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es 441. Introdu
tionUnder the term of Quantum Chaos goes a ri
h phenomenology of behaviours [1�3℄ properto quantum systems whose 
lassi
al limit presents typi
al 
haoti
 features as positiveLyapunov exponents (hyperboli
 regime) [4�6℄.The footprints of 
lassi
al 
haos are usually studied semi�
lassi
ally when a suitable�~��like quantization parameter goes to zero; one then examines the di�eren
es betweenquantum and 
lassi
al behaviours. In the hyperboli
 
ase, quantum 
haos reveals itselfthrough the presen
e of a time�s
ale, over whi
h quantum and 
lassi
al motions mimi
ea
h other, that in
reases as − log �~� [1�3,7�9℄. This pe
uliar logarithmi
 time s
ale hasto be 
ompared with the s
aling �~�−α, α > 0, whi
h is proper of quantum systems withregular 
lassi
al limit [1℄.Heuristi
al explanations of the logarithmi
 time-s
ale already indi
ate that the phe-nomenon is not ex
lusive of quantum systems, and thus of non�
ommutativity, but thatit should also be present when the 
lassi
al dynami
s is looked at as the 
ontinuous limitof a family of dis
rete 
lassi
al systems. [10℄.Intrinsi
ally dis
rete systems [11℄ and dis
retized 
lassi
al 
ontinuous systems [12�14℄ have re
ently been obje
ts of numeri
al analysis 
on
erning the entropy produ
tionand the presen
e of a logarithmi
 time s
ale, whereas the ergodi
 properties of dis
retized
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rete Sawtooth Maps and its Algebrai
 Framework 3dis
ontinuous maps have been addressed in [15℄.In the following, we shall rigorously show this fa
t to be true for Sawtooth Maps onthe 2-dimensional torus [16�18℄: this will be done by for
ing them to move on a squarelatti
e and by retrieving the 
ontinuous dynami
s when the latti
e spa
ing goes to zero.Be
ause of the analogies between quantization and dis
retization, we will make use ofte
hnologies stri
tly resembling the so-
alled Anti�Wi
k quantization [19℄.We shall prove that a time�s
ale logarithmi
 in the latti
e-spa
ing appears; in 
om-parison to previous results obtained studying numeri
ally the entropy produ
tion [14℄,a rigorous 
ontinuous limit is established that su

eeds in 
ontrolling the dis
ontinuitiesof Sawtooth Maps. Despite their 
lassi
al nature, the entropy previously investigatedwas quantum me
hani
al; somewhat analogously, in this arti
le, Sawtooth Maps will bestudied by means of states, whi
h play a role similar to quantum Coherent States, whose
hoi
e is naturally provided by the latti
e stru
ture of dis
retized Sawtooth Maps. Theywill be shown to satisfy a dynami
al lo
alization property that makes them remain lo
al-ized around the traje
tories of the 
ontinuous dynami
s, but only on a logarithmi
 times
ale.2. Classi
al Dynami
al SystemsClassi
al dynami
s is usually des
ribed by means of a measure spa
e X , the phase�spa
e,endowed with the Borel σ�algebra and a normalized measure µ, µ(X ) = 1. The �volumes�
µ(E) =

∫

E
µ(dx)of measurable subsets E ⊆ X represent the probabilities that a phase�point x ∈ X belongto them: the measure µ de�nes the statisti
al properties of the system and representsa possible state, whi
h is taken to be an equilibrium state with respe
t to the givendynami
s.In su
h a s
heme, a reversible dis
rete time dynami
s amounts to an invertiblemeasurable map S : X 7→ X su
h that µ ◦ S = µ and to its iterates {Sk | k ∈ Z}:phase�traje
tories passing through x ∈ X at time 0 are then sequen
es {Sk x

}
k∈Z [6℄.Classi
al dynami
al systems are thus 
onveniently des
ribed by triplets (X , µ, S);in the present work, we shall fo
us upon the following 
hoi
es:

X : the 2�dimensional torus T2 = R2/Z2 =
{
x = (x1, x2) ∈ R2 (mod 1)

};
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µ: the Lebesgue measure, µ(dx) = dx1 dx2, on T2;
S: an invertible measurable transformations on T2 that preserves the Lebesgue mea-sure.It is 
onvenient to asso
iate an algebrai
 triple (M, ω,Θ) to the measure�theoreti
triple (T2, µ, S), 
onsisting of

M: the (Abelian) Von Neumann *-algebra L∞
µ

(T2
) of essentially bounded fun
tionson T2 [20, 21℄.

ωµ: the state (expe
tation) on M, given by
ωµ : L∞

µ

(T2
)
∋ f 7−→ ωµ(f) :=

∫T2

µ(dx) f(x) ∈ R+ · (1)
Θ: the automorphism of M su
h that Θ (f) = f ◦ S, ω ◦ Θ = ω.In the following, we shall 
onsider a dis
retized version of (T2, µ, S) whi
h arises byfor
ing the 
ontinuous 
lassi
al system to live on a square latti
e LN ⊆ T2 of spa
ing 1

N :
LN :=

{ p

N

∣∣∣ p ∈ (Z/NZ)2
}

, (2)where (Z/NZ) denotes the residual 
lass (mod N), that is 0 6 pi 6 N − 1.Taking the N2 points as labels of the elements {|ℓ〉}ℓ∈(Z/NZ)2 of an orthonormalbasis (o.n.b.) of the N dimensional Hilbert spa
e HN , N := N2, we will 
onsider dis
retealgebrai
 triples (DN , τN ,ΘN
), 
onsisting of

DN : an N ×N matrix algebra diagonal in the orthonormal basis introdu
ed above;
τN : the uniform state (expe
tation) on DN de�ned by

τN : DN ∋ D 7−→ τN (D) :=
1

N Tr (D) ∈ R+ ; (3)
ΘN : an automorphism of DN suitably reprodu
ing Θ when N −→ ∞ (see Se
tion 4.2).Remark 2.1As it will be
ome evident in the following, up to a 
ertain extent, dis
retizationresembles quantization; in the latter 
ase, instead of DN , one deals with non�
ommutative matrix algebras, the typi
al instan
e being the �nite dimensionalquantization of the Arnold Cat Map [22, 23℄.
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rete Sawtooth Maps and its Algebrai
 Framework 53. Dis
retization of phase�spa
eAs sket
hed in the previous Remark, we pro
eed now to setup a dis
retization pro
edure
lose to the so�
alled Anti�Wi
k quantization [19℄.Given the 
lassi
al algebrai
 triple (L∞
µ

(T2
)
, ωµ,Θ), the aim of a dis
retization�dedis
retization pro
edure (spe
i�
ally an N�dimensional dis
retization) is twofold:

• �nding a pair of *-morphisms, JN ,∞ mapping L∞
µ

(T2
) into the abelian �nite di-mensional algebra DN and J∞,N mapping ba
kward DN into L∞

µ

(T2
);

• providing an automorphism ΘN , the dis
rete dynami
s, a
ting on DN su
h that itapproximates the 
ontinuous one, Θ, on L∞
µ

(T2
) as follows

J∞,N ◦ Θj
N ◦ JN ,∞ −−−−→

N→∞
Θj · (4)The latter requirement 
an be seen as a modi�
ation of the so 
alled Egorov's property(see [24℄). Intuitively, a dis
rete des
ription of the measure�theoreti
 triple (T2, µ, S

)be
omes �ner when we in
rease N , the number of points per linear dimension on the grid
LN in (2): this 
orresponds to enlarging the dimension of the Hilbert spa
e HN asso
iateto the 
orresponding algebrai
 triple (DN , τN ,ΘN

). In this sense, the latti
e spa
ing
a := 1

N of the grid LN is a natural �dis
retization parameter� playing an analogous roleto the quantization parameter ~.The di�
ulty is to �nd 
onvenient *-morphisms JN ,∞ and J∞,N that set up arigorous asymptoti
 (in N) 
orresponden
e, of fun
tions on L∞
µ

(T2
) and matri
es in DNand, above all, between the dis
rete dynami
s ΘN and the 
ontinuous one Θ.Due to the similarities with quantization, we shall 
onsider a dis
retization pro
edurebased on states that we shall refer to as Latti
e States (LS for short) whi
h mimi
 the useof Coherent States in the study of the semi�
lassi
al limit. In the next se
tion we willgive a suitable de�nitions of LS belonging to the Hilbert spa
e HN , that we shall use todis
retize (L∞

µ

(T2
)
, ωµ,Θ).3.1. Latti
e States on T2In analogy with the the properties of quantum Coherent States, we shall look for a 
lass

{|CN (x)〉 | x ∈ T2} ∈ HN of ve
tors, indexed by points x ∈ T2, satisfying the following



6 F. Benatti and V. Cappellini
onditions whi
h are borrowed from analogous quantum ones [25℄:Properties 3.11. Measurability: x 7→ |CN (x)〉 is measurable on T2;2. Normalization: ‖CN (x)‖2 = 1, x ∈ T2;3. Completeness: N ∫T2

µ(dx) |CN (x)〉〈CN (x)| = 1;4. Lo
alization: given ε > 0 and d0 > 0, there exists N0(ǫ, d0) su
h that for
N ≥ N0(ǫ, d0) and dT2(x,y) ≥ d0 one has

N |〈CN (x), CN (y)〉|2 ≤ ε.The symbol dT2(x,y) used in the lo
alization property stands for the length of the shortersegment 
onne
ting the two points x,y ∈ T2, namelyDe�nition 3.1We shall denote by dT2 (x,y) := min
n∈Z2

‖x − y + n‖R2 the distan
e on T2.We shall now 
onstru
t a family of |CN (x)〉. Let ⌊·⌋ denote the integer part of areal number, namely x − 1 < ⌊x⌋ 6 x is the largest integer smaller than x; further, let
〈·〉 denote the fra
tional parts, that is 〈x〉 := x − ⌊x⌋. Thus we will writeT2 ∋ x =

(⌊Nx1⌋
N

,
⌊Nx2⌋

N

)
+

(〈Nx1〉
N

,
〈Nx2〉

N

)
,or, more 
ompa
tly, x =

⌊Nx⌋
N

+
〈Nx〉

N
. We pro
eed by asso
iating to points of T2spe
i�
 latti
e points.De�nition 3.2 (Latti
e States)Given x ∈ T2, we shall denote by x̂N the element of (Z/NZ)2 given by

x̂N = (x̂N,1, x̂N,2) :=
(
⌊Nx1 + 1

2
⌋ , ⌊Nx2 + 1

2
⌋
)

, (5)and 
all Latti
e States on T2 the ve
tors |CN (x)〉 de�ned byT2 ∋ x 7→ |CN (x)〉 := | x̂N 〉 ∈ HN · (6)
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rete Sawtooth Maps and its Algebrai
 Framework 7Remark 3.1The family of states |CN (x)〉 is 
onstru
ted by 
hoosing, for ea
h x ∈ T2,that element of the basis of HN whi
h is labeled by the 
losest element of LNto x.

