to solve (4) forL1, L2, . . . , LN−1 . Differentiating eq. (5) we get

∂Φ

∂Li
= − 1

Li

1−
∑

j

Si j

 , where Si j ≔ Li mi j
1∑

k

Lk mk j

(6)

is a stochastic matrix. SinceLi , 0, unitality ofS is attained once we impose stationarity to (6). Hence the stationaryL
implies thatS becomes bistochastic. Equation (5) displays convexity ofΦ for very smallLi (i = 1, 2, . . . ,N − 1 , LN = 1).
The functionΦ is convex at the stationary point and starts to become concave for largeLi . Thus there is a unique minimum
of the functionΦ which can be reached by the following iteration procedure:

L(n)
i =

1
∑

j

mi j
1∑

k

L(n−1)
k mk j

, (7)

where we fixLN and iterate the remaining componentsL1, L2, . . . , LN−1 only. We start with settingL(1)
k = 1 , ∀k which

leads to
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Algorithm 2 (convergent sequences of RN vectors)

1) take an inputN × N stochastic matrixM =
{
mi j

}
i j

and define the vectorL(0) = (1, 1, . . . , 1)T ∈ RN,

2) run equation (7) yielding the vectorL(n) out of L(n−1),

3) stop if the matrixS(n)
≔ L(n)

i mi j
1∑

k

L(n)
k mk j

is bistochastic up to a certain accuracy in some norm‖ · ‖,

otherwise go to point2).

The Algorithm (1) is expected to converge faster than the Algorithm (2), so it can be recommended for numerical
implementation. On the other hand Algorithm (2) is useful toevaluate analytically the probability measure induced into
the Birkhoff polytope by a given choice of the input ensemble, and it is used for this purpose in further sections. The
equivalence of these two algorithms is shown in Appendix A.

3 Probability measures in the Birkhoff polytope

Assume that the algorithm is initiated with a random matrixM drawn according to a given distributionW
[{mi j }

]
of

matrices of non negative elementsmi j > 0. We want to know the distribution of the resulting bistochastic matricesBi j

obtained as output of the Algorithm (2). To this end, using eq. (4) and imposing stationarity condition (6), we write the
distribution forB by integrating over delta functions

P
[{Bi j }

]
=

∫ ∞

0
· · ·

∫ ∞

0


N∏

r=1

dLr


∫ ∞

0
· · ·

∫ ∞

0


N∏

p,q=1

dmpq W
[{mpq}

]
 ×

N∏

i, j=1

δ


Bi j − Li mi j

1∑

k

Lk mk j


×

× δ (LN − 1)
N−1∏

u=1

δ


− 1

Lu
+

∑

t

mut
1∑

v

Lv mvt


× J {L1, L2, . . . , LN−1} , (8)

where the Jacobian factor reads

J {L1, L2, . . . , LN−1} ≔ det

[
∂2Φ

∂Li ∂Lℓ

]N−1

i,ℓ=1

=


N−1∏

i=1

1

L2
i

 × det
[
1 − BBT

]
N−1
. (9)

Here and in the following
[
1 − BBT

]
N−1

will indicate the(N − 1) × (N − 1) block matrix
[
δiℓ −

∑N
j=1 Bi j Bℓ j

]N−1

i,ℓ=1
, that

is positive defined, and the symbolP
[{Ai j }

]
will denote the probability densityP of matricesA = {Ai j }. This notation

will also be used for matrices whose elements are functions of elements of another matrix, namelyP
[{ f (Ai j )}

]
. Plugging

eq. (9) into (8) and introducing again the delta functions for variablesRj of (3a) we obtain

P
[{Bi j }

]
=

∫ ∞

0
· · ·

∫ ∞

0


N∏

r=1

dLr


∫ ∞

0
· · ·

∫ ∞

0


N∏

s=1

dRs

 δ (LN − 1)
∫ ∞

0
· · ·

∫ ∞

0


N∏

p,q=1

dmpq W
[{mpq}

]
 ×

N∏

i, j=1

δ
(
Bi j − Li mi j Rj

)
×

×
N−1∏

u=1

δ

−
1
Lu
+

∑

t

mut Rt

 ×
N∏

w=1

δ


Rw −

1∑

h

Lh mhw


×

N−1∏

z=1

1
L2

z
× det

[
1 − BBT

]
N−1
. (10)
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Using the property of the Dirac delta function and making useof the Heaviside step functionθ, we perform integration
over the variables dmpq. Introducing new variablesαi ≔ 1/Li andβi ≔ 1/Ri , so that dLi dRj 7→ L2

i R2
j dαi dβ j , we get

P
[{Bi j }

]
=

∫ ∞

0
· · ·

∫ ∞

0


N∏

r=1

dαr α
N−1
r


∫ ∞

0
· · ·

∫ ∞

0


N∏

s=1

dβs β
N−1
s


N∏

p,q=1

W
[{
αpBpqβq

}]
δ (αN − 1) ×

× det
[
1 − BBT

]
N−1
×

N−1∏

u=1

δ

1−
∑

t

But

 ×
N∏

w=1

δ

1−
∑

h

Bhw

 ×
N∏

a,c=1

θ (Bac) . (11)

The last three factors show thatBi j is bistochastic. The factor det
[
1 − BBT

]
N−1

indicates that the expression is meaningful

only in the case for which the leading eigenvalue 1 ofBBT is non-degenerate.
If the matrixmi j is already stochastic,

W
[{mpq}

]
= V

[{mpq}
] ×

N∏

w=1

δ

1−
∑

h

mhw

 ×
N∏

a,c=1

θ (mac) , (12)

then the integration overβ j can be performed and we arrive at the final expression for the probability distribution inside
the Birkhoff polytope which depends on the initial measureV in the set of stochastic matrices;

P
[{Bi j }

]
=

∫ ∞

0
· · ·

∫ ∞

0


N∏

r=1

dαr α
N−1
r


N∏

t=1

1
(∑

sαsBst
)N

N∏

p,q=1

V

[{
αpBpq

1∑
r αr Brq

}]
δ (αN − 1) ×

× det
[
1 − BBT

]
N−1
×

N−1∏

u=1

δ

1−
∑

t

But

 ×
N∏

w=1

δ

1−
∑

h

Bhw

 ×
N∏

a,c=1

θ (Bac) . (13)

The above implicit formula, valid for any matrix sizeN and an arbitrary initial distributionV, constitutes one of the key
results of this paper. It will be now used to yield explicit expressions for the probability distribution inside the set of
bistochastic matrices for various particular cases of the problem.

