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Abstract
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1. Introduction

Under the term of Quantum Chaos goes a rich phenomenology of behaviours [1-3| proper
to quantum systems whose classical limit presents typical chaotic features as positive

Lyapunov exponents (hyperbolic regime) [4-6].

The footprints of classical chaos are usually studied semi—classically when a suitable
“h’-like quantization parameter goes to zero; one then examines the differences between
quantum and classical behaviours. In the hyperbolic case, quantum chaos reveals itself
through the presence of a time-scale, over which quantum and classical motions mimic
each other, that increases as —log“h” [1-3,7-9|. This peculiar logarithmic time scale has
to be compared with the scaling “A”~%, « > 0, which is proper of quantum systems with

regular classical limit [1].

Heuristical explanations of the logarithmic time-scale already indicate that the phe-
nomenon is not exclusive of quantum systems, and thus of non—commutativity, but that
it should also be present when the classical dynamics is looked at as the continuous limit

of a family of discrete classical systems. [10].

Intrinsically discrete systems [11| and discretized classical continuous systems [12—
14] have recently been objects of numerical analysis concerning the entropy production

and the presence of a logarithmic time scale, whereas the ergodic properties of discretized
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discontinuous maps have been addressed in [15].

In the following, we shall rigorously show this fact to be true for Sawtooth Maps on
the 2-dimensional torus [16-18]: this will be done by forcing them to move on a square
lattice and by retrieving the continuous dynamics when the lattice spacing goes to zero.
Because of the analogies between quantization and discretization, we will make use of

technologies strictly resembling the so-called Anti—Wick quantization [19].

We shall prove that a time-scale logarithmic in the lattice-spacing appears; in com-
parison to previous results obtained studying numerically the entropy production [14],
a rigorous continuous limit is established that succeeds in controlling the discontinuities
of Sawtooth Maps. Despite their classical nature, the entropy previously investigated
was quantum mechanical; somewhat analogously, in this article, Sawtooth Maps will be
studied by means of states, which play a role similar to quantum Coherent States, whose
choice is naturally provided by the lattice structure of discretized Sawtooth Maps. They
will be shown to satisfy a dynamical localization property that makes them remain local-
ized around the trajectories of the continuous dynamics, but only on a logarithmic time

scale.

2. Classical Dynamical Systems

Classical dynamics is usually described by means of a measure space X', the phase—space,

endowed with the Borel o—algebra and a normalized measure p, u(X’) = 1. The “volumes”

u(E) = /E u(da)

of measurable subsets EF C X represent the probabilities that a phase-point * € X belong
to them: the measure p defines the statistical properties of the system and represents
a possible state, which is taken to be an equilibrium state with respect to the given

dynamics.

In such a scheme, a reversible discrete time dynamics amounts to an invertible
measurable map S : X +— X such that guoS = u and to its iterates {S* | k € Z}:
phase—trajectories passing through x € X at time 0 are then sequences {Sk ar:} ke 6]

Classical dynamical systems are thus conveniently described by triplets (X, i, S);

in the present work, we shall focus upon the following choices:

X: the 2-dimensional torus T? = R?/Z? = {& = (z1,22) € R* (mod 1)};
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w: the Lebesgue measure, u(dz) = dry dag, on T?;

S: an invertible measurable transformations on T? that preserves the Lebesgue mea-

sure.

It is convenient to associate an algebraic triple (M, w, ©) to the measure-theoretic

triple (T2, i, S), consisting of

M: the (Abelian) Von Neumann *-algebra L7° (T?) of essentially bounded functions
on T2 [20,21].

wy: the state (expectation) on M, given by

o I (1) 3 fr— wilf)= [ nlde) f@) € BT 1)

2
O: the automorphism of M such that © (f) = fo S, wo O =w.

In the following, we shall consider a discretized version of (T2, u,S) which arises by

forcing the continuous classical system to live on a square lattice Ly C T2 of spacing %:

Lyi= {% ‘ pe (Z/NZ)z} , 2)

where (Z/NZ.) denotes the residual class (mod N), that is 0 < p; < N — 1.

Taking the N? points as labels of the elements {|£>}ZG(Z/NZ)2 of an orthonormal
basis (0.n.b.) of the A/ dimensional Hilbert space Hxr, N':= N2, we will consider discrete
algebraic triples (DN, ™, O N); consisting of

Dy: an N x N matrix algebra diagonal in the orthonormal basis introduced above;

Ty the uniform state (expectation) on Dy defined by

77\/:7)/\/9Dn—>77\/(D)::j%/,Tr(D)EIRJr ; (3)

O,: an automorphism of Dy suitably reproducing © when N — oo (see Section 4.2).

Remark 2.1

As it will become evident in the following, up to a certain extent, discretization
resembles quantization; in the latter case, instead of Das, one deals with non—
commutative matrix algebras, the typical instance being the finite dimensional
quantization of the Arnold Cat Map [22,23].
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3. Discretization of phase—space

As sketched in the previous Remark, we proceed now to setup a discretization procedure

close to the so—called Anti-Wick quantization [19].

Given the classical algebraic triple (Lff’ (']1“2) ,wy, ©), the aim of a discretization—

dediscretization procedure (specifically an N/—dimensional discretization) is twofold:

e finding a pair of *-morphisms, Jy~ mapping Ly (’]I‘2) into the abelian finite di-
mensional algebra Dy and Joo A mapping backward Dyr into L7 (']1‘2);

e providing an automorphism O s, the discrete dynamics, acting on D such that it
approximates the continuous one, ©, on L7’ (']1“2) as follows
Taon ©ON 0Ty oo 5= © - (4)
’ ’ N—o0

The latter requirement can be seen as a modification of the so called Egorov’s property
(see [24]). Intuitively, a discrete description of the measure—theoretic triple (TQ, 1y S)
becomes finer when we increase N, the number of points per linear dimension on the grid
Ly in (2): this corresponds to enlarging the dimension of the Hilbert space H s associate
to the corresponding algebraic triple (DN,TN, e N)- In this sense, the lattice spacing

a:= % of the grid Ly is a natural “discretization parameter” playing an analogous role

to the quantization parameter h.

The difficulty is to find convenient *-morphisms Jy oo and Jso s that set up a
rigorous asymptotic (in V) correspondence, of functions on Ly (']1“2) and matrices in Das

and, above all, between the discrete dynamics © and the continuous one ©.

Due to the similarities with quantization, we shall consider a discretization procedure
based on states that we shall refer to as Lattice States (LS for short) which mimic the use
of Coherent States in the study of the semi—classical limit. In the next section we will
give a suitable definitions of LS belonging to the Hilbert space Hys, that we shall use to
discretize (Lff ('11‘2) Wy, ©).

3.1. Lattice States on T?

In analogy with the the properties of quantum Coherent States, we shall look for a class

{|ICn()) | € T?} € Hys of vectors, indexed by points @ € T?, satisfying the following
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conditions which are borrowed from analogous quantum ones |25|:

Properties 3.1

1. Measurability: & +— |Cr(x)) is measurable on T?;

[\]

. Normalization: ||Ci(z)|?> =1, = € T?

w

. Completeness: /\/'/Tz w(dx) |Cn () (Crr(x)| = 1;

4. Localization: given € > 0 and dy > 0, there exists Ny(e, dp) such that for
N > Ny(e,dy) and dy2(x,y) > dp one has

N [(Cn (=), Cn(y)) < e.