0 1
5

2
5

3
5

4
5 1

0

1
5

2
5

3
5

4
5

1

Figure 1: The above pi
ture represents a square latti
e (L5) of spa
ing 1
5 by 
ir
les and
onne
ting lines. All points in the blue square I( 3

5
, 3
5)

:=
[

5
10 , 7

10

)
×
[

5
10 , 7

10

)
⊂ T2 areasso
iated with the grid point (3

5 , 3
5

) (bla
k dot). Thus, for all x ∈ I( 3
5
, 3
5)
, it turns outthat |CN (x)〉 = | (3, 3)〉 ∈ HN .Proposition 3.1The family of LS {|CN (x)} satis�es Properties 3.1.Proof:Measurability and normalization are straightforward.Completeness 
an be expressed as

N
∫T2

µ(dx) 〈ℓ |CN (x)〉〈CN (x)| m〉 = δ
(N)
ℓ,m, ∀ℓ,m ∈ (Z/NZ)2 ,where we have introdu
ed the periodi
 Krone
ker delta, that is δ

(N)
n,0 = 1 if and only if

n ≡ 0 (mod N). This is proved as follows:
N
∫T2

µ(dx) 〈 ℓ |CN (x) 〉〈CN (x) |m 〉 = N
∫ 1

0
dx1

∫ 1

0
dx2 〈 ℓ | x̂N 〉〈 x̂N |m 〉 =
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= N δ

(N)
ℓ1 , m1

δ
(N)
ℓ2 , m2

[∫ 1

0
dx1 δ

(N)

ℓ1 , ⌊Nx1+
1
2⌋

] [∫ 1

0
dx2 δ

(N)

ℓ2 , ⌊Nx2+
1
2⌋

]

= N
(
δ
(N)
ℓ1 , m1

δ
(N)
ℓ2 , m2

)


∫ ℓ1+

1
2

N

ℓ1−
1
2

N

dx1





∫ ℓ2+

1
2

N

ℓ2−
1
2

N

dx2


 = N2 δ

(N)
ℓ,m

1

N2
= δ

(N)
ℓ,m ·Lo
alization 
omes as follows: from De�nition 3.2 (see Remark 3.1 and Figure 1),it turns out that |CN (x)〉 is orthogonal to every basis element labeled by a point of

LN whose toral distan
e dT2 (see De�nition (3.1)) from x is greater than 1
N
√

2
. As a
onsequen
e, the quantity 〈CN (x), CN (y)〉 = 0 if the distan
e on the torus between xand y is greater than √

2
N . Thus, given d0 > 0, it is su�
ient to 
hoose N0(ǫ, d0) >

√
2/d0,to have

N > N0(ǫ, d0) =⇒ N 〈CN (x), CN (y)〉 = 0 ·Remarks 3.2(1) The last result in the previous Proposition amounts to an even strongerlo
alization property than property 3.1.4; this is due to our parti
ular 
hoi
eof Latti
e States, whi
h, as we shall see, is suited to the task of 
ontrollingSawtooth Maps. In general, one 
an hardly hope to a
hieve orthogonalityand must be 
ontent with the weaker lo
alization 
ondition 3.1.4.(2) Although the set of LS of De�nition 3.2 ful�ll Properties 3.1, whi
h aretypi
al of Coherent States, LS di�er from them in that the 
ontext we are
onsidering is 
ommutative. In spite of this, it is 
onvenient to adopt theformalism of Quantum Me
hani
s; in parti
ular the set of LS is interpretedas a Hilbert orthonormal basis of Dira
 kets, whose 
orresponding proje
torsform a partition of unit into indi
ator fun
tions having support on smallsquares of the torus, as in Figure 1, whose sides s
ales as 1
N ·3.2. Anti�Wi
k Dis
retization and its 
ontinuous limit on T2In order to study the 
ontinuous limit and, more generally, the quasi�
ontinuous be-haviour of (DN , τN ,ΘN

) when N → ∞, we follow the semi�
lassi
al te
hnique known asAnti�Wi
k quantization. The other standard quantization te
hnique, namely the Weylpro
edure, despite being more straightforward and less te
hni
ally heavy, is neverthelessmore suited to smooth spa
es of fun
tions and was indeed instrumental in the study ofdis
retized Cat Maps [14℄. Instead, in our 
ase, the Anti�Wi
k pro
edure is a better
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hoi
e due to the dis
ontinuous 
hara
ter of the dynami
s, as it will 
learly appear in thenext Se
tion.We start 
hoosing 
on
rete dis
retization/de�dis
retization *-morphisms.De�nitions 3.3Given the family {|CN (x)〉} of Latti
e States in HN , the Anti-Wi
k�like dis-
retization s
heme (AW, for short) will be des
ribed by a one parameter familyof (
ompletely) positive unital map JN ,∞ : L∞
µ

(T2
)
→ DN

L∞
µ

(T2
)
∋f 7→ N

∫T2

µ(dx) f(x) |CN (x)〉〈CN (x)| =: JN ,∞(f) ∈ DN .The 
orresponding de�dis
retization operation will be des
ribed by the (
om-pletely) positive unital map J∞,N : DN → L∞
µ

(T2
)

DN ∋ X 7→ 〈CN (x),X CN (x)〉 =: J∞,N (X)(x) ∈ L∞
µ

(T2
)

.Remarks 3.3i. Both maps are identity preserving (unital) be
ause of the 
onditions satis-�ed by the family of Latti
e States and are 
ompletely positive, sin
e both
L∞

µ

(T2
) and DN are 
ommutative algebras. One 
an also 
he
k that:

‖J∞,N ◦ JN ,∞(g)‖∞ ≤ ‖g‖∞, g ∈ L∞
µ

(T2
)
·ii. De�nition 3.3 yields τN ◦ JN ,∞ = ωµ, with τN given in (3).In Appendix A, more operative details are presented, whereas in the following we provesome simple properties that in
orporate minimal requests for rigorously de�ning the sensein whi
h the dis
rete dynami
al systems (DN , τN ,ΘN

) tends to (L∞
µ

(T2
)
, ωµ,Θ), when

1
N → 0.Proposition 3.2(1) For all f ∈ L∞

µ

(T2
) and X ∈ DN ,

ωµ (g J∞,N (X)) = τN
(
JN ,∞(g)∗X

)
;
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µ

(T2
)

lim
N→∞

τN
(
JN ,∞(f)∗JN ,∞(g)

)
= ωµ(fg) =

∫T2

µ(dx) f(x)g(x).(3) For all X ∈ DN , and for all N ∈ N+,
JN ,∞ ◦ J∞,N (X) = X ;(4) For all f ∈ L∞

µ

(T2
)

lim
N→∞

J∞,N ◦ JN ,∞(f) = f µ � a.e.Proof:The �rst two statements in the above Proposition dire
tly follow from De�nitions 3.3together with (6); the latter two are equivalent and their proof 
an be found in [25℄, theonly di�eren
e being the dimension N of the Hilbert spa
e HN , here N = N2, there
N = N .

Remark 3.4
Properties 1 and 2 in the previous Proposition show how (GNS) s
alar prod-u
ts in the dis
rete, respe
tively 
ontinuous limit, are related; properties 3and 4 
on
ern instead the dire
t�inverse relations between the dis
retizationand the de�dis
retization maps.
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rete Sawtooth Maps and its Algebrai
 Framework 114. Dis
retization of the Dynami
s4.1. Classi
al des
ription of Sawtooth MapsWe shall now fo
us on a spe
ial 
lass of automorphisms of the torus, namely the SawtoothMaps [16, 17℄ (SM for short), that is on triples (T2, µ, Sα) where
Sα

(
x1

x2

)
=

(
1 + α 1

α 1

)(
〈x1〉
x2

)
(mod 1) , α ∈ R (7)

=

(
〈(1 + α) 〈x1〉 + x2〉

〈α 〈x1〉 + x2〉

)Remarks 4.1i. In the following, a point x of the torus, will 
orrespond to an equivalen
e
lass of R2 points whose 
oordinates di�er by integer values;ii. without the fra
tional part, (7) is not well de�ned on T2 for not�integer α;indeed, the same point x = x + n ∈ T2,n ∈ Z2, would have (in general)
Sα (x) 6= Sα (x + n). Of 
ourse, 〈·〉 is not ne
essary when α ∈ Z;iii. the Lebesgue measure on T2 is invariant for all α ∈ R;iv. if α 6∈ Z, the Sα are known as Sawtooth Maps;v. when α ∈ Z, we shall write Tα instead of Sα. T1 = ( 2 1

1 1 ) is the Arnold CatMap [6℄. In general, T1 ∈ {Tα}α∈Z ⊂ SL2 (Z) ⊂ GL2 (Z) ⊂ M2 (Z) whereM2 (Z) is the subset of 2 × 2 matri
es with integer entries, GL2 (Z) thesubset of invertible matri
es and SL2 (Z) the subset of matri
es with deter-minant one: the dynami
s generated by Tα ∈ SL2 (Z) is 
alled UnimodularGroup [6℄ (UMG for short);vi. after identifying x with 
anoni
al 
oordinates (q, p) and imposing the
(mod 1) 
ondition on both of them, the above dynami
s reads





q′ = q + p′

p′ = p + α 〈q〉
(mod 1) · (8)This is nothing but the Chirikov Standard Map [3℄ in whi
h − 1

2π sin(2πq)is repla
ed by 〈q〉. The dynami
s in (8) 
an also be thought of as generated
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H(q, p, t) =

p2

2
− α

〈q〉2
2

δp(t),where δp(t) is the periodi
 Dira
 delta whi
h makes the potential a
tthrough periodi
 ki
ks with period 1 [26℄;vii. Sawtooth Maps are invertible and the inverse is given by the expression
S−1

α

(
x1

x2

)
=

(
1 0

−α 1

)〈(
1 −1

0 1

)(
x1

x2

)〉
(mod 1) (9)

=

(
〈x1 − x2〉

〈〈x2〉 − α 〈x1 − x2〉〉

)or, in other words,




q = q′ − p′

p = −α q + p′
(mod 1) .It 
an indeed be 
he
ked that Sα

(
S−1

α (x)
)

= S−1
α (Sα (x)) = x, ∀x ∈ T2.Further, S−1

α preserves the Lebesgue measure on T2.We now list a set of properties [16�18℄ of Sawtooth Maps that will be used in the followingProperties 4.1 (of Sawtooth Maps)(1) Sawtooth Maps {Sα} are dis
ontinuous on the subset
γ0 : = {x = (0, p) , p ∈ T} ∈ T2: two points 
lose to γ0, A := (ε, p) and
B := (1 − ε, p), have images that di�er, in the ε → 0 limit, by a ve
tor
d
(1)

Sα
(A,B) = (α,α) (mod 1).(2) Inverse Sawtooth Maps {S−1

α } are dis
ontinuous on the subset
γ−1 := Sα (γ0) = {x = (p, p) , p ∈ T} ∈ T2: two points 
lose to γ−1, namely
A := (p + ε, p − ε) and B := (p − ε, p + ε), have images that di�er, in the
ε → 0 limit, by a ve
tor d

(1)

S−1
α

(A,B) = (0, α) (mod 1).(3) The maps Tα and T−1
α are 
ontinuous:

α ∈ Z =⇒ d
(1)

Tα
(A,B) = d

(1)

T−1
α

(A,B) = (0, 0) (mod 1).(4) The eigenvalues of the matrix Sα =
(

1+α 1
α 1

) are (α + 2 ±
√

(α + 2)2 − 4
)

/2.They are 
onjugate 
omplex numbers if α ∈ [−4, 0], whereas one eigenvalue
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λ > 1 if α 6∈ [−4, 0]. In this 
ase, distan
es are stret
hed along the dire
-tion of the eigenve
tor |e+〉, Sα|e+〉 = λ|e+〉, 
ontra
ted along that of |e−〉,
Sα|e−〉 = λ−1|e−〉: log λ is a (positive) Lyapunov exponent.For su
h α's all periodi
 points are hyperboli
 [18℄.