3.1 Measure induced by Dirichlet distribution

Let us now assume that the initial stochastic matrices are formed ofN independent columns each distributed according to
the Dirichlet distribution [8,15,17],

Ds(λ1, . . . , λN−1) = αs λ
s−1
1 . . . λs−1

N−1(1− λ1 − · · · − λN−1)s−1 , (14)

wheres> 0 is a free parameter and the normalization constant readsαs = Γ [2s] /Γ [s]2.

Algorithm 3 (Random points in the simplex according to the Dirichlet distribution)

Following [18] we are going to sketch here a useful algorithmfor generating random points in a simplex∆N−1

according to the distribution (14).

1) generate anN–dimensional vectorX, whose elements are independent random numbersxi from the
gamma distributionf (xi ; s, 1) of shape sand rate 1, so that each of them is drawn according to the
probability densityxs−1

i e−xi/Γ (s) ;

2) normalize the vectorX by dividing it by itsℓ1 norm,X 7−→ Y ≔ X/‖X‖1, so that the entries will become
xi 7−→ yi ≔ xi/

∑N
k=1 xk .
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A simplified version, suited for (semi)integers is described in the appendix of [17]. In particular, to get the uniform
distribution in the simplex (s= 1) , it is sufficient to generateN independent complex Gaussian variables (with mean zero
and variance equal to unity) and set the probability vector by

yi = |zi |2/
N∑

i=1

|zi |2. (15)

Hence the initial stochastic matrixM is characterized by the vector consisting ofN Dirichlet parameterss = {s1, . . . , sN},
which determine the distribution of each column.

The probability density can be written as

Vs
[{mi j }

]
≔

∏

j

Dsj

(
m1 j , m2 j , . . . , mN−1 j

)
= N

∏

i j

(
mi j

)sj−1
, (16)

where the normalisation factor reads

N =
N∏

j=1

Γ
(
Nsj

)

Γ
(
sj

)N
. (17)

Thus one can obtain the probability distribution of the product

Vs
[{αpBpqβq}

]
= N

∏

pq

(
αpBpqβq

)sq−1
= N

∏

pq

Bpq
sq−1 ×

∏

x

αx

∑
y sy−N ×

∏

z

βz
N(sz−1) (18)

and making use of eq. (13) one eventually arrives at a compactexpression for the probability distribution in the set of
bistochastic matrices

Ps
[{Bi j }

]
= N

∫ ∞

0
· · ·

∫ ∞

0


N∏

r=1

dαr α
∑

y sy−1
r


N∏

t=1

1
(∑

j α j B jt

)Nst
δ (αN − 1) ×

N∏

p,q=1

Bpq
sq−1 ×

× ×
N−1∏

u=1

δ

1−
∑

t

But

 ×
N∏

w=1

δ

1−
∑

h

Bhw

 ×
N∏

a,c=1

θ (Bac) . (19)

Although the results were obtained under the assumption that the initially random stochastic matrices are characterized
by the Dirichlet distributions (16,17), one may also deriveanalogous results for other initial distributions. As interesting
examples, one can consider the one–parameter familyVs , λ

[{mi j }
]
, in which eachj–column ofM is drawn according to a

different gamma distributionf
(
mi j ; sj , λ

)
of shape sj andrateλ , that is

Vs , λ
[{mi j }

]
=

N∏

j=1

λNsj

Γ
(
sj

)N

∏

i j

e−λmi j
(
mi j

)sj−1
(20)

or, allowing the exponentss to vary through the whole matrix, we can start with

V{si j } , λ
[{mi j }

]
=

∏

i j

[
e−λmi j

(
mi j

)si j−1
]
λsi j

Γ
(
si j

) . (21)

and recover (19) , independently on the rateλ labeling the input.
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3.2 Probability measures for N = 2

In the simplest case, forN = 2 andBi j =

(
d 1− d

1− d d

)
, formula (19) describes the probability measurePs1,s2(d) induced

into the set of bistochastic matrices by the ensemble of stochastic matrices with two independent columns distributed
according to the Dirichlet measure with parameterss1 ands2; after integration onα2, renamingα1 into α, and expressing
det

[
1 − BBT

]
N−1
= 2d (1− d), we arrive at

Ps1,s2(d) = N
∣∣∣∣
N=2

∫ ∞

0
dα αs1+s2−1

[
1

αd + 1− d

] 2s1
[

1
α (1− d) + d

] 2s2

2 [d (1− d)]s1+s2−1 θ (d) θ (1− d) . (22)

This expression can be explicitly evaluated for exemplary pairs of the Dirichlet parameterss1 ands2,

Pr1,1 (r) =

(
1− 4r2

) [(
1+ 4r2

)
ln

(
1+2r
1−2r

)
− 4r

]

16r3
, (23)

Pr3/2,3/2 (r) =

(
1− 4r2

)2 [(
3+ 8r2 + 48r4

)
ln

(
1+2r
1−2r

)
− 12r − 48r3

]

16π2r5
, (24)

Pr1/2,1/2 (r) =
2 ln

(
1+2r
1−2r

)

π2r
, (25)

Pr1/2,1 (r) = Pr1,1/2 (r) = 1 , (26)

wherer = d− 1
2. These distributions are plotted in Fig. 2 and compared withthe numerical results.