The symbol dp2 (2, y) used in the localization property stands for the length of the shorter

segment connecting the two points ,y € T2, namely
Definition 3.1

We shall denote by dp2 (x,y) = min |z — y + n| > the distance on T2
nez

We shall now construct a family of |Car(x)). Let |-] denote the integer part of a
real number, namely x — 1 < |2 < x is the largest integer smaller than x; further, let

() denote the fractional parts, that is (z) := x — |z]. Thus we will write

T2 5 <LN;1J, LN]\?J) N <<N]\<1;1>’ (N]\f2>> 7

Nz Nz
or, more compactly, x = % + <—N> We proceed by associating to points of T2

specific lattice points.

Definition 3.2 (Lattice States)

Given @ € T2, we shall denote by @y the element of (Z/NZ)?* given by
Zn = (ENn1,En2) = < [Nzi+ 3], [Nwo+ 5] ) ; (5)
and call Lattice States on T? the vectors |Cps(x)) defined by

T? 5z — |On(x)) = |&N) € Hu - (6)
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Remark 3.1

The family of states |Car(x)) is constructed by choosing, for each & € T2,
that element of the basis of H s which is labeled by the closest element of Ly

to x.

O G G Gl Gl

1 2 3 4
0 5 5 5 5 1

Figure 1: The above picture represents a square lattice (Ls) of spacing by circles and
connecting lines. All points in the blue square I(s 3)i= [10, 10) [% —0) C T? are

associated with the grid point (g g) (black dot). Thus, for all x € I(§ 8y, it turns out
575
that [Cx(z)) = [(3,3)) € Ha.

Proposition 3.1

The family of LS {|Cxr(x)} satisfies Properties 3.1.

Proof:

Measurability and normalization are straightforward.

Completeness can be expressed as

Zm’

N /T pldw) (€ |Ox (@) (Cxr(a)] m) =600, Ve,m € (2/NZ)?

N)

where we have introduced the periodic Kronecker delta, that is 5n70

=1 if and only if
n =0 (mod N). This is proved as follows:

1 1
N u(dw><e\cN<w>><cN<w>rm>:N/ dxl/ dzy (€] &y Wiy |m) =
T2 0 0
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(N)
_'N’éfl my 52 mz [/ dzy 617|_Nx1+%J:| |: 0 dzs 5@2,|_N:c2+%J
3 taty
(V) e N 2 ¢(N) (N)
—N (Zl . 552%2) elﬁ i, - dzo| = N 5‘me2 sV

Localization comes as follows: from Definition 3.2 (see Remark 3.1 and Figure 1),
it turns out that |Ca(x)) is orthogonal to every basis element labeled by a point of
Ly whose toral distance dyp2 (see Definition (3.1)) from x is greater than NL\/E As a
consequence, the quantity (Cpr(x), Car(y)) = 0 if the distance on the torus between x
and y is greater than % Thus, given dy > 0, it is sufficient to choose Ny (¢, dy) > v/2/dp,
to have

N > Ny(e,dy) = N (Cn(z),Cn(y)) =0 - [ ]

Remarks 3.2

(1) The last result in the previous Proposition amounts to an even stronger
localization property than property 3.1.4; this is due to our particular choice
of Lattice States, which, as we shall see, is suited to the task of controlling
Sawtooth Maps. In general, one can hardly hope to achieve orthogonality

and must be content with the weaker localization condition 3.1.4.

(2) Although the set of LS of Definition 3.2 fulfill Properties 3.1, which are
typical of Coherent States, LS differ from them in that the context we are
considering is commutative. In spite of this, it is convenient to adopt the
formalism of Quantum Mechanics; in particular the set of LS is interpreted
as a Hilbert orthonormal basis of Dirac kets, whose corresponding projectors
form a partition of unit into indicator functions having support on small

squares of the torus, as in Figure 1, whose sides scales as % .

3.2. Anti—Wick Discretization and its continuous limit on T2

In order to study the continuous limit and, more generally, the quasi—continuous be-
haviour of (DN, ™, O N) when N — oo, we follow the semi—classical technique known as
Anti-Wick quantization. The other standard quantization technique, namely the Weyl
procedure, despite being more straightforward and less technically heavy, is nevertheless
more suited to smooth spaces of functions and was indeed instrumental in the study of

discretized Cat Maps [14]. Instead, in our case, the Anti-Wick procedure is a better
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choice due to the discontinuous character of the dynamics, as it will clearly appear in the

next Section.

We start choosing concrete discretization/de-discretization *-morphisms.

Definitions 3.3

Given the family {|Cx(x))} of Lattice States in Hr, the Anti-Wick-like dis-
cretization scheme (AW, for short) will be described by a one parameter family

of (completely) positive unital map Jn e : Ly (’]I‘2) — Dy
L (%) 57 = [ ulde) f(@) 0@ (Civ(@)] = Ino(£) € D

The corresponding de—discretization operation will be described by the (com-

pletely) positive unital map Joo n : Dy — L° ('11‘2)

Dy 3 X — (Cx (), X On(x)) = Toon(X) () € L (T?)
Remarks 3.3

i. Both maps are identity preserving (unital) because of the conditions satis-
fied by the family of Lattice States and are completely positive, since both
Ly (']1“2) and Dy are commutative algebras. One can also check that:

| Toonr © TN 00(@llog < N19llos 9 € LT (T?) -
ii. Definition 3.3 yields a7 0 Jn 00 = Wy, With 7as given in (3).

In Appendix A, more operative details are presented, whereas in the following we prove
some simple properties that incorporate minimal requests for rigorously defining the sense
in which the discrete dynamical systems (DN, TN, @N) tends to (LzO (TQ) ,wy, ©), when
1

Proposition 3.2

(1) For all f € Ly? (T?) and X € Dy,

W (G Toon (X)) = T (TN 100(9)* X) 5
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(2) Forall f,g € Li? (T?)

Jim 7 (T, 00 ()T 00(9)) = wu(Fg) = /T _n(de) f(@)g(=).

(3) For all X € Dy, and for all N € NT,

j./\/',ooojoo,/\f (X) =X ;

(4) For all f e Lj? (T?)

A Too v o Ineolf) = f p - ae.

Proof:

The first two statements in the above Proposition directly follow from Definitions 3.3
together with (6); the latter two are equivalent and their proof can be found in [25], the
only difference being the dimension A of the Hilbert space Hys, here N = N2, there
N =N. [

Remark 3.4

Properties 1 and 2 in the previous Proposition show how (GNS) scalar prod-
ucts in the discrete, respectively continuous limit, are related; properties 3
and 4 concern instead the direct—inverse relations between the discretization

and the de—discretization maps.
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4. Discretization of the Dynamics

4.1.

We shall now focus on a special class of automorphisms of the torus, namely the Sawtooth

Classical description of Sawtooth Maps

Maps [16,17] (SM for short), that is on triples (T2, i, S,) where

5 (ﬂ“):(”a 1) (<x1>> (mod 1), acR
T o 1 T9

_ (((1 +a) (z) + x2>>

(a(z1) + x2)

Remarks 4.1

ii.

1ii.

1v.

vi.