�
-

-
�

S−1
1
2

S 1
2

S 1
2

S−1
1
2

�
-

-
�

S−1
1 S1

S1 S−1
1

Figure 2: In the upper row, we depi
t the e�e
ts of the dis
ontinuities of a SM with
α = 1

2 ; the pi
ture in the middle shows the dis
ontinuity lines γ0 and γ−1, whereas thoseon the right and left show how they evolve ba
kward and forward in time. The di�erentparallel bands help the reader to �gure out the toral periodi
ity and the dis
ontinuous
hara
ter of the map, also highlighted by the aperiodi
 splits of two spots. Further, forsake of 
omparison, the lower row presents the same 
ase of the upper one but for the
ontinuous dynami
s (α = 1).Remarks 4.2Be
ause of the presen
e of the fra
tional part in (7) and (9), we have todistinguish the a
tion of Sα and S−1
α from a mere matrix a
tion. We shalladopt the following notations:i. With Sα the matrix ( 1+α 1

α 1

) in Property 4.1.4, the expression Sα (x) willdenote the a
tion represented by (7), whereas Sα ·x will denote the matrixa
tion of Sα on the ve
tor x.ii. When the dynami
s arises from the a
tion of the UMG (see Remark 4.1.v.),
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ular, when {Tα}α∈Z is the family of toral automorphisms, equa-tion (7) assumes the simpler form Tα (x) = Tα · x (mod 1).iii. Analogously, expressions like Tα · x, T tr
α · x, T−1

α · x and (T tr
α

)−1 · x, willdenote the a
tions by Tα itself, its transposed, its inverse and the inverseof the transposed, respe
tively.
4.2. Algebrai
 des
ription of 
ontinuous and dis
retized SawtoothMapsIn this Se
tion we make use of the 
ommutative (Von Neumann) algebra L∞

µ

(T2
) intro-du
ed in Se
tion 2 and 
onsider the algebrai
 des
ription of Sawtooth Maps by triples(

L∞
µ

(T2
)
, ωµ,Θα

), where ωµ has been de�ned in (1) and Θα : L∞
µ

(T2
)
7→ L∞

µ

(T2
) isthe dis
rete�time dynami
s generated as follows:

Θα (f) (x) := f(Sα (x)) , α ∈ R ·The maps Θj
α, j ∈ Z are automorphisms of L∞

µ

(T2
) and leave the state ωµ invariant.Our aim is now to de�ne a suitable dis
rete evolution ΘN ,α on DN , su
h that thedis
retized triplets (DN , τN ,ΘN ,α

) 
onverge to the 
ontinuous SM.We start by introdu
ing two di�erent kinds of maps: the �rst ones, U±j
α , j ∈ Z, arede�ned on the torus T2

(
[0, N)2

), namely [0, N) × [0, N) (mod N), and given byT2
(
[0, N)2

)
∋ x 7→ U0

α (x) := x

= N S0
α

( x

N

)
∈ T2

(
[0, N)2

)
, (10a)T2

(
[0, N)2

)
∋ x 7→U±1

α (x) := N S±1
α

( x

N

)
∈ T2

(
[0, N)2

)
, (10b)T2

(
[0, N)2

)
∋ x 7→U±j

α (x) := U±1
α (U±1

α ( · · ·U±1
α (U±1

α (︸ ︷︷ ︸
j times x ) ) · · · ) ) , j ∈ N+ ,

= N S±j
α

( x

N

)
∈ T2

(
[0, N)2

)
· (10
)The se
ond 
lass 
onsists of maps V ±j

α from T2
(
[0, N)2

) onto its subset (Z/NZ)2, whose
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tions are as followsT2
(
[0, N)2

)
∋ x 7→ V 0

α (x) := ⌊x⌋

= ±
⌊
±U0

α (⌊x⌋)
⌋
∈ (Z/NZ)2 , (11a)T2

(
[0, N)2

)
∋ x 7→ V ±1

α (x) := ±
⌊
±U±1

α (⌊x⌋)
⌋
∈ (Z/NZ)2 , (11b)T2

(
[0, N)2

)
∋ x 7→ V ±j

α (x) := V ±1
α (V ±1

α ( · · · V ±1
α (V ±1

α (︸ ︷︷ ︸
j times ⌊x⌋ ) ) · · · ) ) , j ∈ N+ ,

= ±⌊±U±1
α (±⌊±U±1

α ( · · · ± ⌊±U±1
α (±⌊±U±1

α (︸ ︷︷ ︸
j times ⌊x⌋ )⌋ )⌋ · · · )⌋ )⌋ ∈ (Z/NZ)2 · (11
)Remark 4.3The maps U j

α are extensions of the Sj
α on the enlarged torus T2

(
[0, N)2

);however, they do not map the latti
e LN into itself, therefore we are for
edto use the maps V j
α to de�ne a 
onsistent dis
retized dynami
s.De�nition 4.1

ΘN ,α will denote the map:
DN ∋ X 7→ ΘN ,α (X) :=

∑

ℓ∈(Z/NZ)2

XVα(ℓ),Vα(ℓ) |ℓ〉 〈ℓ | ∈ DN · (12)
ΘN ,α is a *-automorphism of DN ; indeed, the map

(Z/NZ)2 ∋ ℓ 7−→ Vα (ℓ) ∈ (Z/NZ)2is a bije
tion, so that (12) 
an be rewritten in the more 
onvenient form
ΘN ,α (X) =

∑

ℓ∈(Z/NZ)2

XVα(ℓ),Vα(ℓ) |ℓ〉 〈ℓ | =

=
∑

V −1
α (s)∈(Z/NZ)2

Xs,s

∣∣V −1
α (s)

〉 〈
V −1

α (s)
∣∣ =(see Remark 4.4.iii. below) = Wα,N




∑all equiv.
lasses Xs,s |s 〉 〈s |


W ∗

α,N = (13)
= Wα,N X W ∗

α,N ,



16 F. Benatti and V. Cappelliniwhere the operators Wα,N , de�ned by linearly extending the maps
HN ∋

∣∣ℓ
〉
7−→ Wα,N

∣∣ℓ
〉
:=
∣∣V −1

α (ℓ)
〉
∈ HN · (14)to HN , are unitary: W ∗

α,N

∣∣ℓ
〉
:= |Vα (ℓ) 〉.For the same reason the state τN is ΘN ,α�invariant and Vα is invertible too.Note that Θj

N ,α := ΘN ,α ◦ · · · ◦ ΘN ,α︸ ︷︷ ︸
j times is implemented by V j

α (ℓ) given in (11
).Remarks 4.4i. The double ± sign in front and within every �oor fun
tion in equations (11)is needed in order to have V ±j
α (V ∓j

α (x)) = V 0
α (x) (the identity when

x ∈ (Z/NZ)2); the reason is that, in general, ⌊−x⌋ 6= −⌊x⌋, for x 6∈ Z(see [27℄).ii. When α ∈ Z, (Z/NZ)2 ∋ ℓ 7−→ Vα (ℓ) = Tα · ℓ ∈ (Z/NZ)2, namely thea
tion of the map Vα be
omes that of a matrix (mod N). Moreover, inthat 
ase, Uα and Vα 
oin
ide.iii. Sin
e ℓ 7−→ Vα (ℓ) is a bije
tion, in (13) one 
an sum over the equivalen
e
lasses.5. Continuous limit of the dynami
sOne of the main issues in the semi-
lassi
al analysis is to 
ompare if and how the quantumand 
lassi
al time evolutions mimi
 ea
h other when a suitable quantization parametergoes to zero.In this arti
le we are instead 
onsidering the possible agreement between the dy-nami
s of 
ontinuous 
lassi
al systems and that of a 
lass of dis
rete approximants. Inpra
ti
e, in our 
ase, we will study the di�eren
e
Θj

α − J∞,N ◦ Θj
N ,α ◦ JN ,∞ (15)whi
h represents how mu
h the dis
rete dynami
s at timestep j di�ers from the 
ontin-uous one at the same timestep.
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 Framework 17For quantum systems, whose 
lassi
al limit is 
haoti
, the situation is strikinglydi�erent from those with regular 
lassi
al limit. In the former 
ase, 
lassi
al and quantumme
hani
s agree, that is a di�eren
e as in (15) is negligible, only over times j whi
h s
alelogarithmi
ally (and not as a power law) in the quantization parameter.As we shall see, su
h a type of s
aling is not ex
lusively related with non�
ommutativity;in fa
t, the quantization�like pro
edure developed so far, exhibits a similar behavior when
N → ∞ and we re
over (L∞

µ

(T2
)
, ωµ,Θα

) as a 
ontinuous limit of (DN , τN ,ΘN ,α

).5.1. Continuous limit for Sawtooth MapsLater on we shall show that the di�eren
e in (15) goes to zero in a suitable topology;for the moment we just note that the major di�
ulties in the proof are due to thedis
ontinuous 
hara
ter of the fra
tional part that appears in (7).It is therefore important to brie�y dis
uss the dis
ontinuities of the maps Sα [16�18℄.As already noted in Property 4.1.1, Sα is dis
ontinuous on the 
ir
le γ0; therefore Sn
α willbe dis
ontinuous on the preimages

γm := S−m
α (γ0) for 0 6 m < n , (16a)whereas the dis
ontinuities of S−n

α lie on the sets
γ−m := S m

α (γ0) for 0 < m 6 n · (16b)Apart from γ−1, whose proje
tion on the [0, 1)2 square is its diagonal (see Fig. 5), ea
hset of the type γm (for γ−m the argument is similar) is the (disjoint) union of segmentsparallel to ea
h other whose endpoints lie either on the same segment belonging to γp,
p < m, or on two di�erent segments belonging to γp and γp′ , with p′ 6 p < m [17℄.It proves 
onvenient to introdu
e the dis
ontinuity set of Sn

α,T2 ⊃ Γn :=

n−1⋃

p=0

γp , (17)and its 
omplementary set, Gn := T2 \ Γn.We now enlarge the previous de�nition from 
ontinuous Sawtooth Maps, to dis
retizedones.