There is another important distribution that we would like to consider. We started our analysis by considering a stochas-
tic matrix as an input state of the renormalization algorithm. However, as an initial point one can also take a generic
matrix K whose four entries{k11, k12, k21, k22} are just uniformly distributed on some interval. After the first application
of the half–step mapT ◦ R, (see Fig. 1) as

K =

(
k11 k12

k21 k22

)
T ◦ R−−−−−−−−−−→



k11

k11 + k12

k21

k21 + k22

k12

k11 + k12

k22

k21 + k22


=

(
a 1− b

1− a b

)
, (27)

matrix K becomes stochastic, so that this problem can be reduced to the framework developed so far.
The joint probability distribution ofN independent random numbersy′i , drawn according to the uniform distribution in

one interval ofR+, and then rescaled as

y′i → yi =
y′i∑N
i=1 y′i

, (28)

readsP(y1....yN) = δ(1−∑
i yi)/

{
N

[
max(yi)

]}N [17]. In the simplest case,N = 2, it givesp̃(y) = 1/2y2 for y ∈ (1/2, 1],
(wherey ≔ y1 = 1− y2) and symmetrically fory ∈ [0, 1/2]. Using this and assuming independence between the entries
of the matrixK, the distribution for the variablea andb of (27) reads

P̃ (a, b) ≔ p̃(a) × p̃(b) =

(
1

2 max{a, 1− a} max{b, 1− b}

)2

. (29)

Plugging the last expression into the r.h.s. of (22) we obtain (see Fig. 2(e))

P̃r(d) = =
2(1− 2 | r |)

[
1+ 2 ln

(
1+2| r |
1−2| r |

)]

(1+ 2 | r |)3
, (30)

where againr = d − 1/2.
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a±°
²¯

b±°
²¯

Pr1,1 (r)

r

Pr3/2,3/2 (r)

r

c±°
²¯

d±°
²¯

Pr1/2,1/2 (r)

r

Pr1/2,1 (r) = Pr1,1/2 (r)

r

e±°
²¯

P̃r (r)

r

Figure 2: Probability distribution Pr(r) in the set ofN = 2 bistochastic matrices for various initial measures. His-
tograms obtained numerically for a sample of 106 initial matrices by applying Algorithm (1) are compared with analytical
probability distributions (solid lines);(a) semicircle–like (23) for Pr1,1; (b) Gaussian–like (24) for Pr3/2,3/2; (c) convex
distribution (25) for Pr1/2,1/2; (d) flat distribution (26) for Pr1/2,1 and(e) distribution (30).
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3.3 Symmetries and relations with the unistochastic matrices for N = 2

Consider the mapT ◦ R defined in (27) acting on an initially stochastic matrix

(
a 1− b

1− a b

)
. The symmetry of this

map with respect to diagonal linesa = b anda = −b implies that:

• the limit distribution Prsa,sb (r) is an even function ofr,

• Prsa,sb = Prsb,sa, for anysa andsb. The final accumulation pointd ∈ [0, 1] can be achieved from the point(a, b) as
well as from(b, a).

In particular the second point implies thatif Prsa,sb (r) is the output probability density when the(a, b)–distribution is given
by Psa,sb (a, b) andif sa , sb then for any givenλ ∈ [0, 1] the distributionλPsa,sb (a, b) + (1− λ) Psb,sa (a, b) will give the
same output. Using this we can restore the symmetry between(a, b) simply by pickingλ = 1/2.

Psym
[1/2,1] (a, b) ≔

1
2

P1/2,1 (a, b) +
1
2

P1,1/2 (a, b) =
1

2π
√

a (1− a)
+

1

2π
√

b (1− b)
(31)

is a symmetric distribution fora andb which produce, at a long run, the uniform distributionP(d) = 1. Note that the above
formula is not of a product form, so the distribution in both columns are correlated. In fact such a probability distribution
can be interpreted as a classical analogue of the quantum entangled state [8,16].

Random pairs(a, b) distributed according to distribution (31) can be generated by means of the following algorithm,

1) generate the numbera according toD1/2 (a) andb according toD1 (b)

2) flip a coin: on tails do nothing, on heads exchangea with b

For N = 2 there exists an equivalence between the set of bistochastic and unistochastic matrices [20]. The latter set is
defined as the set of 2× 2 matrices whose entries are squared moduli of entries of unitary matrices. The Haar measure on
U(2) induces a natural, uniform measure in the set of unistochastic matrices: ifU is random thenP(|U11|2) = P(|U22|2) = 1
on [0, 1]. Hence initiating Algorithm (1) with stochastic matrices distributed according to eq. (31) we produce the same
measure in the set of bistochastic matrices as it is induced by the Haar measure onU(2) by the transformationBi j = |Ui j |2.

4 In search for the uniform distribution for an arbitrary N

For an arbitraryN we shall compute the probability density at the centerB⋆N of the Birkhoff polytope,

B⋆N =



1
N

1
N . . . 1

N
1
N

1
N . . . 1

N
. . . . . . . . . . . .

1
N

1
N . . . 1

N


. (32)

Let us begin our analysis by expandingPs
[{Bi j }

]
around the centerB⋆N (32) of the Birkhoff polytope. We start from (19)

with N given by equation (17) , so that

Ps
[{Bi j }

]
= P̃s

[{Bi j }
] ×

N−1∏

u=1

δ

1−
∑

t

But

 ×
N∏

w=1

δ

1−
∑

h

Bhw

 ×
N∏

a,c=1

θ (Bac) (33)
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and

P̃s
[{Bi j }

]
= N

∫ ∞

0
· · ·

∫ ∞

0


N∏

r=1

dαr α
∑

y sy−1
r


N∏

w=1

1
(∑

sαsBst
)Nsw

δ (αN − 1) ×

×
N∏

p,q=1

Bpq
sq−1 × det

[
1 − BBT

]
N−1
, (34)

on the manifold
∑

t But =
∑

h Bhw = 1 , Bac > 0 .

4.1 Expansion of probability distribution around the center of the polytope

Expanding̃Ps
[{Bi j }

]
in power ofδBi j with

Bi j =
1
N
+ δBi j ,

∑

i

δBi j =
∑

j

δBi j = 0 . (35)

we obtain, as shown in Appendix B, the following result

P̃s
[{Bi j }

]
= P⋆N


1+

(
N2

2
− 1

)∑

pq

(
δBpq

)2
− σN3

2(σN + 1)

∑

pq

sq

(
δBpq

)2
+

N3

2(σN + 1)

∑

p


∑

q

sq δBpq



2

+ O
(
(δB)3

)

,

(36)

whereσ =
∑N

j=1 sj denotes the sum of the Dirichlet parameters for each column and the factor

P⋆N ≔ Ps
[{ Bi j = 1/N , ∀i j }] = NN2−1 Γ

(∑
m sm

)N

Γ
(
N

∑
m sm

)
N∏

n=1

Γ (Nsn)

Γ (sn)N
, (37)

is equal to the value of the probability distribution at the center of the polytopeBN, which corresponds toδB = 0.
Assume now that there exists a set of Dirichlet exponentssi , such that̃Ps

[{Bpq}
]

is constant on the required mani-
fold (35) . Then the quadratic form inδBpq must be identically zero. ForN = 2 this yields only one equation for two
exponents, 2s1 + 2s2 + 1 = 8s1s2 , which can e.g. be fulfilled bys1 = 1/2 ands2 = 1 (compare with Section 3.3).