In the following, a point @ of the torus, will correspond to an equivalence

class of R? points whose coordinates differ by integer values;

without the fractional part, (7) is not well defined on T? for not-integer a;
indeed, the same point € = & +n € T?,n € Z2, would have (in general)

So () # Sa (x +n). Of course, (-) is not necessary when o € Z;
the Lebesgue measure on T? is invariant for all o € R;
if o« ¢ 7, the S, are known as Sawtooth Maps;

when « € Z, we shall write T, instead of S,. T1 = (2 1) is the Arnold Cat
Map [6]. In general, Ty € {Ta},cy C SL2(Z) C GLg (Z) C M3 (Z) where
M (Z) is the subset of 2 x 2 matrices with integer entries, GLy (Z) the
subset of invertible matrices and SLy (Z) the subset of matrices with deter-
minant one: the dynamics generated by Ty, € SLg (Z) is called Unimodular
Group [6] (UMG for short);

after identifying @ with canonical coordinates (¢,p) and imposing the

(mod 1) condition on both of them, the above dynamics reads
=g+

¢ - (mod 1) - (8)

P =p+alg

This is nothing but the Chirikov Standard Map [3] in which —5= sin(27q)

is replaced by (g). The dynamics in (8) can also be thought of as generated
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by the (singular) Hamiltonian

2 2
H(q,p,t) = % — a%ép(t),

where 6,(t) is the periodic Dirac delta which makes the potential act
through periodic kicks with period 1 [26];

vii. Sawtooth Maps are invertible and the inverse is given by the expression

1T B 1 0 1 -1 T mo
()6 ) R) e o
)
((z2) — (@1 — w2))
or, in other words,

_ r
1 er (mod 1) .
p =-aq+p

It can indeed be checked that S, (S5 (z)) = S5t (Sa (z) = @, Vo € T2

(87

Further, S;! preserves the Lebesgue measure on T2,

We now list a set of properties [L6-18] of Sawtooth Maps that will be used in the following
Properties 4.1 (of Sawtooth Maps)

(1) Sawtooth Maps {S,} are discontinuous on the subset
v:= {x=(0,p), p€ T} € T?: two points close to vy, A:= (g,p) and
B:= (1—¢,p), have images that differ, in the ¢ — 0 limit, by a vector
dg: (A,B) = (a,a) (mod 1).

(2) Inverse Sawtooth Maps {S; !} are discontinuous on the subset
Y-1:= 84 (70) = {x = (p,p), p € T} € T?% two points close to y_1, namely
A= (p+e,p—c¢) and B:= (p—¢e,p+¢), have images that differ, in the
e — 0 limit, by a vector df;) (A,B) = (0,) (mod 1).

—1
(3) The maps T, and T, ! are continuous:

a€Z=d (AB)=d (A B)=(0,0) (mod1).

(4) The eigenvalues of the matrix So = (17 1) are (a +24 /(a+2)?— 4) /2.
They are conjugate complex numbers if « € [—4,0], whereas one eigenvalue
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A > 1if o € [—4,0]. In this case, distances are stretched along the direc-
tion of the eigenvector |ey ), Syler) = Aley), contracted along that of |e_),
Sale—) = A7te_): log A is a (positive) Lyapunov ezponent.

For such a’s all periodic points are hyperbolic [18].

Figure 2: In the upper row, we depict the effects of the discontinuities of a SM with
a= %; the picture in the middle shows the discontinuity lines vy and ~_1, whereas those
on the right and left show how they evolve backward and forward in time. The different
parallel bands help the reader to figure out the toral periodicity and the discontinuous
character of the map, also highlighted by the aperiodic splits of two spots. Further, for
sake of comparison, the lower row presents the same case of the upper one but for the
continuous dynamics (a = 1).

Remarks 4.2

Because of the presence of the fractional part in (7) and (9), we have to
distinguish the action of S, and S, ! from a mere matrix action. We shall

adopt the following notations:

With S, the matrix (lza i) in Property 4.1.4, the expression S, (x) will
denote the action represented by (7), whereas S, - @ will denote the matrix

action of S, on the vector x.

When the dynamics arises from the action of the UMG (see Remark 4.1.v.),
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so, in particular, when {7}, } ¢, is the family of toral automorphisms, equa-

tion (7) assumes the simpler form 7, () =T, -« (mod 1).

iii. Analogously, expressions like T, - ¢, T - , Ta_l - and (Totér)_1 -, will
denote the actions by T, itself, its transposed, its inverse and the inverse

of the transposed, respectively.

4.2. Algebraic description of continuous and discretized Sawtooth Maps

In this Section we make use of the commutative (Von Neumann) algebra Y (T2) intro-
duced in Section 2 and consider the algebraic description of Sawtooth Maps by triples
(LzO ('11‘2) ,wu,(%a), where w, has been defined in (1) and ©, : L)Y ('11‘2) = LY ('11‘2) is

the discrete-time dynamics generated as follows:

The maps @&, J € Z are automorphisms of L;° (T2) and leave the state w, invariant.

Our aim is now to define a suitable discrete evolution © s, on Dy, such that the

discretized triplets (DN, N, © N,a) converge to the continuous SM.

We start by introducing two different kinds of maps: the first ones, Ui’ , Jj €4, are
defined on the torus T2 ([0, N)2), namely [0, N) x [0, N) (mod N), and given by

T? <[O,N)2) sx— Ul(x)=x

~NS° (N) c T? <[0,N)2) , (10a)
T2 <[0,N)2) 5z U ()= Nsﬂﬂ( )eqr2( ) (10D)
1 (0.8°) 2 @ 03 (@)= V(U (U (U () 2)) . jE N

— N S§E <%) e T? ([0,N)2> : (10¢)

The second class consists of maps Vi from T2 <[0, N)2) onto its subset (Z/NZ)?, whose
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actions are as follows

’]I‘2<[O,N))9:cn—> VO (z) = |
+
=4

]
+U2(|z))| € (z/NZ)* (11a)
[+

T2 <[0,N)2 Sz VE (2 + U (|a))| € (z/N7)? (11b)

T?([o,m?)awvi]( )=V (VR VENVE (L)) ) s jENT

J times

= E£[F UL (E U £ [FUN (UG (=])])] - )))] € (Z2/NZ)* - (110)

j times

Remark 4.3

The maps U2 are extensions of the SJ on the enlarged torus T? <[0,N)2>;
however, they do not map the lattice Ly into itself, therefore we are forced

to use the maps VJ to define a consistent discretized dynamics.

Definition 4.1

O, will denote the map:

DyoX+Op,(X)= > Xy@v.oll) (L] €Dy - (12)
Le(Z./NZ)?

(C] N 1S @ *_automorphism of Dy; indeed, the map
(Z/NZ)* > £ +— V, (£) € (Z/NZ)*
is a bijection, so that (12) can be rewritten in the more convenient form

Ona(X) = D Xyl €=
06(Z/NZ)?
= Z XS7S ‘Va_l (S)> <Va_1 (S) ‘ =

Vo l(s)e(z/NZ)?

(see Remark 4.4.ii. below) =W,y | > Xssls)(s|| Wiy = (13)

all equiv.
classes

=Won X Won
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where the operators W, n, defined by linearly extending the maps
Ha D |€) — Wy n|€):= Vo (€)) € Hu - (14)

to Hyr, are unitary: Wi y[€)=|Va (£)).
For the same reason the state 7y is © 5, ,—invariant and V,, is invertible too.