18 F. Benatti and V. CappelliniDe�nitions 5.1We shall 
all �segment�, and denote it by (A,B), the shortest 
urve joining
A,B ∈ T2, by l (γp) the length of the 
urve γp and by

γp (ε) :=
{
x ∈ T2

∣∣∣ dT2 (x, γp) 6 ε
} (18)the strip around γp of width ε, where the distan
e dT2 (·, ·) on the torus hasbeen introdu
ed in De�nition 3.1.Further, we shall denote by

Γn (ε) :=

n−1⋃

p=0

γp (ε) (19)the union of the strips up to p = n − 1 and by GN
n (ε) the subset of points

GN
n (ε) :=

{
x ∈ T2

∣∣∣
x̂N

N
6∈ Γn (ε)

}
, (20)where the latti
e points x̂N have been introdu
ed in De�nition 3.2.As already observed, in order to prove that the dis
retized SM tend to 
ontinuous SMwhen N → ∞, the main problem is to 
ontrol the dis
ontinuities. It proves 
onvenientto subdivide the latti
e points in a good and a bad set and show that, on the former,

V q
α ≃ U q

α, at least on a 
ertain time�s
ale (see Remark 4.3). This will not turn out to betrue for the bad set, however we shall show that the latter tends with N to a set of zeroLebesgue measure and thus be
omes ine�e
tive.Following this strategy, we shall 
on
retely show that the di�eren
e (15) goes tozero with N → ∞ in the strong topology over the Hilbert spa
e L2
µ

(T2
). More pre
isely,we have the following theoremTheorem 1Let (DN , τN ,ΘN ,α

) be a sequen
e of dis
retized SM as de�ned in Se
tion 4:for all γ > 3,
∀f ∈ L∞

µ

(T2
)

, s–lim
j,N→∞

j< 1
γ

log N
log η

(
Θj

α − J∞,N ◦ Θj
N ,α ◦ JN ,∞

)
(f) = 0 , (21)
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 Framework 19where the limit is in the strong topology over the Hilbert spa
e L2
µ

(T2
) and

η >
√

2 is the largest eigenvalue of the matrix |Sα | : =

√
S†

αSα, with Sαde�ned in Property 4.1.4.The previous Theorem indi
ates that the time limit and the 
ontinuous limit donot 
ommute. In parti
ular, the di�eren
e between the dis
retized dynami
s and the
ontinuous one 
an be made small by in
reasing N , while it be
omes large beyond thetime s
ale j ≃ 1
γ

log N
log η . This phenomenon is the same as in quantum 
haos and pointsto dis
retization of phase spa
e (in the traditional semi�
lassi
al treatment of quantumsystems), rather than to non�
ommutativity, as the sour
e of the so�
alled logarithmi
breaking time. The 
onstant γ is a form fa
tor, whi
h re�e
ts the �ne stru
ture of thedynami
s: for instan
e, in the 
ase of quantum 
at maps [25℄, γ = 2.Remark 5.1The parameter γ > 3 in Theorem 1 may seem overestimated if 
omparedwith the 
ase of the quantum Cat Map, where γ = 2. As we shall see (inparti
ular in the next Proposition 5.2), the upper bound for γ is di
tated bythe dis
ontinuities of the Sawtooth Maps, and not by 
ommutativity. The
orresponding exponent assumes the lower value γ > 1 in the 
ase of dis-
retized Cat Maps, that in
lude Sawtooth Maps with integer α. This resultwill be presented in a forth
oming paper [28℄, in whi
h we study the breakingtime τB (N), here 1

γ
log N
log η , relative to the 
haoti
 or non�
haoti
 properties ofthe dynami
s. In parti
ular, in the hyperboli
 regime, the parameter log η ofTheorem 1 is repla
ed by the Lyapunov exponent log λ whereas, in the ellipti
regime, the two limits j,N −→ ∞ do 
ommute and in the paraboli
 one, thebreaking time is given by τB (N) = N

1
γ .The proof of Theorem 1 
onsists of several steps, among whi
h the most importantis a property, satis�ed by our 
hoi
e of Latti
e States, whi
h we shall 
all dynami
allo
alization.We give a full proof that our 
hoi
e of Latti
e States satis�es su
h property, sin
e itrepresents a natural request that should be ful�lled by any 
onsistent dis
retization/de�dis
retization (quantization/de�quantization) s
heme.Remarks 5.2(1) In analogy to the quantum 
ase, Dynami
al lo
alization is what one ex-pe
ts from a good 
hoi
e of states suited the study of the 
ontinuous limit:
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t, it essentially amounts to asking that LS remain de
ently lo
alizedaround the 
ontinuous traje
tories while evolving with the 
orrespondingdis
rete evolution. As we shall see this is the 
ase only on logarithmi
time�s
ales. Informally, when N → ∞, the quantities
Kj(x,y) := 〈CN (x),W j

α,N CN (y)〉should behave as if N|Kj(x,y)|2 ≃ δ(Sj
α x − y): this would make thedis
retization analogous to the notion of regular quantization des
ribed inSe
tion V of [29℄. A
tually, with our 
hoi
e of LS, the quantity Kj(x,y) isa Krone
ker delta.(2) In quantum 
haos, instead of seeking for the dynami
al lo
alization, one
an study the dynami
al spreading of Coherent States. Consider for instan
ethe 
lassi
al fun
tion f over the phase spa
e, its 
orresponding quantum ob-servable Op~ (f) and a Coherent State |C~(x)〉 
entred at the point x. Thetime needed for the quantum me
hani
al expe
tation 〈C~(x),Op~ (f)C~(x)〉to 
onverge to the average of f over a suitable invariant measure 
an beexpli
itly analyzed. Re
ent work [7, 9℄ shows that also this time s
aleslogarithmi
ally in ~, at least for the automorphisms on the 2�torus.(3) The 
onstraint j ≤ C logN is typi
al of hyperboli
 behavior with Lyapunovexponent log λ and 
omes heuristi
ally as follows: the expansion of an initialsmall distan
e δ 
an be exponential until the distan
e be
omes the largestpossible, namely δλTB ≃ 1. After dis
retization, the minimal distan
e gives

δ = 1
N , therefore one estimates TB ≃ log N

log λ , whi
h is 
alled breaking timeand sets the time�s
ale over whi
h 
ontinuous and dis
retized dynami
smimi
 ea
h other.(4) In quantum 
haos, the semi�
lassi
al analysis leads to an estimate of TBexa
tly as above; further, the logarithmi
 dependen
e on ~ of TB is a sig-nature of the hyperboli
 
hara
ter of the 
lassi
al limit. Conversely, if the
lassi
al limit is regular, then the time s
ale when quantum and 
lassi
albehaviors are more or less indistinguishable goes as ~
−b, b > 0. Anotherinterpretation of the breaking time is given in [8℄, where it is related to theshortest time needed for the system to transfer all s
ales 1 > ℓ > ~ downto the �quantum s
ale� ~. Indeed, this is the s
ale at whi
h the di�eren
esamong quantum and 
lassi
al me
hani
s 
ome up. Regarding the SM, thehyperboli
 
ase 
orresponds to Sα with eigenvalue λ > 1, whereas the reg-ular 
ases are the ellipti
 one (two 
omplex eigenvalues) and the paraboli
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 Framework 21one (only one eigenvalue = 1).
(5) The dynami
al lo
alization property has fruitfully been used in severalquantum 
ontexts [25℄; however, to our knowledge, this is the �rst instan
e,though not properly quantal, where dynami
al lo
alization is fully exposed.

Before pro
eeding with the proof of Theorem 1, it is important to noti
e that in itsstatement the Lyapunov exponent log λ does not appear but log η, instead; of 
ourse λand η are related for λ is eigenvalue of Sα, and η of √S†
αSα (see Remark 5.1).As will be
ome 
lear during the proof, the use of η and not of λ is required bythe dis
ontinuous 
hara
ter of SM. In fa
t, the dis
ontinuities do not allow us to 
ontrolthe di�eren
e between the n�th iterates of the dis
retized and the 
ontinuous dynami
s,but instead for
e us to estimate that di�eren
e at ea
h single time�step up to n andto put all the estimates together. In the single time�step estimate, independently ofwhether the map is 
ontinuous or not, one must use η, whi
h 
oin
ides with λ onlywhen the dynami
al matrix Sα is symmetri
. Indeed, Figure 3 shows that the eigenvalue

η 
orre
tly des
ribes how volumes behaves under a single appli
ation of the dynami
s,whereas λ underestimates it. On the 
ontrary, it is λn whi
h asymptoti
ally 
ontrolsthe stret
hing, whereas ηn largely overestimates it. In the regular ellipti
 
ase, where
λ = 0 and η >

√
2, the use of η gives the impression of hyperboli
 stret
hing, whereasthe ellipti
 motion is 
on�ned: from the lower strip in Figure 3 it is apparent that su
hhyperboli
ity is spurious.
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D E

Figure 3: In Plots A, B and C we 
ompare the estimates of the (maximum) stret
hinggiven by the a
tion of the SM S1/10 and its temporal iterates Sn
1/10 (n 6 5) given by λ,respe
tively η, on a small ball B0

v of radius v, 
entered in (1
2 , 1

2

)
∈ T2. The �ve evolvedimages of the ball, namely {Bn

v , 1 < n 6 5}, are plotted together with B0
v, using di�erent
olors. In A we surround every evolved ball Bn

v with the smallest 
ir
le 
ontaining it. We
ompare that plot with B and C, in whi
h the surrounding 
ir
les have radii proportionalto λnv, respe
tively ηnv; in both 
ases the 
orre
t radii of A are overestimated although,on the long run, 
ir
les in B provide a good approximation.The fake hyperboli
ity given by η is 
learly shown in D and E, where a paraboli
 SM S0and an ellipti
 one S−1/20 are presented: in the �rst 
ase the maximum spreading growslinearly, whereas in the se
ond one it remains 
on�ned, and the estimate given by thesurrounding 
ir
les of radii growing as powers of η is inappropriate.Note that in all examples C�E, the bla
k 
ir
les of radii η v rightly surround B1
v.Theorem 2 (Dynami
al lo
alization with {|CN(x)〉} states)For α ∈ R, β ∈ R+ \ (0, 2 ] and d0 > 0, there exists N0 = N0(α, β, d0) ∈ N+with the following property: if N > N0 and n < 1

β
log N
log η , then

dT2 (Sn
α (x) ,y) > d0 =⇒

〈
CN (x)

∣∣W n
α,N CN (y)

〉
= 0 ,for all y ∈ T2 and x ∈ GN

n

(
Ñ
2N

), where W n
α,N is the unitary operator de�ned



Continuous Limit of Dis
rete Sawtooth Maps and its Algebrai
 Framework 23in (14), Ñ = 2
√