For N > 3 , however, this gives more independent equations, in general (N − 1)2, namely the number of independent
variables parameterizing the Birkhoff polytope. BeingN the number of exponents to be determined, if a solution exists,
then it is unique. Actually the solution exists , and corresponds to take allsi equal to each other: let’s calls this collective
exponent. Within this constraint, the last term in (36) drops out, because of equation (35) , and the entire quadratic form
can be zero, provided that we choose (

N2

2
− 1

)
=

σN3

2(σN + 1)
s⋆ . (38)

Now, settingσ = Ns⋆, we arrive atN4s⋆2
=

(
N2s⋆ + 1

) (
N2 − 1

)
, whose unique positive solution is

s⋆ =
1

2N2

(
N2 − 2+

√
N4 − 4

)
= 1− 1

N2
− 1

N4
+ O

(
1

N8

)
. (39)

The distribution generated by the choices = s⋆ will be flat at the center of the polytope but it needs not to be globally
uniform.

It is not possible to find an initial Dirichlet distribution which gives the output distribution uniform in the vicinity of the
center of the Birkhoff polytope up to the third order — see Appendix C.
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4.2 Numerical results for N = 3

Properties of the measures induced in the space of bistochastic matrices by applying the iterative Algorithm (1) were
analyzed forN = 3 . As a starting point we took a random stochastic matrixM generated according to the Dirichlet
distribution (14) with the same parameter for all three columns,s1 = s2 = s3 = s. The resulting bistochastic matrix,
B = limn→∞ Π

n(M), can be parameterized by

B =



B11 B12 ∗
B21 B22 ∗
∗ ∗ ∗

 ,

where the∗-marked entries depend on the entriesB jk , with j, k ∈ {1, 2} . A sample of initial points consisted of 108

stochastic matrices generated according to the Dirichlet distribution with the optimal values⋆ = 1
18(7 +

√
77) which

follows from eq. (39)). It produces an ensemble covering theentire 4D Birkhoff polytope formed by the convex hull of
the six different permutation matrices of order three.

Figure 3: Probability density at a subset of the Birkhoff polytope for N = 3 , the “fat” hexagon characterized by[
B11 , B12 ,

1
3 ± 0.01, 1

3 ± 0.01
]
, for initially stochastic matrices generated with the Dirichlet parameters⋆ given by

eq. (39) .

To visualize numerical results we selected the cases for which B21 = B22 = 1/3 ± 0.01. Such a two dimensional
cross-section of the Birkhoff polytope has a shape of a hexagon at the plane (B11, B12), centered at the center of the body,
B⋆3 =

[
1
3 ,

1
3 ,

1
3 ; . . . , 1

3

]
. Figure 3 shows the probability distribution along this section, obtained from these 4× 106

realizations of the algorithm which produce bistochastic matrices inside a layer of width 0.02 along the section.
As expected for the critical values⋆ of the Dirichlet parameter, the resulting distribution is flat in the vicinity of

the center of the polytope. However, this distribution is not globally uniform and shows a slight enhancement of the
probability (darker color) along the boundary of the polytope.

This feature is further visible in Fig 4 , which shows a comparison of the results obtained for two different initial
measures on a one–dimensional cross section of Fig. 3 . Although the measure obtained for the critical parameters⋆
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is indeed uniform in the vicinity of the center, namely around B11 = 1/3 , the measure induced by random stochastic
matrices with the flat measure,s = 1, displays similar properties. Since for larger matrix size N the value of the optimal
parameters⋆ tends to unity as 1− 1/N2, it seems reasonable to generate random bistochastic matrices of a larger size
initiating the iterative Algorithm (1) with random stochastic matrices distributed according to the uniform measure,(i.e.
each column is generated independently according to the Dirichlet distribution withs= 1).

0.6

0.2

0.4

0.8

1.0

1.2

1.4

1.6

1.8

2.0

+ + +

P

0 1  3 2  3

+

+

+

+

+ + + + ++ +

+ +

+

+

+

+

+

B
11

Figure 4: Probability density along the lineB12 =
1
3 of Fig. 3 obtained from 5× 103 events for two initial measures:(a)

the critical parameters= s⋆ (marked by+ and decorated by a solid line to guide the eye) and(b) the flat measures = 1
(marked bŷ ) .

5 Estimation of the volume of the Birkhoff polytope

The setBN of bistochastic matrices of sizeN forms a convex polytope inR(N−1)2
. Its volume with respect to the Euclidean

measure is known forN = 2 , ..., 10 [5, 6]. The concrete numbers depend on the normalization chosen. For instance, in
the simplest case the setB2 forms an intervald ∈ [0, 1], any point of which corresponds to the bistochastic matrix,
B(d) =

(
d 1−d

1−d d

)
. If the range of the single, independent element is concerned, therelative volumeof the polytope reads

ν (B2) = 1. On the other hand, if we regard this set as an interval inR
4, its length is equal to thevolumeof the Birkhoff

polytope, Vol(B2) =
√

4 = 2. In general, both definitions of the volumes are related by [12]

Vol (BN) = NN−1 ν (BN) . (40)

In Section 3 we derived formula (37) , giving the probabilitydistributionP⋆N at the centerB⋆N of the Birkhoff polytope
induced by the Dirichlet measure on the space of input stochastic matrices. If all Dirichlet parameters are equal tosi = s
for i = 1, . . .N then formula (37) simplifies to

P⋆N (s) =
Γ (Ns)2N

Γ
(
N2s

)
Γ
(
s
)N2

NN2−1 , (41)
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Making use of the Stirling expansion

Γ (x) ≈
√

2π xx−1/2 e−x

[
1+

1
12x
+ O

(
1
x2

)]
, (42)

and plugging it into eq. (41) we obtain an approximation valid for a large matrix sizeN,

P⋆N ≈ NN2−N (2π)N−1/2 ssN2−N+1/2 [Γ(s)]−N2
exp

{
−sN2 +

1
6s
+ O

(
1
N

)}
. (43)

For s= s⋆ = 1− 1/N2 + O(1/N4) this distribution is flat in the vicinity of the centerB⋆N – compare eq. (39) . Assuming
it is close to uniform in the entire Birkhoff polytope, we obtain an approximation of its relative volume, ν (BN) ≈ 1/P⋆N.
Substitutings⋆ into (43) we arrive at

ν(BN) ≈ NN−N2
(2π)1/2−N exp

{
N2 +C + O

(
1
N

)}
. (44)

Making use of the expansionΓ(1 + x) = 1 − γx + O(x2) we can express the value ofC by the Euler gamma constant
γ ≈ 0. 577 215 665. . . The result isC = γ − 1/6 ≈ 0. 410 548 998. . ..