Note that @ﬁ\/a:: Oprq 0 00y, is implemented by Vi (£) given in (11c).

7 times
Remarks 4.4

i.  The double =+ sign in front and within every floor function in equations (11)
is needed in order to have Vi7(Vii(xz)) = V9(zx) (the identity when
x € (Z/NZ)?); the reason is that, in general, |—xz| # — ||, for = ¢ Z
(see [27]).

ii. When a € Z, (Z/NZ)* 5 £ — Vo, (£) = T, - £ € (Z/NZ)?, namely the
action of the map V, becomes that of a matrix (mod N). Moreover, in

that case, U, and V,, coincide.

iii. Since £ +—— V,, (£) is a bijection, in (13) one can sum over the equivalence

classes.

5. Continuous limit of the dynamics

One of the main issues in the semi-classical analysis is to compare if and how the quantum
and classical time evolutions mimic each other when a suitable quantization parameter

goes to zero.

In this article we are instead considering the possible agreement between the dy-
namics of continuous classical systems and that of a class of discrete approximants. In

practice, in our case, we will study the difference
@g{ - joo,N 0 O a© jN,oo (15)

which represents how much the discrete dynamics at timestep j differs from the contin-

uous one at the same timestep.
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For quantum systems, whose classical limit is chaotic, the situation is strikingly
different from those with regular classical limit. In the former case, classical and quantum
mechanics agree, that is a difference as in (15) is negligible, only over times j which scale

logarithmically (and not as a power law) in the quantization parameter.

As we shall see, such a type of scaling is not exclusively related with non—commutativity;
in fact, the quantization—like procedure developed so far, exhibits a similar behavior when

N — oo and we recover (Lff’ (’]I‘2) s Wit @a) as a continuous limit of (DN,TN, 9N,a)-

5.1. Continuous limit for Sawtooth Maps

Later on we shall show that the difference in (15) goes to zero in a suitable topology;
for the moment we just note that the major difficulties in the proof are due to the

discontinuous character of the fractional part that appears in (7).
It is therefore important to briefly discuss the discontinuities of the maps S, [16-18].
As already noted in Property 4.1.1, S, is discontinuous on the circle vp; therefore S} will
be discontinuous on the preimages

Ym=53" () for 0<m<n, (16a)
whereas the discontinuities of S, lie on the sets

Yem=Sa"(70) for 0O<m<n- (16b)

Apart from v_1, whose projection on the [0,1)? square is its diagonal (see Fig. 5), each
set of the type 7, (for v_,, the argument is similar) is the (disjoint) union of segments
parallel to each other whose endpoints lie either on the same segment belonging to v,
p < m, or on two different segments belonging to 7, and v/, with p’ <p < m [17].

It proves convenient to introduce the discontinuity set of S,

n—1

T5Th=]J 1, (17)
p=0

and its complementary set, Gy, := T? \ T',,.

We now enlarge the previous definition from continuous Sawtooth Maps, to discretized

ones.
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As already observed, in order to prove that the discretized SM tend to continuous SM
when N — o0, the main problem is to control the discontinuities. It proves convenient
to subdivide the lattice points in a good and a bad set and show that, on the former,
Vol ~ Ud, at least on a certain time-scale (see Remark 4.3). This will not turn out to be

true for the bad set, however we shall show that the latter tends with NV to a set of zero

Definitions 5.1

We shall call “segment”, and denote it by (A, B), the shortest curve joining
A, B € T? by [ (v,) the length of the curve 7, and by

7, (€)= {@ € T* | dp: (,3) <} (18)

the strip around +, of width ¢, where the distance dy2 (-,-) on the torus has

been introduced in Definition 3.1.

Further, we shall denote by
T @)= 7, ) (19)

the union of the strips up to p =n — 1 and by G2 () the subset of points

GN ()= {w e T? ‘ %\7 ZT, (E)} , (20)

where the lattice points & have been introduced in Definition 3.2.

Lebesgue measure and thus becomes ineffective.

zero with N — oo in the strong topology over the Hilbert space Li (']I‘Z). More precisely,

Following this strategy, we shall concretely show that the difference (15) goes to

we have the following theorem

Theorem 1

Let (DN,TN,@N,Q) be a sequence of discretized SM as defined in Section 4:
for all v > 3,

Vferx(1?) ,  sdim (04— T 0Ok a0 dve) (=0, (21)
B
v logn
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where the limit is in the strong topology over the Hilbert space Li (']I‘Z) and

n > /2 is the largest eigenvalue of the matriz |Sq|:= \/S(ESQ, with Sq
defined wn Property 4.1.4.

The previous Theorem indicates that the time limit and the continuous limit do
not commute. In particular, the difference between the discretized dynamics and the

continuous one can be made small by increasing N, while it becomes large beyond the
1log NV
7y logn
to discretization of phase space (in the traditional semi—classical treatment of quantum

time scale j ~ This phenomenon is the same as in quantum chaos and points
systems), rather than to non-commutativity, as the source of the so—called logarithmic
breaking time. The constant v is a form factor, which reflects the fine structure of the

dynamics: for instance, in the case of quantum cat maps [25], v = 2.

Remark 5.1

The parameter v > 3 in Theorem 1 may seem overestimated if compared
with the case of the quantum Cat Map, where v = 2. As we shall see (in
particular in the next Proposition 5.2), the upper bound for ~ is dictated by
the discontinuities of the Sawtooth Maps, and not by commutativity. The
corresponding exponent assumes the lower value v > 1 in the case of dis-
cretized Cat Maps, that include Sawtooth Maps with integer a. This result
will be presented in a forthcoming paper [28], in which we study the breaking

time 7 (N), here %lﬁ)gg]: , relative to the chaotic or non—chaotic properties of
the dynamics. In particular, in the hyperbolic regime, the parameter logn of
Theorem 1 is replaced by the Lyapunov exponent log A whereas, in the elliptic
regime, the two limits j, N — oo do commute and in the parabolic one, the

breaking time is given by 75 (N) = N7,

The proof of Theorem 1 counsists of several steps, among which the most important
is a property, satisfied by our choice of Lattice States, which we shall call dynamical

localization.

We give a full proof that our choice of Lattice States satisfies such property, since it
represents a natural request that should be fulfilled by any consistent discretization/de—

discretization (quantization/de—quantization) scheme.

Remarks 5.2

(1) In analogy to the quantum case, Dynamical localization is what one ex-

pects from a good choice of states suited the study of the continuous limit:
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in fact, it essentially amounts to asking that LS remain decently localized
around the continuous trajectories while evolving with the corresponding
discrete evolution. As we shall see this is the case only on logarithmic

time-scales. Informally, when N — oo, the quantities

Kj(x,y) == (Cn(x), Wi,N Cn(y))

should behave as if N|Kj(z,y)> ~ 5(5& x — y): this would make the
discretization analogous to the notion of reqular quantization described in
Section V of [29]. Actually, with our choice of LS, the quantity K;(x,y) is

a Kronecker delta.