2
(√

2 + 1
)
η2n and GN

n (ε) has been introdu
ed in De�ni-tions 5.1.In order to prove Theorem 2, we need the following result, whose proof 
an be found inAppendix B.Proposition 5.1With the notation of De�nitions 3.1 and 5.1, and with [E]◦ denoting the
omplement of E ⊆ T2, [E]◦ := T2 \ E, the following in
lusions hold:
[
Γn

(
ε +

1√
2N

)]◦
⊆ GN

n (ε) ⊆
[
Γn

(
ε − 1√

2N

)]◦
· (22)Further, for α ∈ R and n ∈ N+, if

N > Ñ = 2
√

2
(√

2 + 1
)

η2n and x ∈ GN
n

(
Ñ

2N

) then
dT2

(
Up

α (Nx)

N
,
V p

α (x̂N )

N

)
6

√
2

N

(
ηp+1 − 1

η − 1

)
, ∀p 6 n · (23)Proof of Theorem 2 :Using the de�nition of {|CN (x)〉} in (6), we easily 
ompute

〈
CN (x)

∣∣W n
α,N CN (y)

〉
=
〈
x̂N

∣∣∣ V −n
α (ŷN )

〉
= δ

(N)
V n

α (x̂N ) , ŷN
· (24)Using the triangular inequality, we get:

dT2

(
Un

α (Nx)

N
, y

)
6 dT2

(
Un

α (Nx)

N
,

V n
α (x̂N )

N

)
+

+ dT2

(
V n

α (x̂N )

N
,

ŷN

N

)
+ dT2

(
ŷN

N
, y

)or equivalently, using the De�nitions (10),
dT2

(
V n

α (x̂N )

N
,

ŷN

N

)
> dT2 (Sn

α (x) , y)−

− dT2

(
Un

α (Nx)

N
,

V n
α (x̂N )

N

)
− dT2

(
ŷN

N
, y

)
·
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e dT2 (Sn
α (x) , y) > d0 by hypothesis, using (40) in Appendix B and observingthat x ∈ GN

n

(
Ñ
2N

) permits us to use (23) in Proposition 5.1, namely that
N > Ñ =⇒ dT2

(
Un

α (Nx)

N
,
V n

α (x̂N )

N

)
6

√
2

N

(
ηn+1 − 1

η − 1

)
, (25)we 
an derive

dT2

(
V n

α (x̂N )

N
,

ŷN

N

)
> d0 −

√
2

N

(
ηn+1 − 1

η − 1

)
− 1√

2N
·The r.h.s. of the previous inequality 
an always be made stri
tly larger than 1

N ,
dT2

(
V n

α (x̂N )

N
,

ŷN

N

)
>

1

N
, (26)by 
hoosing an N larger than

NM (n) = max

{
1

d0

[
1 +

√
2

(
ηn+1 − 1

η − 1

)
+

1√
2

]
, Ñ = 2

√
2
(√

2 + 1
)

η2n

}
, (27)so that the 
ondition on the l.h.s. of (25) is also satis�ed. From (24) and (26), we have

N > NM (n) =⇒
〈
CN (x)

∣∣W n
α,N CN (y)

〉
= 0 · (28)Indeed, if the toral distan
e between two points (z,w) ex
eeds 1

N , then the 
orrespondinggrid points (ẑN , ŵN ) are di�erent and then the periodi
 Krone
ker delta in (24) vanishes.Sin
e the (non�de
reasing) fun
tion NM in (27) is eventually bounded by ηβn (β beingstri
tly greater than two), we de�ne n as the time when NM (n) = ηβn =: N0, and 
hoose
N > N0, x ∈ GN

n

(
Ñ
2N

). Thus, if 0 < n < n, then N > N0 = NM (n) > NM (n), whereasif n 6 n < 1
β

log N
log η , then N > ηβn > NM (n) and (28) holds for all 0 < n < 1

β
log N
log η .In order to pro
eed with the proof of Theorem 1, we need another auxiliary result whi
his proved in Appendix C.Proposition 5.2With the notation of De�nition 5.1, the following relations hold for all p ∈ N,

n ∈ N+ and ε ∈ R+:
l (γp) 6 ηp , (29a)

µ
(
γp (ε)

)
6 2 ε ηp + πε2 , (29b)
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µ
(
Γn (ε)

)
6 2

(√
2 + 1

)
ε ηn + π n ε2 · (29
)Moreover, if N ∈ N+ and Ñ = 2

√
2
(√

2 + 1
)
η2n (
fr. equation (23) inProposition 5.1):

N > Ñ =⇒ µ

([
GN

n

(
Ñ

2N

)]◦)
6

38 η3n

N
· (29d)We are �nally in position to 
on
lude withProof of Theorem 1:We subdivide the proof in two steps: in the �rst we 
on
entrate on 
ontinuous f , that is

f ∈ C0
(T2

) (
⊂ L2

µ

(T2
)); in the se
ond one we extend the result to essentially boundedfun
tion by applying the following Corollary of Lusin's Theorem [21, 30, 31℄:Given f ∈ L∞

µ (X ), with X 
ompa
t, there exists a sequen
e {fn} of 
ontin-uous fun
tions on X su
h that |fn| ≤ ‖f‖∞ and 
onverging to f µ � almosteverywhere.
(1) Let f ∈ C0

(T2
) and Opj,N (f) :=

(
Θj

α − J∞,N ◦ Θj
N ,α ◦ JN ,∞

)
(f): noti
e thatOpj,N (f) is a multipli
ation operator on L2

µ

(T2
), but also an L∞

µ

(T2
) (and thus alsoan L2

µ

(T2
)) fun
tion. A

ording to (21), we must show that

∀g ∈ L2
µ

(T2
)

, lim
j,N→∞

j< 1
γ

log N
log η

ww Opj,N (f) g
ww

2
= 0 ·Using S
hwartz's inequality �rst with g in the 
lass of simple fun
tions and then usingtheir density in L2

µ

(T2
), we have just to show that

lim
j,N→∞

j< 1
γ

log N
log η

ww Opj,N (f)
ww

2
= 0 ·Expli
itly, using (1), we write:

ww Opj,N (f)
ww2

2
= ωµ

(Opj,N (f)∗Opj,N (f)
)

= ωµ

[(
Θj

αf
)∗ (

Θj
αf
)]

+

+ ωµ

[(
J∞,N ◦ Θj

N ,α ◦ JN ,∞
)

(f)∗
(
J∞,N ◦ Θj

N ,α ◦ JN ,∞
)

(f)
]
+

− 2 Re
{

ωµ

[(
Θj

αf
)∗ (J∞,N ◦ Θj

N ,α ◦ JN ,∞
)

(f)
]}

,
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h, via Proposition 3.2.1, be
omes
= ωµ

[
Θj

α

(
f
)
Θj

α (f)
]
− 2 Re

{
τN
[
JN ,∞

(
Θj

αf
)∗ (

Θj
N ,α ◦ JN ,∞

)
(f)
]}

+

+ τN
[(

JN ,∞ ◦ J∞,N ◦ Θj
N ,α ◦ JN ,∞

)
(f)∗

(
Θj

N ,α ◦ JN ,∞
)

(f)
]

,that, using Proposition 3.2.3, 
an be re
ast as
=
(
ωµ ◦ Θj

α

) (
ff
)

+ τN
[(

Θj
N ,α ◦ JN ,∞

)
(f)∗

(
Θj

N ,α ◦ JN ,∞
)

(f)
]
+

− 2 Re
{

τN
[(

JN ,∞ ◦ Θj
α

)
(f)∗

(
Θj

N ,α ◦ JN ,∞
)

(f)
]}

= ωµ

(
|f |2

)
+
(
τN ◦ Θj

N ,α

)
[JN ,∞ (f)∗ JN ,∞ (f)] − 2 Re (Ij,N (f)) ,with

Ij,N (f) := τN
[(

JN ,∞ ◦ Θj
α

)
(f)∗

(
Θj

N ,α ◦ JN ,∞
)

(f)
]

= N
∫T2

µ(dx)

∫T2

µ(dy) f(y) f(Sj
αx)|〈CN (x),W j

α,NCN (y)〉|2 ·Now, Proposition 3.2.2 yields
(
τN ◦ Θj

N ,α

)
[JN ,∞ (f)∗ JN ,∞ (f)] = τN [JN ,∞ (f)∗ JN ,∞ (f)] −−−−−→

N−→∞
ωµ

(
|f |2

)
,so that the strategy is to prove that also Ij,N (f) goes to ωµ

(
|f |2

)
=

∫T2

µ(dx)|f(x)|2when j,N → ∞ with j < 1
γ

log N
log η .Resorting to GN

n

(
Ñ
2N

) in De�nition 5.1, and to its 
omplementary set
[
GN

n

(
Ñ
2N

)]◦
= T2 \ GN

n

(
Ñ
2N

), we 
an write
∣∣∣∣Ij,N (f) −

∫T2

µ(dy) |f(y)|2
∣∣∣∣

=

∣∣∣∣
∫T2

µ(dx)

∫T2

µ(dy) f(y)
(
f(Sj

αx) − f(y)
)
N|〈CN (x),W j

α,NCN (y)〉|2
∣∣∣∣

≤
∣∣∣∣∣

∫
[
GN

n

(
Ñ
2N

)]
◦
µ(dx)

∫T2

µ(dy) f(y)
(
f(Sj

αx) − f(y)
)
N|〈CN (x),W j

α,NCN (y)〉|2
∣∣∣∣∣

+

∣∣∣∣∣

∫

GN
n

(
Ñ
2N

) µ(dx)

∫T2

µ(dy)f(y)
(
f(Sj

αx) − f(y)
)
N|〈CN (x),W j

α,NCN (y)〉|2
∣∣∣∣∣ . (30)
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 Framework 27For the �rst integral in the r.h.s. of the previous expression we have:
∣∣∣∣∣

∫
[
GN

n

(
Ñ
2N

)]
◦
µ(dx)

∫T2

µ(dy) f(y)
(
f(Sj

αx) − f(y)
)
N|〈CN (x),W j

α,NCN (y)〉|2
∣∣∣∣∣

≤ 2(‖f‖∞)2
∫
[
GN

n

(
Ñ
2N

)]
◦
µ(dx)

∫T2

µ(dy)N|〈
(
W ∗

α,N

)j
CN (x), CN (y)〉|2

≤ 2(‖f‖∞)2µ

([
GN

n

(
Ñ

2N

)]◦)
6

76 η3j

N
(‖f‖∞)2where we have used 
ompleteness and normalization Properties 3.1 and equation (29d)from Proposition 5.2; this term be
omes negligible for large N > Ñ i� j < 1

γ
log N
log η , with

γ > 3.Now it remains to prove that the se
ond term in (30) is also negligible for large N :sele
ting a ball B(Sj
αx, d0), one derives

∣∣∣∣∣

∫

GN
n

(
Ñ
2N

) µ(dx)