Interestingly, the above approximation is identical, up toa value of this constant, with the recent result of Canfield and
Mackay [12]. Making use of the relation (40) we see that theirasymptotic formula for the volume vol(BN) of the Birkhoff
polytope is consistent with eq. (44) forC = 1/3 . This fact provides a strong argument that the distribution generated
by the Dirichlet measure withs = s⋆ , is close (but not equal) to the uniform distribution insidethe Birkhoff polytope.
Furthermore, the initially flat distribution of the stochastic matrices, obtained fors = 1, leads to yet another reasonable
approximation for the relative volume ofBN , equivalent to (44) withC = −1/6 .

6 Concluding Remarks

In this paper we introduced several ensembles of random stochastic matrices. Each of them can be considered as an
ensemble of initial points used as input data for the Sinkhorn Algorithm, which generates bistochastic matrices. Thus
any probability measureW[M] in the set of stochastic matrices induces a certain probability measureP[B] in the set of
bistochastic matrices.

Let us emphasize that the iterative procedure of Sinkhorn [10] applied in this work, covers the entire set of bistochastic
matrices. This is not the case for the ensemble ofunistochastic matrices, which are obtained from a unitary matrix by

squaring moduli of its elements. Due to unitarity ofU the matrixBi j =
∣∣∣Ui j

∣∣∣2 is bistochastic, and the Haar measure on
U(N) induces a certain measure inside the Birkhoff polytope [20]. However, forN > 3, this measure does not cover the
entire Birkhoff polytope since in this case there exist bistochastic matrices which are not unistochastic [1,20].

In the general case of arbitraryN we derive an integral expression representing the probability distribution inside the
(N − 1)2–dimensional Birkhoff polytopeBN of bistochastic matrices. In the simplest case ofN = 2 it is straightforward
to obtain explicit formulae for the probability distribution in the set of bistochastic matrices induced by the ensemble
of stochastic matrices, in which both columns are independent. Furthermore, we find that to generate the uniform (flat)
measure,P[B] = const , one needs to start with random stochastic matrices ofsize 2 distributed according to eq. (31) , for
which both columns are correlated.

For an arbitraryN the integral form for the probability distribution can be explicitly worked out for a particular point
— the flat, van der Waerden matrix (32) located at the center ofthe Birkhoff polytope. In this case we obtain an explicit
formula for the probability distribution at this point as a function of the parameters{si | 1 6 i 6 N} defining the Dirichlet
distribution for each column of the initially random stochastic matrix. Expanding the probability density in the vicinity of
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B⋆N we find the condition for the optimal parameterssi = s⋆ , for which the densityP[B] is flat in this region. Discrepancy
of the measure constructed in this way from the uniform distribution is numerically analyzed in the caseN = 3.

This measure is symmetric with respect to permutations of rows and columns of the matrix and for largeN it tends to
the uniform measure in the set of bistochastic matrices. ForlargeN the optimal Dirichlet parameters⋆ tends to unity
as 1− 1/N2. Thus we may suggest a simplified procedure of taking the initial stochastic matrices according to the flat
measure, (s = 1). Each column of such a random stochastic matrix is drawn independently and it consists ofN numbers
distributed uniformly in the simplex∆N−1. With an initial matrix constructed in this way we are going to run Algorithm
(1). Such a procedure is shown to work fine already forN = 3. We tend to believe that this scheme of generating random
bistochastic matrices could be useful for several applications in mathematics, statistics and physics.

Assuming that a given probability measure in a compact set isflat, the value of the probability densityP at an arbitrary
point x gives us an information about the Euclidean volume of this set, V = 1/P(x) . We were pleased to find that the
optimal algorithm for generating random bistochastic matrices is characterized by an inverse probability 1/Ps[B⋆N] at the
centerB⋆N of the polytope which displays the same dependence on the dimensionN as the volume of the Birkhoff polytope,
Vol(BN), derived in [12].

Although in this paper we analyzed dynamics in the classicalprobability simplex, the main idea of the algorithm may
be generalized for the quantum dynamics. In such a case a stochastic matrix corresponds to a stochastic map (so called
quantum operation), which sends the set of quantum states (Hermitean, positive matrices of trace one) into itself [8].
A quantum stochastic map is calledbistochastic, if it preserves the maximally mixed state,1/N. To generate random
bistochastic maps one can use an analogous technique of alternating projection onto the subspaces in which a given map
or its dual is stochastic. Such an algorithm suitable for thequantum problem, was proposed independently by Audenaert
and Scheel [13]. First results concerning various measuresinduced into the set of quantum stochastic maps are presented
in [25].
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Appendix A

In this appendix we demonstrate that the Algorithm (2) suitable for analytical calculations is equivalent with the Sinkhorn
Algorithm (1).

To apply the former Algorithm (2) one takes some initial matrix M ∈ End
[
R

N
+

]
and makes it bistochastic by means

of left– and right–multiplication by two matricesDL , andDR . The latter are limits of convergent sequences of diagonal
matricesDL = limn DL

n andDR = limn DR
n and the finallyB = DLMDR .