(2) In quantum chaos, instead of seeking for the dynamical localization, one

can study the dynamical spreading of Coherent States. Consider for instance
the classical function f over the phase space, its corresponding quantum ob-
servable Opy, (f) and a Coherent State |Cp(x)) centred at the point . The
time needed for the quantum mechanical expectation (Cr(x), Opy, (f) Cr(x))
to converge to the average of f over a suitable invariant measure can be
explicitly analyzed. Recent work [7,9| shows that also this time scales

logarithmically in &, at least for the automorphisms on the 2—torus.

(3) The constraint j < C'log N is typical of hyperbolic behavior with Lyapunov

exponent log A and comes heuristically as follows: the expansion of an initial
small distance § can be exponential until the distance becomes the largest

possible, namely A8 ~ 1. After discretization, the minimal distance gives
log N
log A\
and sets the time—scale over which continuous and discretized dynamics

0= %, therefore one estimates Tp =~ which is called breaking time

mimic each other.

(4) In quantum chaos, the semi-classical analysis leads to an estimate of Ty

exactly as above; further, the logarithmic dependence on h of Ty is a sig-
nature of the hyperbolic character of the classical limit. Conversely, if the
classical limit is regular, then the time scale when quantum and classical
behaviors are more or less indistinguishable goes as A%, b > 0. Another
interpretation of the breaking time is given in |8, where it is related to the
shortest time needed for the system to transfer all scales 1 > ¢ > h down
to the “quantum scale” h. Indeed, this is the scale at which the differences
among quantum and classical mechanics come up. Regarding the SM, the
hyperbolic case corresponds to S, with eigenvalue A > 1, whereas the reg-

ular cases are the elliptic one (two complex eigenvalues) and the parabolic
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one (only one eigenvalue = 1).

(5) The dynamical localization property has fruitfully been used in several
quantum contexts [25]; however, to our knowledge, this is the first instance,

though not properly quantal, where dynamical localization is fully exposed.

Before proceeding with the proof of Theorem 1, it is important to notice that in its

statement the Lyapunov exponent log A does not appear but logn, instead; of course A

and 7 are related for X is eigenvalue of Sy, and 7 of 4/ SQESQ (see Remark 5.1).

As will become clear during the proof, the use of 7 and not of A is required by
the discontinuous character of SM. In fact, the discontinuities do not allow us to control
the difference between the n—th iterates of the discretized and the continuous dynamics,
but instead force us to estimate that difference at each single time-step up to n and
to put all the estimates together. In the single time—step estimate, independently of
whether the map is continuous or not, one must use 7, which coincides with A only
when the dynamical matrix S, is symmetric. Indeed, Figure 3 shows that the eigenvalue
n correctly describes how volumes behaves under a single application of the dynamics,
whereas A underestimates it. On the contrary, it is A" which asymptotically controls
the stretching, whereas n™ largely overestimates it. In the regular elliptic case, where
A =0 and n > /2, the use of 1 gives the impression of hyperbolic stretching, whereas
the elliptic motion is confined: from the lower strip in Figure 3 it is apparent that such

hyperbolicity is spurious.
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®

Figure 3: In Plots A, B and C we compare the estimates of the (maximum) stretching
given by the action of the SM 51/10 and its temporal iterates S?/lo (n < 5) given by A,
respectively 7, on a small ball BY of radius v, centered in (%, %) € T2. The five evolved
images of the ball, namely {B? , 1 < n < 5}, are plotted together with BY, using different
colors. In A we surround every evolved ball By with the smallest circle containing it. We
compare that plot with B and C, in which the surrounding circles have radii proportional
to A"w, respectively n"v; in both cases the correct radii of A are overestimated although,
on the long run, circles in B provide a good approximation.

The fake hyperbolicity given by n is clearly shown in D and E, where a parabolic SM Sy
and an elliptic one S_; /5y are presented: in the first case the maximum spreading grows
linearly, whereas in the second one it remains confined, and the estimate given by the
surrounding circles of radii growing as powers of 7 is inappropriate.

Note that in all examples C-E, the black circles of radii n v rightly surround B}

Theorem 2 (Dynamical localization with {|Car(x))} states)

For a € R, B € RT\ (0,2] and dy > 0, there exists No = Ny(a, 8,dy) € NT

with the following property: if N > Ny and n < %lﬁ)gg]x, then

dy2 (Sy (%) ,y) > do = (Cn () [ Wy Ch(y)) =0,

forally € T? and x € GY (%), where W  is the unitary operator defined
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n (14), N = 2vV2 (V2+1)n* and G} (¢) has been introduced in Defini-
tions 5.1.

In order to prove Theorem 2, we need the following result, whose proof can be found in

Appendix B.

Proposition 5.1

With the notation of Definitions 3.1 and 5.1, and with [E]° denoting the
complement of E C T2, [E]° := T? \ E, the following inclusions hold:

(ol setosful )]

Further, for « € R and n € IN*, if

- N
N>N=2V2 \/5—1-1)772" and mGGg<W> then

UL (Nz) VP (&n)\ _ V2 [(nPHi—1
< — | ——m <n-

Proof of Theorem 2 :
Using the definition of {|Chs(2))} in (6), we easily compute
(Cwl@) | Win O w) = (& | Vi (i) ) = 80 an - (24)

Using the triangular inequality, we get:

U" (N Ur (Nz) Vn(a
b (D)) g (G2) Ve o)

or equivalently, using the Definitions (10),

o (M y—N) > dys (S (2) , ) —

N N
Ul (Nx) V7 (zn) YN
de< N ' N dy2 | 7Y )
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Now, since dyp2 (S% (x) , y) = dp by hypothesis, using (40) in Appendix B and observing
that x € GYY (%) permits us to use (23) in Proposition 5.1, namely that

~ Ul (Nx) VI (zn) V2 (-1
N>N = d = = <—(——— ), 25
> . ( (o) Ve (@ (LS (25)
we can derive
Va (@n) 9n V2 (1 1
dpe | ———=, == | 2 dy — — — .
N N N n—1 V2N
The r.h.s. of the previous inequality can always be made strictly larger than %,
dra M Un > 1 (26)
T N N N’

by choosing an N larger than

NM(n):max{dO [1+\f< e 11>+%] ,N:2\/§(\/§+1)n2"}, (27)

so that the condition on the Lh.s. of (25) is also satisfied. From (24) and (26), we have
N >Ny (n) = (Cy(z)|WINCn(y))=0- (28)

Indeed, if the toral distance between two points (z,w) exceeds %, then the corresponding

grid points (2y,wy) are different and then the periodic Kronecker delta in (24) vanishes.

Since the (non-decreasing) function Ny in (27) is eventually bounded by n°" (3 being
strictly greater than two) we define 7 as the time when Ny (7) = 7™ = Ny, and choose
N>N0,m€GN< > Thus, if 0 < n <7, then N > Ny = Ny (=) > Ny (n), whereas

if 7 <n < 52N then N >0 > Ny (n) and (28) holds for all 0 < n < 5225 m

In order to proceed with the proof of Theorem 1, we need another auxiliary result which

is proved in Appendix C.