∫T2

µ(dy) f(y)
(
f(Sj

αx) − f(y)
)
N|〈CN (x),W j

α,NCN (y)〉|2
∣∣∣∣∣

≤
∣∣∣∣∣

∫

GN
n

(
Ñ
2N

) µ(dx)

∫

B(Sj
αx,d0)

µ(dy) f(y)
(
f(Sj

αx) − f(y)
)
N|〈CN (x),W j

α,NCN (y)〉|2
∣∣∣∣∣

+

∣∣∣∣∣

∫

GN
n

(
Ñ
2N

) µ(dx)

∫T2\B(Sj
αx,d0)

µ(dy)f(y)
(
f(Sj

αx) − f(y)
)
N|〈CN (x),W j

α,NCN (y)〉|2
∣∣∣∣∣ .Applying the mean value theorem in the �rst double integral, we get that ∃c ∈ B(Sj

αx, d0)su
h that
∣∣∣∣∣

∫

GN
n

(
Ñ
2N

) µ(dx)

∫T2

µ(dy) f(y)
(
f(Sj

αx) − f(y)
)
N|〈CN (x),W j

α,NCN (y)〉|2
∣∣∣∣∣

≤
∫

GN
n

(
Ñ
2N

) µ(dx)
∣∣∣f(c)

(
f(Sj

αx) − f(c)
)∣∣∣
∫

B(Sj
αx,d0)

µ(dy)N|〈
(
W ∗

α,N

)j
CN (x), CN (y)〉|2

+ 2‖f‖ 2
∞

∫

GN
n

(
Ñ
2N

) µ(dx)

∫T2\B(Sj
αx,d0)

µ(dy)N|〈CN (x),W j
α,NCN (y)〉|2 ·
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ompleteness and normalization (Properties 3.1), we arrive at the upperbound
≤ ‖f‖∞ sup

z∈T2

c∈B(z,d0)

∣∣(f(z) − f(c)
)∣∣+ 2 ‖f‖ 2

∞ N sup
x∈GN

n

(
Ñ
2N

)

y 6∈B(Sj
αx,d0)

|〈CN (x),W j
α,NCN (y)〉|2 ·By uniform 
ontinuity, the �rst term 
an be made arbitrarily small, provided we 
hoose

d0 small enough. For the se
ond integral, we use Theorem 2, whi
h provides us with
N0 = N0(d0) depending on the same d0 , su
h that the se
ond term vanishes for all
N > N0 and far all j < 1

γ
log N
log η .

(2) In order to extend the result of point (1) to f ∈ L∞
µ

(T2
), we use the Corollary ofLusin's Theorem, 
hoose a sequen
e {fn}n as in its statement and estimate

lim
j,N→∞

j< 1
γ

log N
log η

ww Opj,N (f)
ww

2
6 lim

j,N→∞
j< 1

γ
log N
log η

ww Opj,N (f − fn)
ww

2
+ lim

j,N→∞
j< 1

γ
log N
log η

ww Opj,N (fn)
ww

2
·Using point (1), the se
ond term in the r.h.s. of the previous equation 
an bebounded by arbitrarily small ε, indeed fn ∈ C0

(T2
).For the �rst term we pro
eed as follows: using De�nition 4.1 together with equa-tions (37) and (38) of Appendix A, we �nd

(
J∞,N ◦ Θj

N ,α ◦ JN ,∞
)

(g)(x) =
∑

ℓ∈(Z/NZ)2

ΓN (g)

(
Vα (ℓ)

N

)
XQN( ℓ

N )(x) , (31)where g is any measurable fun
tion on T2. Then, be
ause of how the running averageoperator (RAO) ΓN is de�ned, for all g ∈ L1
µ

(T2
) it follows that

www
(
J∞,N ◦ Θj

N ,α ◦ JN ,∞
)

(g)
www

1
6

www
(
J∞,N ◦ Θj

N ,α ◦ JN ,∞
)

(|g |)
www

1
= ‖g‖1 ,where ‖·‖1 denotes the L1

µ

(T2
)�norm, and that

www
(
J∞,N ◦ Θj

N ,α ◦ JN ,∞
)

(g)
www

∞
= sup

ℓ∈(Z/NZ)2

{∣∣∣∣ΓN (g)

(
ℓ

N

)∣∣∣∣
}

6 ‖ΓN (g)‖0 6 ‖g‖∞ ·Indeed, the �rst equality in the last formula 
omes from the de�nition of essentialnorm [21℄ (whi
h in this 
ase amounts to the greater absolute value assumed by thesimple fun
tion J∞,N ◦ Θj
N ,α ◦ JN ,∞), whereas the �rst inequality is a 
onsequen
e of
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ontinuity of ΓN and the last one from Proposition A.1. Putting last two inequalitytogether, we obtain
www
(
J∞,N ◦ Θj

N ,α ◦ JN ,∞
)

(g)
www

2
6 ‖g‖∞‖g‖1 ,when
e, setting g = f − fn,

ww Opj,N (f − fn)
ww

2
=
www Θj

α (f − fn) − J∞,N ◦ Θj
N ,α ◦ JN ,∞ (f − fn)

www
2

(32)
6 ‖ f − fn ‖2 + ‖ f − fn ‖∞‖ f − fn ‖1 , ∀j,N ·Now 
onvergen
e follows from Lusin's Corollary.
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R

�

-

-

f ∈ L∞
µ

(T2
)

Θ

J 25
6,
∞

J256,∞

Θ256

R

�

-

-

f ∈ L∞
µ

(T2
)

Θ

J 23
04

,∞

J2304,∞

Θ2304

Figure 4: These two plots show how the di�eren
e between JN ,∞ ◦Θα and ΘN ,α ◦JN ,∞be
omes smaller with N . For the 
ontinuous SM, Θ1, the a
tions JN ,∞ ◦Θ1 and ΘN ,1 ◦
JN ,∞ on f ∈ L∞

µ

(T2
) (left part of both plots) are plotted for two di�erent N : N = 16(top) and N = 48 (bottom). The resulting matri
es are mapped ba
k, together with thefun
tion Θ1 (f), on the unfolded torus, by means of the de�dis
retization operator J∞,N .
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R

�

-

-

γ0: Dis
ontinuityline for S3/2

γ−1 = S3/2 (γ0):Dis
ontinuity linefor S−1
3/2 and S−2

3/2

γ−2 = S 2
3/2 (γ0):Dis
ontinuity linefor S−2
3/2

g ∈ L∞
µ

(T2
)

Θ 2
3/2

J 14
40

0,
∞

J14400,∞

Θ2
14400, 3

2

Figure 5: Here, the same pi
ture as in Figure 4, is represented, with a �ner dis
retizationgiven by N = 120 and a di�erent fun
tion g ∈ L∞
µ

(T2
), for a dis
ontinuous SM, Θ3/2,a
ting two times. Choosing a fun
tion g with sharp variation a
ross γ0 (blue lines),the preimage of γ−1, the dis
ontinuity of Θ3/2 makes it evident how the di�eren
esbetween J14400,∞ ◦ Θ2

α and Θ2
14400,α ◦ J14400,∞ are the greater the 
loser they are tothe dis
ontinuity line γ−1 (red lines). Of 
ourse, the longer the temporal evolution, theworst the 
orresponden
e, in the sense that several new dis
ontinuity lines 
ome to playa role. In the 
ase at hands, the map a
ts twi
e, and γ−2 is felt by Θ2

14400,α ◦ J14400,∞,as expe
ted.
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lusions
In this arti
le we have 
onsidered dis
rete approximants of Sawtooth Maps on the torusand we have studied them in an algebrai
 framework modeled on the so�
alled Anti�Wi
kquantization; In fa
t, �nite�dimensional dis
retization and quantization 
an be seen assimilar pro
edures in that they map an abelian Von Neumann algebra (of essentiallybounded fun
tions on phase�spa
e) into �nite�dimensional matrix subalgebras, the onlydi�eren
e being whether the latter are diagonal (
ommutative) or not.In the semi�
lassi
al analysis of 
lassi
ally 
haoti
 quantum systems, the 
orrespon-den
e 
lassi
al/quantum is usually observed only on time�s
ales that are logarithmi
 inthe quantization parameter ~. The motivation of our study was to show that the samephenomenon arises when a hyperboli
 
lassi
al system is dis
retized, namely for
ed tomove on a latti
e, and afterwards the latti
e spa
ing is sent to zero.Previous results [14℄ based on the numeri
al investigation of the entropy produ
tion,indi
ate that it should indeed be so; however, these results were not supported by a solidframework where to analyze the 
ontinuous limit of the family of dis
rete approximants.This is the 
ontent of this arti
le.The major di�
ulty was represented by the need of 
ontrolling the dis
ontinuous
hara
ter of Sawtooth Maps, whi
h was made possible by an appropriate 
hoi
e of Latti
eStates. In fa
t, similarly to the entropi
 approa
h whi
h, despite the dynami
s being
lassi
al, was based on a quantum dynami
al entropy, the dis
retization/de�dis
retizationpro
edure we set up is based on quantum tools.The 
hoi
e of Latti
e States was naturally pointed to by the latti
e stru
ture ofthe dis
rete phase�spa
e and turned out to posses the right lo
alization properties formastering the dis
ontinuities. The result is the appearan
e of a logarithmi
 time�s
alewhen the dis
rete hyperboli
 SM tend to their 
ontinuous limit; namely, the 
ontinuousand dis
rete dynami
s agree up to a breaking time whi
h is proportional to the logarithmof the latti
e spa
ing.The proportionality 
onstant does not involve the Lyapunov exponent, that is theeigenvalue λ > 1 of the dynami
al matrix Sα, rather the largest eigenvalue, η, of√S†

αSα.In the 
ase of ellipti
 SM, |λ | = 1, η >
√

2; however the resulting breaking time is aspurious e�e
t, while when λ > 1, the presen
e of η in the breaking time seems to be anunavoidable 
onsequen
e of the dis
ontinuous dynami
s.
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 Framework 33A. Anti Wi
k dis
retization of L∞
µ

(T2
)In this appendix we will apply De�nitions 3.3 and dis
retize L∞

µ

(T2
) by means of theLS set {|CN (x)〉 | x ∈ T2} ∈ HN introdu
ed in Se
tion 3.1.In this framework, the dis
retizing/de�dis
retizing operators of De�nitions 3.3 read:

L∞
µ

(T2
)
∋f 7→ N2

∫T2

µ(dx) f(x) | x̂N 〉〈 x̂N | =: JN ,∞(f) ∈ DN , (33)
DN ∋ X 7→ 〈 x̂N |X | x̂N 〉 =: J∞,N (X)(x) ∈ S

(T2
)
⊂ L∞

µ

(T2
)

, (34)where S
(T2

) denotes the set of simple fun
tions [21℄ on the torus. The matrix elementsof JN ,∞(f) are as follows:
M