In a similar way, Algorithm (1) performs the same task of transforming the initially stochastic matrixM ∈ End
[
R

N
+

]
into

a bistochastic matrixB by alternating rows– and columns–normalization (R andC, for short), which in turn is the same
of left– , respectively right–multiplication by diagonal matrices. Once a matrixM = {mpq > 0} is given to renormalize the
pth row means to divide each of its elements by the factor

∑
q mpq ,

mpq 7−→ m′pq = L̂p mpq , with
1

L̂p

=
∑

q

mpq . (45a)
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Analogously, to renormalize theqth column means to divide each of its elements by the factor
∑

p mpq ,

mpq 7−→ m′pq = mpq R̂q , with
1

R̂q
=

∑

p

mpq . (45b)

Let us now run the Algorithm 1, taking as an input a genericM(0) = {m(0)
pq > 0} , and set1CRCRCR. . . to be the

row–column renormalization sequence, where the first symbol 1 denotes the dummy operation

1

L̂(0)
p

= 1 � m(0)
pq 7−→ m(0)

pq = L̂(0)
p m(0)

pq . (46a)

Now we start with equations (45b)

1

R̂(0)
q

=
∑

p

m(0)
pq =

∑

p

L̂(0)
p m(0)

pq � m(0)
pq 7−→ m(1)

pq = m(0)
pq R̂(0)

q = L̂(0)
p m(0)

pq R̂(0)
q , (46b)

followed by (45a)

1

L̂(1)
p

=
∑

q

m(1)
pq =

∑

q

L̂(0)
p m(0)

pq R̂(0)
q � m(1)

pq 7−→ m(1)
pq = L̂(1)

p m(1)
pq . (46c)

The next two steps are

1

R̂(1)
q

=
∑

p

m(1)
pq =

∑

p

L̂(1)
p m(1)

pq � m(1)
pq 7−→ m(2)

pq = m(1)
pq R̂(1)

q = L̂(1)
p m(1)

pq R̂(1)
q = L̂(1)

p L̂(0)
p m(0)

pq R̂(0)
q R̂(1)

q (46d)

and

1

L̂(2)
p

=
∑

q

m(2)
pq =

∑

q

L̂(1)
p L̂(0)

p m(0)
pq R̂(0)

q R̂(1)
q � · · · (46e)

so that the iteration procedure can be written as


1

L̂(n)
p L̂(n−1)

p · · · L̂(1)
p L̂(0)

p

=
∑

q

m(0)
pq R̂(0)

p R̂(1)
q · · · R̂(n−1)

q

1

R̂(n)
p R̂(n−1)

q · · · R̂(1)
q R̂(0)

q

=
∑

p

L̂(n)
p L̂(n−1)

p · · · L̂(1)
p L̂(0)

p m(0)
pq .

(47)

The latter form can be rewritten more compactly,

1

Ľ(n)
p

=
∑

q

m(0)
pq

1∑

s

Ľ(n−1)
s m(0)

sq

, (48)

where we introduced new variables

Ľ(n)
s ≔

n∏

ℓ=1

L̂(ℓ)
s and Ř(n)

s ≔

n∏

ℓ=1

R̂(ℓ)
s . (49)

Equation (47) is formally equivalent to (7), the only difference being in the number of component ofL vectors, respectively
Ľ, that are processed: in Algorithm (1) one iterates allĽ(n)

s , whereas in Algorithm (2) the elementL(n)
N is fixed to unity in

each step. We know that the solution of the limit equation forL(n) is not unique. But the only non-uniqueness is due to
multiplication by a fixed factorη > 0.
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Appendix B

In this appendix we present the basic steps allowing one to derive the central result of this work - the second order
expansion (36) around the center of the Birkhoff polytope of the probability distribution generated by Dirichlet random
stochastic matrices.

SinceP̃s
[{Bi j }

]
> 0 , it is convenient to expand lñPs

[{Bi j }
]
. We denote the sum of the Dirichlet parameters for each

column byσ =
∑N

j=1 sj and start with the following integral

Qs
[{Bi j }

]
≔

∫ ∞

0
· · ·

∫ ∞

0


N∏

r=1

dαr α
σ−1
r


N∏

w=1

1
[∑

hαh
1
N +

∑
hαh δBhw

]Nsw
δ (αN − 1) =

=

∫ ∞

0
· · ·

∫ ∞

0


N∏

r=1

dαr α
σ−1
r


1

(∑
hαh

1
N

)Nσ
exp

−
N∑

w=1

Nsw ln

1+
∑

hαh δBhw∑
hαh

1
N



 δ (αN − 1) . (50)

Expanding the function ln(1+ x) = x− x2

2 + O
(
x3

)
,

exp

−
N∑

w=1

Nsw ln

1+
∑

hαh δBhw∑
hαh

1
N



 = exp

−
N∑

w=1

Nsw


∑

hαh δBhw∑
hαh

1
N

− 1
2


∑

hαh δBhw∑
hαh

1
N


2

+ O
(
(δB)3

)


 , (51)

and then e−x ≈ 1− x+ x2/2 we get

Qs
[{Bi j }

]
= N Nσ

∫ ∞

0
· · ·

∫ ∞

0


N∏

r=1

dαr α
σ−1
r


δ (αN − 1)
(∑

hαh
)Nσ

{
1− N2

∑
w sw

∑
hαh δBhw∑

hαh
+

+
N3

2

∑

w

sw

(∑
hαh δBhw∑

hαh

)2

+
N4

2

(∑
w sw

∑
hαh δBhw∑

hαh

)2

+ O
(
(δB)3

) . (52)

Thus we have to integrate the following expression for an arbitrary vector of parametersϑw > 0

I ≔
∫ ∞

0
· · ·

∫ ∞

0


N∏

r=1

dαr α
σ−1
r


δ (αN − 1)
(∑

hαh
)Nσ

N∏

w=1

(
αw∑
hαh

)ϑw

=

=
1

Γ (σN +m)

∫ ∞

0
· · ·

∫ ∞

0


N∏

r=1

dαr α
σ−1
r

 αϑ1
1 α

ϑ2
2 · · ·α

ϑN−1

N−1 δ (αN − 1)
∫ ∞

0
dt e−t

∑
h αh t Nσ+m−1 , (53)

Herem≔ ϑ1 + ϑ2 + · · · + ϑN−1 + ϑN , so the integral reads

I =
Γ (σ + ϑ1) Γ (σ + ϑ2) . . .Γ (σ + ϑN−1) Γ (σ + ϑN)

Γ (σN +m)
=
Γ (σ)N

Γ (σN)

〈 N∏

w=1

(
αw∑
sαs

)ϑw
〉
, (54)

with
〈 N∏

w=1

(
αw∑
hαh

)ϑw
〉
≔

Γ (σN)
Γ
(
σN +

∑
i ϑi

)
N∏

j=1

Γ
(
σ + ϑ j

)