Proposition 5.2

With the notation of Definition 5.1, the following relations hold for all p € N,
n€NT and e € R™:

nP (29a)
2enf + me? (29b)
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1 (Tr () <2<\/§+1)677"+7Tn62- (29¢)

Moreover, if N € Nt and N = 2v2(V2+1)n* (cfr. equation (23) in
Proposition 5.1):

N>N=p ([Gﬁ (%)] > < 38]3% . (29d)

We are finally in position to conclude with

Proof of Theorem 1:

We subdivide the proof in two steps: in the first we concentrate on continuous f, that is
fect (']I‘2) (C Li (”11“2)); in the second one we extend the result to essentially bounded
function by applying the following Corollary of Lusin’s Theorem |21, 30, 31]:

Given f € Ly? (X), with X compact, there exists a sequence {fn} of contin-
uous functions on X such that |fn| < || fllco and converging to f p — almost

everywhere.

(1) Let f € C"(T?) and Op; y (f):= (@fx — Joo N © O} o Oj/\/,oo) (f): notice that
Op; v (f) is a multiplication operator on Li (']I‘2), but also an L7® (']I‘2) (and thus also
an Li (T?)) function. According to (21), we must show that

Vg € Lz (']P2) ; le\}gloo || OPj,N (f) g ||2 =0
e

Using Schwartz’s inequality first with g in the class of simple functions and then using
their density in LZ (']I‘2), we have just to show that

im ] Op () [}, =0
. _1log N

J<5 Togn

Explicitly, using (1), we write:

| Opjxe () 115 = n (Opjx (1) Opy () =i | (O41)" (O4)] +
0y | (Toov 0 Ol © I ) (1) (Toov © Ol © T ) ()] +
—2Re {Wu {(eéf)* (Joo,/\/ 000 j/\/,oo) (f)} } ,
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which, via Proposition 3.2.1, becomes
=, [04 (F) 04 ()] — 2 Re {rne [Toe (01)" (O 0 Tvie) (1] } +
1 [(Too 0 Teo 0 O 0 Tnvoe) (1) (O 0 T ) ()]
that, using Proposition 3.2.3, can be recast as
= (w0 0L) (7F) + 7 [ (O 0 Trvoe) ()" (O 0 Tvie) ()] +

—2Re {7y | (Inoe 0 O4) ()" (Oha 0 Iic) ()] |
wu (1F12) + (2 0 Ora) [N,o0 ()" Te (£)] = 2 Re (L ()

with

Ly (F)i= 73 [ (T 0 04) (1) (O 0 T (£)]

N [ utda) [ plan) Fo) 1Sl Corla) W N )
Now, Proposition 3.2.2 yields

(70 O a) 1T (£ T ()] = 7 [T ()" T (F) ——— w0 (111)

N—o0

so that the strategy is to prove that also I; n (f) goes to wy <\ f]2> = / p(da)|f(x)?
2

1log N

when j, N — oo with j < S Togn

Resorting to G <%) in Definition 5.1, and to its complementary set

[ny (%)F =T2\ GV (%), we can write

L (f) /T uldy) |7 (y)P

[ rtaw) [ ntaw) Fw) (7(54m) = 1(0)) N(Crl@). Wy Covtu)

) [ ) F(F(53) — ) NCul@). WO )

/[G% ()]

/GN( N

N
2N

+ p(dz) /T2 u(dy) f(y) (f(Sdz) = F()NCx (@), Wl xOn(y) |- (30)

~——
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For the first integral in the r.h.s. of the previous expression we have:

ude) [ uldy) T (£(Ske) = £@) MO @) WSy Covtu)

< 2(1fll)° /[GN(N)]Ode) [ @) MWz ) Covte). O ) P

where we have used completeness and normalization Properties 3.1 and equation (29d)

from Proposition 5.2; this term becomes negligible for large N > N iff j < Llog NV " oith

v logn”’
v > 3.

Now it remains to prove that the second term in (30) is also negligible for large N:

selecting a ball B(S%x, dy), one derives

/ . u(d-’ﬂ)/ p(dy) J(y) (F(S4x) = f () NHCwr(a), W2y ()
GN ) T2

Loyt [ () @) (£(She) - )N (). W)\ Covtw)
GN (—) B(SLa,do)

Lot [ Tl (7(she) ) MO (e). W O w)
GN (X T2\ B(S%x,do)

n 2N

+

Applying the mean value theorem in the first double integral, we get that dec & B(Sglac, dp)
such that

[ or oy ld@) [ udy) ) (£(8h2) ~ F() M) W]y Covlw)
G;’)’(—) T2

2N

Fle) Jx) — f(e x \J x 2
S/Gg(%) pi(da) (f(c) (f(Shz) — f( ))( L(sgw7d0>“(dy)N|<( ) Cn(), O (y))]

2 J 2,
w212 e Lo st PANICx ), W2 o)

2N
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Finally, using completeness and normalization (Properties 3.1), we arrive at the upper
bound

< flle sup |(f(2) = f)]+21f1% N sup  [(Cx(@), Wi xCn(y)f -

z€T? N( N
ceB(z,do) zECy (2N>

y¢B(Sa,do)
By uniform continuity, the first term can be made arbitrarily small, provided we choose
dp small enough. For the second integral, we use Theorem 2, which provides us with
No = Ny(dp) depending on the same dy , such that the second term vanishes for all
1log N

N > Ny and far allj<;10gn.

(2) In order to extend the result of point (1) to f € Ly (TQ), we use the Corollary of

Lusin’s Theorem, choose a sequence { f,,},, as in its statement and estimate

dn | Op;n (f) ||, < i | Opjn (f = fn) [l + Am | Opjn (f) |l -
I<TRE <Ry

1log N

J<“{ logn

Using point (1), the second term in the r.h.s. of the previous equation can be

bounded by arbitrarily small €, indeed f,, € C" (']I‘Z).

For the first term we proceed as follows: using Definition 4.1 together with equa-
tions (37) and (38) of Appendix A, we find

(Feneolpedva) @@ = X twlo (H9) @, G

~
Le(Z/NTZ)

where ¢ is any measurable function on T?. Then, because of how the running average
operator (RAO) I'y is defined, for all g € L}L (TQ) it follows that

| (oo o @0 Tvie) @], < || (T o Odra0 Tnoe) (gD =gl -

where ||-||; denotes the Llll (T?)-norm, and that

|(Fexoeleae i) @] = s {|rvio ()]} <Iov @l < ol

X Le(Z/NZ

Indeed, the first equality in the last formula comes from the definition of essential
norm [21] (which in this case amounts to the greater absolute value assumed by the

simple function Joo n © Y o © IN ), whereas the first inequality is a consequence of
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the continuity of 'y and the last one from Proposition A.1. Putting last two inequality

together, we obtain
| (Foev 0 ©la0 Tncs) @), < lslclil
whence, setting g = f — fa,

| O (F = 1) = || ©4(F = 1) = T 0 @0 Tne (F = 1) ||, (32
<UF=Fala+ IS = Floal £ = fally » Vi N -

Now convergence follows from Lusin’s Corollary. |
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felrLy (T?)