(f)
ℓ,m := 〈 ℓ | JN ,∞(f) | m 〉

= N2

∫T2

µ(dx) f(x) 〈 ℓ | x̂N 〉〈 x̂N |m 〉

= N2

∫ 1

0
dx1

∫ 1

0
dx2 f(x) δ

(N)
ℓ1 , x̂N,1

δ
(N)
ℓ2 , x̂N,2

δ
(N)
m1 , x̂N,1

δ
(N)
m2 , x̂N,2

= N2 δ
(N)
ℓ1 , m1

δ
(N)
ℓ2 , m2

∫ 1

0
dx1

∫ 1

0
dx2 f(x) δ

(N)

ℓ1 , ⌊Nx1+ 1
2⌋

δ
(N)

ℓ2 , ⌊Nx2+
1
2⌋

·This implies
M

(f)
ℓ,m = N2 δ

(N)
ℓ,m

∫ ℓ1+
1
2

N

ℓ1−
1
2

N

dx1

∫ ℓ2+
1
2

N

ℓ2−
1
2

N

dx2 f(x) , (35)so that varying f ∈ L∞
µ

(T2
) yields Ran (JN ,∞) = DN . In order to re
ast (35) into ani
er expression, we introdu
eDe�nition A.1 (Running Average Operator (RAO))Let QN (x) denote the square of side 1/N , oriented parallel to the axis of thetorus and 
entered around x; then, the Running Average Operator

ΓN : L∞
µ (X ) 7−→ C0

(T2
), is de�ned by

L∞
µ

(T2
)
∋ f(x) 7−→ ΓN (f) (x) =: N2

∫

QN (x)
µ(dy) f(y) ∈ C0

(T2
)
·
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µ

(T2
), the fun
tion f

(Q)
N := ΓN (f) is uniformly 
ontinuous on T2;moreover, the Running Average Operator has norm

‖ΓN‖B := sup
f∈L∞

µ (T2)

‖ΓN (f)‖0

‖f‖∞
= 1 · (36)Proof:Let x0 ∈ T2, x ∈ QN (x0) and XE denote the 
hara
teristi
 fun
tion of E ⊂ T2. ByDe�nition (A.1):

∣∣∣f (Q)
N (x0) − f

(Q)
N (x)

∣∣∣ = N2

∣∣∣∣
∫T2

µ(dy) f(y)
(
XQN (x0)(y) −XQN (x)(y)

)∣∣∣∣

6 N2 ‖f‖∞
∫T2

µ(dy)
∣∣XQN (x0)(y) −XQN (x)(y)

∣∣

= N2 ‖f‖∞
[
µ
(
QN (x0) ∪ QN (x)

)
− µ

(
QN (x0) ∩ QN (x)

)]
·A

ording to our hypothesis, x ∈ QN (x0), thus geometri
al 
onsiderations lead to:

µ
(
QN (x0) ∪ QN (x)

)
6

( 1

N
+ |x1 − x01 |

)( 1

N
+ |x2 − x02 |

)

µ
(
QN (x0) ∩ QN (x)

)
=
( 1

N
− |x1 − x01 |

)( 1

N
− |x2 − x02 |

)

µ
(
QN (x0) ∪ QN (x)

)
− µ

(
QN (x0) ∩ QN (x)

)
6

2

N

(
|x1 − x01 | + |x2 − x02 |

)

6
2
√

2

N
‖x0 − x‖ ,so that ∣∣∣f (Q)

N (x0) − f
(Q)
N (x)

∣∣∣ 6 2
√

2 N ‖f‖∞ ‖x0 − x‖, whi
h proves the 
ontinuity of
f

(Q)
N , while uniform 
ontinuity 
omes from T2 being 
ompa
t.Con
erning the norm in (36), the upper bound ‖ΓN‖B 6 1 is 
lear and the maxi-mum is rea
hed by 
hoosing f 
onstant.By means of the RAO, the dis
retization operator in (33) 
an be 
onveniently written as

JN ,∞(f) =
∑

ℓ∈(Z/NZ)2

f
(Q)
N

(
ℓ

N

)
|ℓ〉 〈ℓ | · (37)
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 Framework 35Analogously, the de�dis
retization operator in (34) 
an be re
ast as
J∞,N (X)(x) =

∑

ℓ∈(Z/NZ)2

Xℓ,ℓ δ
(N)
ℓ , x̂N

=
∑

ℓ∈(Z/NZ)2

Xℓ,ℓ XQN( ℓ
N )(x) , (38)thus proving that Ran (J∞,N ) = S

(T2
).Moreover, 
ombining equations (37) and (38), we expli
itly get the simple fun
tionarising from f ∈ L∞

µ

(T2
), via AW dis
retization/de�dis
retization:

(J∞,N ◦ JN ,∞) (f)(x) =
∑

ℓ∈(Z/NZ)2

ΓN (f)

(
ℓ

N

)
XQN( ℓ

N )(x) · (39)The a
tion of the operator J∞,N ◦ JN ,∞ 
an be seen in Figures 4 and 5.
B. Proof of Proposition 5.1We start by proving the in
lusions (22).For every real number t, we have 0 6

〈
Nt + 1

2

〉
= Nt + 1

2 −
⌊
Nt + 1

2

⌋
< 1, so that

∣∣∣∣∣ t −
⌊
Nt + 1

2

⌋

N

∣∣∣∣∣ 6
1

2N
, ∀ t ∈ R·From (5) in De�nition 3.2, we derive

dT2

(
x ,

x̂N

N

)
6

1√
2N

, ∀ x ∈ T2· (40)Then, let us 
onsider the triangular inequality
dT2 (x , y) 6 dT2

(
x ,

x̂N

N

)
+ dT2

(
x̂N

N
, y

)
∀ y ∈ T2 , (41)and let us take the in�mum over the set y ∈ Γn de�ned in (17)

dT2

(
x̂N

N
, Γn

)
> dT2 (x , Γn) − dT2

(
x ,

x̂N

N

)

> dT2 (x , Γn) − 1√
2N

,



36 F. Benatti and V. Cappelliniwhere we used (40). Therefore, 
onsidering the 
omplement [Γn (ε)
]◦ of the union ofstrip of width ε, Γn (ε) de�ned in (19), we get that

x ∈
[
Γn (ε)

]◦
=⇒ x̂N

N
∈
[
Γn

(
ε − 1√

2N

)]◦
·Further, from (20), it follows that, if the latti
e point x̂N

N does not belong to Γn

(
ε − 1√

2N

),then the 
orresponding point x ∈ T2 must belong to GN
n

(
ε − 1√

2N

).Changing ε− 1√
2N

7−→ ε we obtain the �rst in
lusion relation in equation (22); the se
ondone follows by inter
hanging the role played by x̂N

N and x in (41).In order to prove (23) , we start by 
onsidering the matri
es Sα =
(

1+α 1
α 1

) andits inverse S−1
α =

(
1 −1
−α 1+α

). Let η be the largest (positive) eigenvalue of √S†
αSα; its
hara
teristi
 polynomial for η is η4 −

(
2 α2 + 2 α + 3

)
η2 + 1 = 0, when
e η attains itsminimum ηmin =

√
2 at α = −1

2 . Then, we set Ñ := 2
√

2
(√

2 + 1
)
η2n, n ∈ N, 
hoose

N > Ñ and pro
eed by indu
tion.
p = 0 : from de�nitions (10) and (11), it follows

dT2

(
U0

α (Nx)

N
,

V 0
α (x̂N )

N

)
= dT2

(
x ,

x̂N

N

)
<

1√
2N

<

√
2

N
,where the �rst inequality follows from (40), thus relation (23) holds for p = 0.

p = q − 1 , 1 6 q 6 n : sin
e
dT2

(
U q

α (Nx)

N
,
V q

α (x̂N )

N

)
6 dT2




Uα

(
U q−1

α (Nx)
)

N
,
Uα

(
V q−1

α (x̂N )
)

N


+

+ dT2




Uα

(
V q−1

α (x̂N )
)

N
,
Vα

(
V q−1

α (x̂N )
)

N


 ,using (10) in the �rst term and noting that, from de�nitions (10) and (11), the se
ondterm is less or equal to √

2
N , we get

dT2

(
U q

α (Nx)

N
,
V q

α (x̂N )

N

)
6 dT2

(
Sα

(
U q−1

α (Nx)

N

)
, Sα

(
V q−1

α (x̂N )

N

))
+

√
2

N
·
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rete Sawtooth Maps and its Algebrai
 Framework 37By the indu
tion hypothesis we have:
dT2

(
U q−1

α (Nx)

N
,
V q−1

α (x̂N )

N

)
6

√
2

N

(
ηq − 1

η − 1

) (42)
6

√
2

N

1√
2 − 1

ηq

(
η >

√
2 , 1 6 q 6 n =⇒

)
<

1

2
ηq−2n <

1

2
η−1 · (43)Now we set ε = Ñ

2N , taking into a

ount that η >
√

2 and use the right in
lusion in (22)to dedu
e that
x ∈ GN

n

(
Ñ

2N

)
=⇒ x 6∈ Γn

(
Ñ

2N
− 1√

2N

)
.At this point, we make use of the following result, whi
h shall be proved in Lemma B.1.3:it states that if a point does not belong to Γn (ε), the union of the the strips of width

ε 6
1
2 up to time n, then its orbit under Sα up to time n − 1 is farther away than

εη−q, 0 6 q < n from the dis
ontinuity line γ0. Expli
itly
x 6∈ Γn (ε) =⇒ dT2 (Sq

α (x) , γ0) > ε η−q , ∀ 0 6 q < n ,when
e
dT2

(
U q−1

α (Nx)

N
, γ0

)
>

(
Ñ

2N
− 1√

2N

)
η1−q

>

√
2

N

(
η2n−1 − ηq−1

η − 1

)
η1−q

>

√
2

N

(
ηq − 1

η − 1

)
, (44)where the se
ond inequality 
omes from η >

√
2, the relation ηn − 1

η − 1
6

1√
2 − 1

ηn and



38 F. Benatti and V. Cappellinithe following estimates:
(

Ñ

2N
− 1√

2N

)
=

√
2

N

((√
2 + 1

)
η2n − 1

2

)

>

√
2

N

[(√
2 + 1

)(√
2 − 1

) η2n − η + η − 1

η − 1
− 1

2

]

>

√
2

N

[
η

η2n−1 − 1

η − 1
+

1

2

]
>

√
2

N

(
η2n−1 − ηq−1

η − 1

)
·Therefore, 
omparing (44) with (42)

dT2

(
U q−1

α (Nx)

N
,
V q−1

α (x̂N )

N

)
< dT2

(
U q−1

α (Nx)

N
, γ0

)
, ∀q 6 n ·As a 
onsequen
e, the segment (Uq−1

α (Nx)
N , V q−1

α (x̂N )
N

) 
annot 
ross the line γ0. This
ondition, together with (43), allows us to use another result proved in Lemma B.1.1b,whi
h states that if a segment (A,B) on the torus does not 
ross the dis
ontinuity line
γ0 then dT2 (Sα (A) , Sα (B)) 6 η dT2 (A,B). We 
an �nally 
on
lude with:

dT2

(
U q

α (Nx)

N
,
V q

α (x̂N )

N

)
6 η

√
2

N

(
ηq − 1

η − 1

)
+

√
2

N
=

√
2

N

(
ηq+1 − 1

η − 1

)
·The following Lemma, whi
h has been used in the proof of the previous Proposition,deals with the geometri
al properties of the Sawtooth dynami
s.