Γ (σ)
· (55)
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This expression, completely symmetric in all variablesα1 , α2 . . . αN−1 , αN allows us to calculate the expansion of the
integral (52) :

Qs
[{Bi j }

]
= N Nσ Γ (σ)N

Γ (σN)

{
1− N2

〈∑
w sw

∑
hαh δBhw∑

hαh

〉
+

+
N3

2

∑

w

sw

〈(∑
hαh δBhw∑

hαh

)2〉
+

N4

2

〈(∑
w sw

∑
hαh δBhw∑

hαh

)2〉
+ O

(
(δB)3

) . (56)

Therefore we need


〈
αu∑
hαh

〉
=
Γ (σ + 1)
Γ (σ)

· Γ (σN)
Γ (σN + 1)

=
σ

σN
=

1
N

〈
α2

u(∑
hαh

)2

〉
=
Γ (σ + 2)
Γ (σ)

· Γ (σN)
Γ (σN + 2)

=
σ (σ + 1)
σN (σN + 1)

=
σ + 1

N (σN + 1)
〈
αuαv(∑

hαh
)2

〉
=
Γ (σ + 1)
Γ (σ)

Γ (σ + 1)
Γ (σ)

· Γ (σN)
Γ (σN + 2)

=
σ · σ

σN (σN + 1)
=

σ

N (σN + 1)

· (57)

Thus the second term in (56) is

〈∑
w sw

∑
hαh δBhw∑
i αi

〉
=

1
N

∑

hw

δBhw sw = 0 , because of (35)· (58)

For the third term we have

J ≔
∑

w

sw

〈(∑
hαh δBhw∑

i αi

)2〉
=

∑

w

sw

∑

h

∑

h′,h

〈
αh αh′(∑

hαh
)2

〉
δBhw δBh′w +

∑

w

sw

∑

h

〈
α2

h(∑
hαh

)2

〉
(δBhw)2

=
∑

w

σ sw

N (σN + 1)

∑

h

δBhw

∑

h′,h

δBh′w +
∑

w

(σ + 1) sw

N (σN + 1)

∑

h

(δBhw)2

and using from (35) the relation
∑

h′,h δBh′w = −δBhw we get

J =
∑

w

sw

∑

h

(δBhw)2

(
(σ + 1)

N (σN + 1)
− σ

N (σN + 1)

)
=

1
N (σN + 1)

∑

w

sw

∑

h

(δBhw)2 · (59)

For the fourth term we obtain

〈(∑
hαh

∑
w sw δBhw∑
hαh

)2〉
=

1
N (σN + 1)

∑

h


∑

w

sw δBhw


2

· (60)

Finally, expression (56) yields:

Qs
[{Bi j }

]
= N Nσ Γ (σ)N

Γ (σN)

1+
N2

2(σN + 1)

∑

hw

sw (δBhw)2 +
N3

2(σN + 1)

∑

h


∑

w

sw δBhw


2

+ O
(
(δB)3

)
 · (61)
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In principle we are able to calculate all higher terms. Thereare two other terms to be expanded:
∏N

p,q=1 Bpq
sq−1 and

det
[
1 − BBT

]
N−1

. For the latter we have

det
[
1 − BBT

]
N−1
= det

δik −
N∑

j=1

(
1
N
+ δBi j

) (
1
N
+ δBk j

)
N−1

= exp


ln det

Dik −
N∑

j=1

δBi j δBk j


N−1


· (62)

In the last line we made use of equation (35) and we introducedthe(N − 1)×(N − 1) circulant [24] matrixDik ≔ δik−1/N .
As it can be verified by direct matrix multiplication, the inverse ofD readsD−1

ik = δik+1. Hence, factorizing the determinant
of the product in the product of determinants, it follows from (62)

det
[
1 − BBT

]
N−1
= det

[
D
]
N−1
× det

δiℓ −
N−1∑

j=1

N∑

k=1

(
δi j + 1

)
δB jk δBℓk


N−1

· (63)

Observe that the indexj labels the(N − 1) columns of the matrix
[
D−1

]
N−1

, whereask runs from 1 toN , since we are

going to consider
[
(δB) (δB)T

]
N−1

and not
[
(δB)

]
N−1

[
(δB)T

]
N−1

. Using the property of circulant matrices [24], we can

determine the spectrum ofD , consisting of a simple eigenvalue 1/N and another one equal to 1 , of multiplicity(N − 2).
Thus det

[
D
]
N−1
= 1/N and eq. (35) and (63) yield

det
[
1 − BBT

]
N−1
=

1
N
× det

δiℓ −
N∑

k=1

δBik δBℓk +
N∑

k=1

δBNk δBℓk


N−1

· (64)

From the identity det
[
exp(A)

]
= exp [Tr(A)] , with the substitutionA← log(1 + X) we get

det(1 − X) = exp
{
Tr

[
log(1 − X)

]}
= exp

{
Tr

[
−X + O

(
X2

)]}

= exp
{
−Tr (X) + O

[
Tr

(
X2

)]}
= 1− Tr (X) +

[Tr (X)]2

2
+ O

[
Tr

(
X2

)]

so that, choosing forX the(δB)’s contributions in equation (64) , we get Tr(X) =
∑N
ℓ,k=1 δBℓk δBℓk and therefore

det
[
1 − BBT

]
N−1
=

1
N

1−
∑

ℓk

(δBℓk)2 + O
(
(δB)4

) . (65)

Finally we use the expansion

N∏

p,q=1

Bpq
sq−1 = exp



N∑

p,q=1

(
sq − 1

)
ln

(
1
N
+ δBpq

)
=

1
NN(σ−N)

×


1+

N2

2

N∑

p,q=1

(
δBpq

)2 − N2

2

N∑

p,q=1

sq

(
δBpq

)2
+ O

(
(N δB)3

)

.

(66)

Now, substituting (61) and (65–66) into (34) , we obtain the final formula for the resulting probability distribution around
the center of the Birkhoff polytopeBN given by ((36)).

Appendix C

In this appendix we provide the third order expansion of the probability distributionPs(B) at B = B⋆. The result ob-
tained implies that it is not possible to find an ensemble of stochastic matrices characterised by the Dirichlet distribution,
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which induces a distribution flat up to the third order at the center of the Birkhoff polytope. Furthermore, we provide an
estimation, that is how the asymmetry of the optimal distribution aroundB⋆ changes withN.