\
\

J2304,00

Figure 4: These two plots show how the difference between Jn oo 0 O and Onr o 0 In 00
becomes smaller with N. For the continuous SM, ©1, the actions Jn/ 0 © ©1 and Oar 1 ©
INoon f €L (T2) (left part of both plots) are plotted for two different N: N = 16
(top) and N = 48 (bottom). The resulting matrices are mapped back, together with the
function ©; (f), on the unfolded torus, by means of the de—discretization operator Js ar-
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. Q2 (A
V-1 = 53/2 (’7/0)' V-2 = 53/2 ( /0)'
7o: Discontinuity Discontinuity line Discontinuity line
line for S, /2 for 55/12 and SL;/QZ for S;/é

Figure 5: Here, the same picture as in Figure 4, is represented, with a finer discretization
given by N =120 and a different function g € L}° (']I‘Q), for a discontinuous SM, O3/,
acting two times. Choosing a function g with sharp variation across 7 (blue lines),
the preimage of y_1, the discontinuity of ©3/, makes it evident how the differences
between J14400,00 © @i and 9%4400.05 o J14400,00 are the greater the closer they are to
the discontinuity line y_; (red 1111eé). Of course, the longer the temporal evolution, the
worst the correspondence, in the sense that several new discontinuity lines come to play
a role. In the case at hands, the map acts twice, and v_o is felt by @%4400@ ° J14400,00,
as expected.
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6. Conclusions

In this article we have considered discrete approximants of Sawtooth Maps on the torus
and we have studied them in an algebraic framework modeled on the so—called Anti-Wick
quantization; In fact, finite—dimensional discretization and quantization can be seen as
similar procedures in that they map an abelian Von Neumann algebra (of essentially
bounded functions on phase-space) into finite-dimensional matrix subalgebras, the only

difference being whether the latter are diagonal (commutative) or not.

In the semi—classical analysis of classically chaotic quantum systems, the correspon-
dence classical/quantum is usually observed only on time-scales that are logarithmic in
the quantization parameter h. The motivation of our study was to show that the same
phenomenon arises when a hyperbolic classical system is discretized, namely forced to

move on a lattice, and afterwards the lattice spacing is sent to zero.

Previous results [14] based on the numerical investigation of the entropy production,
indicate that it should indeed be so; however, these results were not supported by a solid
framework where to analyze the continuous limit of the family of discrete approximants.

This is the content of this article.

The major difficulty was represented by the need of controlling the discontinuous
character of Sawtooth Maps, which was made possible by an appropriate choice of Lattice
States. In fact, similarly to the entropic approach which, despite the dynamics being
classical, was based on a quantum dynamical entropy, the discretization/de—discretization

procedure we set up is based on quantum tools.

The choice of Lattice States was naturally pointed to by the lattice structure of
the discrete phase-space and turned out to posses the right localization properties for
mastering the discontinuities. The result is the appearance of a logarithmic time-scale
when the discrete hyperbolic SM tend to their continuous limit; namely, the continuous
and discrete dynamics agree up to a breaking time which is proportional to the logarithm

of the lattice spacing.

The proportionality constant does not involve the Lyapunov exponent, that is the
eigenvalue A > 1 of the dynamical matrix S,, rather the largest eigenvalue, 1, of 1/ S(ESOC.
In the case of elliptic SM, |A| = 1, > v/2; however the resulting breaking time is a
spurious effect, while when A > 1, the presence of 7 in the breaking time seems to be an

unavoidable consequence of the discontinuous dynamics.
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A. Anti Wick discretization of L (T2)

In this appendix we will apply Definitions 3.3 and discretize L (’]I‘2) by means of the
LS set {|Cn(z)) | © € T?} € Hy introduced in Section 3.1.

In this framework, the discretizing/de—discretizing operators of Definitions 3.3 read:
L (1) 20 = N [ uda) f(@) an)lan | = el €Dy (39
Dy 23X (&n|X|En) = Toon(X)(x) € S(T?) C LY (T?) , (34

where § ('11‘2) denotes the set of simple functions [21] on the torus. The matrix elements

of Jn0o(f) are as follows:

M) = (€| Tnoo(f)| M)

=N [ tde) fla) (€@ ) (ay m)

1 1
— N2 / dz / dzs f(z) 60V, oM s 50
0 0

by, &8N A2, 8N2 “m1,EN1 M2,IN2

1 1
_ a2 s(N) (N) (V) (V)
=N 561 ,my 5@2 ,m2 /0 dxl /0 dx2 f(m) 561, {le—i-%J 562 , I_Nxz-i-%J
This implies
51+é €2+%
N N N
Mé;}’;‘?’t = ]\72 (5272" /Zvlé dxl /;Zé diUQ f(m) 5 (35)

N N

so that varying f € LY (T?) yields Ran (Jy,00) = Dar. In order to recast (35) into a

nicer expression, we introduce
Definition A.1 (Running Average Operator (RAQ))

Let Qn (x) denote the square of side 1/N, oriented parallel to the axis of the
torus and centered around x; then, the Running Average Operator
Ly : L2 (X) — C° (T?), is defined by

L (T?) 5 f(x) — Iy (f) (x) = N2/Q ()u(dy) fly) €c®(?) -
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Proposition A.1

Given f € L)Y (’11‘2), the function f](VQ) := 'y (f) is uniformly continuous on T?;

moreover, the Running Average Operator has norm

ICnllp= sup MWl o (36)

rere2) 1fllo

Proof:

Let £p € T?, x € Qn (x¢) and Xg denote the characteristic function of £ C T2. By
Definition (A.1):
V(o) = (w)‘ = N? /T2 1(dy) f(Y) (X (o) (¥) — Xou(@)(¥)) ‘

<N Wl [ 0ld8) | Xt ®) ~ ayio )
T2

= 3 7@ ) U @y (@) = (@ () (@) )]
According to our hypothesis, € Qn (x¢), thus geometrical considerations lead to:

M(QN(SBO)UQN(Z’)) < (%4-\961—9601\)(%-#!%2—%02!)

N(QN(ZUO)QQN(m)):(%_‘xl_x01‘>(%_’x2_x02’>
N(QN(GUO)UQN(SB)) - N(QN(wo)ﬂQN(SB)) S%(!wl—woﬂ-i-!xz—xoﬂ)
< 22wy —a] |

so that ‘fj(\,Q) (xo) — (Q (x )‘ < 2V2 N ||f|lo, &0 — ||, which proves the continuity of

f ](VQ), while uniform continuity comes from T? being compact.

Concerning the norm in (36), the upper bound ||[I'y||z < 1 is clear and the maxi-

mum is reached by choosing f constant. |

By means of the RAO, the discretization operator in (33) can be conveniently written as

TexD= 5 10 (5) 10t (37

Le(Z./NZ7.)?
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Analogously, the de—discretization operator in (34) can be recast as

Fren(X)@) = S Xee dpay = Y. XeeXguo)@ . (38)

€(Z/NZ)? Le(Z/NZ)?

thus proving that Ran (Joo ) = S (T?).

Moreover, combining equations (37) and (38), we explicitly get the simple function

arising from f € L;? (']I‘2), via AW discretization/de—discretization:

e oTv) D@ = Y Tu () () Foug)@- (39)

Le(Z/NZ)?

The action of the operator Joo a7 © JN 0 Can be seen in Figures 4 and 5.

B. Proof of Proposition 5.1

We start by proving the inclusions (22).