Lemma B.1With η the largest (positive) eigenvalue of√S†
αSα and A,B ∈ T2 su
h that

dT2 (A,B) < 1
2 η−1, it follows:(1a) If the segment (A,B) does not 
ross γ−1, then

dT2

(
S−1

α (A) , S−1
α (B)

)
6 η dT2 (A,B) · (45a)(1b) If (A,B) does not 
ross γ0, then

dT2 (Sα (A) , Sα (B)) 6 η dT2 (A,B) · (45b)



Continuous Limit of Dis
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 Framework 39(2) For any given α ∈ R, p ∈ N+ and 0 6 ε 6
1
2 η−1,

x ∈ γp−1 (ε) =⇒ S−1
α (x) ∈

(
γp (η ε) ∪ γ0 (η ε)

)
·(3) For any given α ∈ R, n ∈ N+ and 0 6 ε 6 1

2 , with U q
α as in (10),

x 6∈ Γn (ε) =⇒ dT2

(
U q

α (Nx)

N
, γ0

)
> ε η−q , ∀ 0 6 q < n ·Proof:In the 
ourse of the proof, we shall use that

wwS±1
α · v

wwR2 6 η ‖v‖R2 , (46a)
wwS±1

α · v
wwR2 > η−1‖v‖R2 , (46b)whi
h dire
tly follows from the de�nition of η, where v is any 2�dimensional real ve
tor.In order to prove (45), it is 
onvenient to unfold T2 and the dis
ontinuity of Sαon the plane R2. This is most easily done as follows. Points A ∈ T2 = R2/Z2 arerepresented by equivalen
e 
lasses

[a] :=
{
a + n , n ∈ Z2

}
, a ∈ [0, 1)2 · (47)Given A,B ∈ T2, let Ab ∈ [a] be su
h that

dT2 ([a] , [b]) =
wwwAb − b

wwwR2
·Noti
e that

dT2 ([a] , [b]) = ‖a − b‖R2 i� ‖a − b‖R2 6
1

2
(48)(1a) (A,B) not 
rossing γ−1 means that the segment (Ab , b

) does not interse
t γ−1.Periodi
ally 
overing the plane�R2 by squares [0, 1)2, the γ−1-lines form a set of (parallel)straight lines x1 − x2 = n ∈ Z; it follows that (Ab , b
) does not 
ross γ−1 i�

⌊
Ab

1 − Ab
2

⌋
= ⌊b1 − b2⌋ , (49)where the integral part on the r.h.s. takes values 0,−1, depending on whi
h side of thediagonal γ−1 the point b lies within.
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α are not sensitive to the integer part of their arguments, their a
tions are the sameon all elements of the equivalen
e 
lasses (47), that is

dT2

(
S−1

α (A) , S−1
α (B)

)
= dT2

(
S−1

α ([a]) , S−1
α ([b])

)
= dT2

(
S−1

α

(
Ab
)

, S−1
α (b)

)
·By expanding 〈x〉 = x − ⌊x⌋, using the de�nition of S−1

α (·) and putting together allintegral 
ontributions, 
ondition (49) yields
dT2

(
S−1

α (A) , S−1
α (B)

)
= min

m∈Z2

wwS−1
α (A) − S−1

α (B) + m
wwR2

= min
m′∈Z2

wwwS−1
α ·

(
Ab − b

)
+ m′

wwwR2

= dT2

(
S−1

α ·
(
Ab − b

)
, 0
)

·Applying (46a), sin
e we assumed dT2 (A,B) < 1
2 η−1, we estimate

wwwS−1
α ·

(
Ab − b

)wwwR2
6 η

wwwAb − b

wwwR2

= η dT2 (A,B) <
1

2
·In parti
ular, using (48), the previous inequalities imply

dT2

(
S−1

α ·
(
Ab − b

)
, 0
)

=
wwwS−1

α ·
(
Ab − b

)wwwR2
6 η dT2 (A,B) ·(1b) Using the same argument as (1a), the union of γ0-lines 
onstitute a set of straightlines x1 = n ∈ Z; Therefore the segment (Ab , b

) does not 
ross γ0 i�
⌊
Ab

1

⌋
= ⌊b1⌋ · (50)As done before, by means of (50), we arrive at

dT2 (Sα (A) , Sα (B)) = dT2

(
Sα

(
Ab
)

, Sα (b)
)

= dT2

(
Sα ·

(
Ab − b

)
, 0
)

·The proof 
an now be 
ompleted exa
tly as for point (2a) before.(2) We denote by dT2 (x, γ) = inf
y∈γ

dT2 (x,y) the distan
e of the point x ∈ T2 from a
urve γ ∈ T2. Then, from De�nition (18) we have:
x ∈ γp−1 (ε) =⇒ ε > dT2 (x, γp−1) = dT2 (x,y⋆) , (51)
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 Framework 41where y⋆ is the nearest point to x belonging to γp−1.We distinguish two 
ases:(2′) The segment (x,y⋆) does not 
ross1 γ−1From (51) and point (1a), sin
e S−1
α (y⋆) ∈ γp (see (16a)), we get

dT2

(
S−1

α (x) , γp

)
6 dT2

(
S−1

α (x) , S−1
α (y⋆)

)

6 η dT2 (x,y⋆) 6 η ε ·Therefore S−1
α (x) ∈ γp (η ε).(2′′) The segment (x,y⋆) 
rosses γ−1.In this 
ase, there exists z ∈ γ−1 su
h that

dT2 (x,y⋆) = dT2 (x,z) + dT2 (z,y⋆) · (52)Then, from (51) and (52),
ε > dT2 (x,y⋆) > dT2 (x,z) ·Sin
e, a

ording to (16), S−1

α (z) ∈ γ0, from point (1a) we get
dT2

(
S−1

α (x) , γ0

)
6 dT2

(
S−1

α (x) , S−1
α (z)

)
6 η ε ,that is S−1

α (x) ∈ γ0 (η ε).(3) From point (2), it follows that, when 0 6 ε 6
1
2 , for p ∈ N+,

x 6∈
(
γp (ε) ∪ γ0 (ε)

)
=⇒ Sα (x) 6∈ γp−1

(
η−1ε

)
· (53)We prove by indu
tion that, when 0 6 ε 6

1
2 , for m ∈ N+,

x 6∈
m⋃

p=0

γp (ε) =⇒ Sα (x) 6∈
m−1⋃

p=0

γp

(
η−1ε

)
· (54)For m = 1, (54) follows from (53); if (54) holds for m = r, then take

x 6∈
r+1⋃

p=0

γp (ε) . This means that x 6∈
r⋃

p=0

γp (ε) and x 6∈
(
γr+1 (ε) ∪ γ0 (ε)

)
·1we stipulate that, if y⋆

∈ γ−1 or x ∈ γ−1, we are still in a non�
rossing 
ondition
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tion hypothesis and (53), we get
x 6∈

r+1⋃

p=0

γp (ε) =⇒ Sα (x) 6∈
r−1⋃

p=0

γp

(
η−1ε

) and Sα (x) 6∈ γr

(
η−1ε

)
·Setting m = n − 1 and iterating q times the impli
ation (54) argument, we get

x 6∈
n−1⋃

p=0

γp (ε) =⇒ Sq
α (x) 6∈

n−1−q⋃

p=0

γp

(
η−qε

)
, ∀ 0 6 q < n ·In parti
ular Sq

α (x) 6∈ γ0

(
η−qε

), whi
h leads to the lower bound
dT2 (Sq

α (x) , γ0) > η−qε , ∀ 0 6 q < n ,when
e the result follows in view of De�nitions (10) and (19).
C. Proof of Proposition 5.2(a) In (16a), we have de�ned γp = S−p

α (γ0) where S−1
α (x) (as well as S−p

α (x)) is apie
ewise 
ontinuous mapping onto T2 with jump�dis
ontinuities a
ross the γp lines dueto the presen
e of the fun
tion 〈·〉 in (9). Away from the dis
ontinuities, S−p
α (x) be-haves as the matrix a
tion S−p

α · x. We want now to estimate the length l (γp); inorder to do that, we unfold γp on the plane and 
al
ulate the length of the segment{
x ∈ R2

∣∣∣ x = S−p
α ·

(
0
y

)
, y ∈ [0, 1)

}, whi
h, in its turn, is the image of γ0 under thematrix a
tion given by S−p
α · x. Therefore, using (46a), the result follows.(b) Let L (ε) denote the set of points having distan
e from a segment of length L smalleror equal than ε: it has a volume (under the Lebesgue measure µ) given by

µ
(
L (ε)

)
= 2Lε + πε2 ,where the last term on the r.h.s. takes into a

ount rounding of the extremes of the stripby to semi�
ir
le of radius ε. Then (29b) follows from (29a).
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 Framework 43(
) This follows from De�nition (19):
µ
(
Γn (ε)

)
= µ




n−1⋃

p=0

γp (ε)


 6

n−1∑

p=0

µ
(
γp (ε)

)
·Using (29b), we 
an write:

µ
(
Γn (ε)

)
6 2 ε

n−1∑

p=0

ηp +

n−1∑

p=0

π ε2 = 2 ε
ηn − 1

η − 1
+ n π ε2 ·Finally, the estimate xp − 1

x − 1
6

(√
2 + 1

)
xp, valid for x >

√
2, yields

µ
(
Γn (ε)

)
6 2 ε

(√
2 + 1

)
ηn + n π ε2 ·(d) By writing the left in
lusion in (22) in terms of 
omplementary sets, with ε = Ñ

2N ,we get: [
GN

n

(
Ñ

2N

)]◦
⊆ Γn

(
Ñ

2N
+

1√
2N

) and so
µ

([
GN

n

(
Ñ

2N

)]◦)
6 µ

(
Γn

(
Ñ

2N
+

1√
2N

))
·By substituting in (29
) Ñ+

√
2

2N = Ñ
2N + 1√

2N
in the pla
e of ε, we get:

µ

([
GN

n

(
Ñ

2N

)]◦)
6

Ñ +
√

2

2N

(√
2 + 1

)(
2 ηn +

n√
2 + 1

π
Ñ +

√
2

2N

)
· (55)Finally, the r.h.s of (55), 
an be estimated by the following upper bounds:

π
Ñ +

√
2

2N
< 2

n√
2 + 1

< ηn

(
Ñ +

√
2
)(√

2 + 1
)

< 19 η2nwhi
h hold for ∀ N > Ñ, η >
√

2 and ∀ n ∈ N+. This ends the proof.
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