For generals the output distribution behaves likẽPs
[{Bi j }

] ∝ exp
(
λ
∑

pq

(
δBpq

)2
)

at the center, with

λ =
N2

2
− 1− N4 s2

2
(
N2 s+ 1

) · (67)

From now on, symbols likẽPs , Ps , Vs , Ws denote the probability densities obtained from the input described by the
string
s = { s1 = s, s2 = s, . . . , sN = s} consisting ofN Dirichlet exponents equal. Sincedλds < 0 , the distribution is Gaussian for
s> s⋆ .

In order to study the deviations from the Gaussian distribution, we now study the third order contribution tõPs
[{Bi j }

]
of

eq. (34) , in the casesi = s. Under the latter hypothesis, many terms of the kind
∑

q sq δBpq vanish for (35) so such terms
will be omitted.

The distribution (34) can be factorized into a product of three factors:

• ∏N
p,q=1 Bpq

s−1 gives a contribution

1
NN(σ−N)

×


N3

3
(s− 1)

N∑

p,q=1

(
δBpq

)3
+ O

(
(N δB)4

)
 ; (68)

• det
[
1 − BBT

]
N−1

gives no 3rd order contribution (just the overall factor 1/N already present in (65)) ;

• the integralQs
[{Bi j }

]
of (50) gives

∆3Qs
[{Bi j }

]
= N Nσ

∫ ∞

0
· · ·

∫ ∞

0


N∏

r=1

dαr α
σ−1
r


δ (αN − 1)
(∑

sαs
)Nσ


−1

3
Ns

∑

j

(
N

∑
i αi δBi j∑
k αk

)3

+ O
(
(δB)4

)


= N Nσ Γ (σ)N

Γ (σN)


−N4s

3

∑

j

〈 (∑
i αi δBi j∑

k αk

)3〉
+ O

(
(δB)4

)

, (69)

where we made use of the symbol〈·〉 introduced through eqs. (53–55) .

Using the same reasoning as in Appendix B, including now the new contributions (68–69), we arrive at the 3rd order
contribution forP̃s

[{Bi j }
]
,

∆3P̃s
[{Bi j }

]
= P⋆N


N3

3
(s− 1)

N∑

p,q=1

(
δBpq

)3 − N4s
3

∑

j

〈 (∑
i αi δBi j∑

k αk

)3〉
. (70)

The last term reads

〈 (∑
i αi δBi j∑

k αk

)3〉
==

〈
α1α2α3(∑

k αk
)3

〉 ∑

µ,ν , ν,τ

τ,µ

δBµ j δBν j δBτ j + 3

〈
α2

1α2
(∑

k αk
)3

〉∑

µ,τ

(
δBµ j

)2
δBτ j +

〈
α3

1(∑
k αk

)3

〉∑

µ

(
δBµ j

)3
.

(71)
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It follows from (35) , that
∑

τ

δBτ j = 0 =
∑

τ,µ

δBτ j + δBµ j , so
∑
τ,µ δBτ j = −δBµ j Multiplying this equality by

(
δBµ j

)2
and

summing overµ one gets

∑

µ,τ

(
δBµ j

)2
δBτ j = −

∑

µ

(
δBµ j

)3
. (72a)

Similarly


∑

µ

δBµ j



3

= 0 =
∑

µ , ν , τ

δBµ j δBν j δBτ j =
∑

µ,ν , ν,τ
τ,µ

δBµ j δBν j δBτ j + 3
∑

µ,τ

(
δBµ j

)2
δBτ j +

∑

µ

(
δBµ j

)3

and using (72a) we arrive at

∑

µ,ν , ν,τ

τ,µ

δBµ j δBν j δBτ j = 2
∑

µ

(
δBµ j

)3
. (72b)

Substituting eqs. (72) into (71) one obtains

〈 (∑
i αi δBi j∑

k αk

)3〉
=


〈

α3
1(∑

k αk
)3

〉
− 3

〈
α2

1α2
(∑

k αk
)3

〉
+ 2

〈
α1 α2α3
(∑

k αk
)3

〉 
∑

µ

(
δBµ j

)3
.

Now we use (55)

〈 (∑
i αi δBi j∑

k αk

)3〉
=


Γ (σ + 3)

Γ (σ)
− 3
Γ (σ + 2)Γ (σ + 1)

[Γ (σ)]2
+ 2

[
Γ (σ + 1)

Γ (σ)

]3

Γ (Nσ)
Γ (Nσ + 3)

∑

µ

(
δBµ j

)3

=
2

N (Nσ + 1) (Nσ + 2)

∑

µ

(
δBµ j

)3
. (73)

Thus, from (70) , the third order contribution tõPs
[{Bi j }

]
is

∆3P̃s
[{Bi j }

]
= P⋆N

{
(s− 1) N3

3
− 2 N3s

3(Nσ + 1) (Nσ + 2)

}∑

pq

(
δBpq

)3
(74)

and, near the centerB⋆N , P̃s
[{Bi j }

]
has the following structure:

P̃s
[{Bi j }

]
= P⋆N exp

−c2

∑

pq

(
δBpq

)2 − c3

∑

pq

(
δBpq

)3
+ O

[
(δB)4

]
 . (75)

Assuming thatsi = s (soσ = Ns) we may then find from (36) the value of the constantc2,

c2 = 1− N2

2
+

σ2 N2

2(σN + 1)
. (76a)
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Similarly eq. (74) implies that the third constant reads,

c3 =
N2

3

(
N − σ + 2σ

(Nσ + 1) (Nσ + 2)

)
. (76b)

Adjusting s = σ/N appropriately to the sizeN of the matrix one may find such a value of the Dirichlet parameter s that
c2 or c3 are equal to zero. However, if we setc2 to zero, the parameterc3 is non zero, so the third order terms remain
in eq. (75). Thus we have shown that it is not possible to find aninitial Dirichlet distribution which gives the output
distribution uniform in the vicinity of the center of the Birkhoff polytope up to the third order. A power expansion ofc3

gives

c3 =
N
3
+

1
N
− 4

3

(
1
N

)3

+ O

(

1
N

)5 , (77)

Thus the scale of the asymmetry isδB ∝ N−1/3 so it cannot be seen for|δB| . N−1/3 that means if
∣∣∣δB/B⋆N

∣∣∣ . N2/3 .
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