For every real number ¢, we have 0 < <Nt + %> = Nt+ % - LNt + %J < 1, so that

[Nt + 1] 1
L 2] .
t N S 5w , VteR
From (5) in Definition 3.2, we derive
d < mN) ! Ve T (40)
2 | @ , x .
T \/*N

Then, let us consider the triangular inequality
dqrz(w,y)édw(w,%V)erw(:%v,y) vyeT? (41

and let us take the infimum over the set y € I';, defined in (17)

x x
d']r2 <WN s Fn> > dTZ ($ s Fn) — d']r2 <m s WN>

1
>de(w,Fn)—ﬁ,
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where we used (40). Therefore, considering the complement [fn (5)]O of the union of
strip of width €, T, (¢) defined in (19), we get that

ze [T = %G[T”G_ﬁﬂo'

Further, from (20), it follows that, if the lattice point “’TN does not belong to T, <€ — ﬁ) ,

then the corresponding point & € T? must belong to G <€ - ﬁ)

Changing ¢ — ﬁ —— ¢ we obtain the first inclusion relation in equation (22); the second

one follows by interchanging the role played by wWN and x in (41).

In order to prove (23) , we start by considering the matrices S, = (lza i) and

its inverse S ! = (_la 111(1) Let n be the largest (positive) eigenvalue of Si,Sa; its

characteristic polynomial for 1 is n* — (2 o +2a+ 3) n* + 1 = 0, whence 7 attains its
minimum Npip = V2 at a = —%. Then, we set N:= 22 (\/§+ 1) 772", n € IN, choose
N > N and proceed by induction.

p=0: from definitions (10) and (11), it follows

UY(Nz) V9 (& & 1 V2
o (542 20) i ) < <4

where the first inequality follows from (40), thus relation (23) holds for p = 0.

p=q—1,1<qg<n: since

+ d']r2

using (10) in the first term and noting that, from definitions (10) and (11), the second
V2

term is less or equal to W2> we get

I(Nx Iz 4N (N 4 (@
o (2 ) o (5 (502 (20 ) 57
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By the induction hypothesis we have:

q—1 q—1 /A
L (Nz) VS 2 (e —1
i (Vz) (Zn) gi n (42)
N N N \np-1
V2L
N V2-1
1 1
(n>\/§,1<qén =>> <g < gn (43)

Now we set € = 2x, taking into account that n > v/2 and use the right inclusion in (22)
to deduce that

N ~ (N 1
eGV =)= | =—=—=——1 .
<l (o) == (35 s
At this point, we make use of the following result, which shall be proved in Lemma B.1.3:
it states that if a point does not belong to T, (¢), the union of the the strips of width

e < % up to time n, then its orbit under S, up to time n — 1 is farther away than

en~9,0 < ¢ < n from the discontinuity line . Explicitly
x T, (e) = dp2 (SL(x),y)>en ?,V0<qg<n,

whence

Ut (Nx) N 1 -
drp2 (T’% > N VBN n

- @ ,'72n—1 nq—l T,l—q
N n—1
a_
S V2 (ol (44)
N \n-1)"~
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the following estimates:

(- ) -2 (e -1)
> % |:(\/§+ 1) <\/§_ 1) " —7777_+177— 1 ﬂ
SRl R ()

Therefore, comparing (44) with (42)

q—1 q—1 / » q—1
i (B0 V00 (B0 )

N
—1 —1/4
As a consequence, the segment Ud J\(,Nw), Ve ]\;a:N )) cannot cross the line vg. This
condition, together with (43), allows us to use another result proved in Lemma B.1.1b,
which states that if a segment (A, B) on the torus does not cross the discontinuity line
7o then dp2 (S (A), Sa (B)) < ndy2 (A, B). We can finally conclude with:

(242500 2 - S5

N N "N\ N N \g-1

The following Lemma, which has been used in the proof of the previous Proposition,

deals with the geometrical properties of the Sawtooth dynamics.

Lemma B.1

With 7 the largest (positive) eigenvalue of S48, and A, B € T? such that
dp2 (A, B) < 3071, it follows:

(1la) If the segment (A, B) does not cross vy_1, then
dp2 (S5 (A), 551 (B)) <ndy2 (A, B) - (45a)
(1b) If (A, B) does not cross 7, then

dyz (Sa (4), S (B)) < n dyz (A, B) - (45b)
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(2) For any given a € R, pe NT and 0 < e < $n71,

T e7})—1 (E) - Sf;l (ZB) € (71) (776) U70 (775)) :
(3) For any given o € R, n € NT and 0 < e < &, with U as in (10),

27

Ul (Nz)

a:ngn(E):>de< ~

770>>577_q7V0<q<n-

Proof:

In the course of the proof, we shall use that

152" vl ge < lvllge (46a)
1SE v || o = 0 vllge (46D)

which directly follows from the definition of 7, where v is any 2—dimensional real vector.

In order to prove (45), it is convenient to unfold T? and the discontinuity of S,
on the plane R2. This is most easily done as follows. Points A € T? = R2/Z? are

represented by equivalence classes
la]:=={a+n,necZ} K ac01)®: (47)
Given A, B € T2, let A’ € [a] be such that
dr (fa] o)) = | 4"~ | -

Notice that

dye (fa] b)) = la — bl o~ bl < 5 (18)

(1a) (A, B) not crossing 7—; means that the segment (A° b) does not intersect y_i.
Periodically covering the plane-R? by squares [0, 1)?, the v_;-lines form a set of (parallel)
straight lines x1 — x9 = n € Z; it follows that (Ab, b) does not cross v_1 iff

AL = AB| = b~ bs) (49)

where the integral part on the r.h.s. takes values 0, —1, depending on which side of the

diagonal v_; the point b lies within.
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As ST are not sensitive to the integer part of their arguments, their actions are the same

on all elements of the equivalence classes (47), that is
dyz (S5 (4), 55" (B)) = dz (57 ([al), S5 ([b) = dy= (S5 (4°) 527 (8) -

By expanding (¥) = x — |x], using the definition of S;!(:) and putting together all
integral contributions, condition (49) yields
dpe (S5 (A), 8,1 (B)) = mem 1S5 (A) = S (B) + m|| o

= min

m/er? Sa- (Ab B b) +m R2

— dyo (5;1 : <Ab . b> ,o) :

Applying (46a), since we assumed dp2 (4, B) < % n~!, we estimate

HSJ“( )H <nf4 =],

In particular, using (48), the previous inequalities imply

b (52 (4 -0)0) = st (4 -0) ], <nieta

(1b) Using the same argument as (la), the union of vyp-lines constitute a set of straight

lines 1 = n € Z; Therefore the segment (Ab, b) does not cross g iff
L] = o) - (50)
As done before, by means of (50), we arrive at
dy2 (S (A), Sa (B)) = dpa (sa (Ab) .S (b)) = dye (sa : <Ab - b> ,o) :
The proof can now be completed exactly as for point (2a) before.

(2) We denote by dy2 (x,v) = il%f dp2 (x,y) the distance of the point & € T? from a
yey
curve v € T2, Then, from Definition (18) we have:

2 €Ty 1 (€) = £ > dps (w,7p1) = dyz (2,97) (51)
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where y* is the nearest point to & belonging to v,_;.
We distinguish two cases:
(2) The segment (z,y*) does not cross' v_;
From (51) and point (1a), since S5t (y*) € v, (see (16a)), we get
dp2 (S5 (), 7)) <dpe (S5 (=), S5 (y¥))
<ndy2 (w,y%) <ne
Therefore S, ' (z) €7, (ne).
(2") The segment (x,y*) crosses vy_i.
In this case, there exists z € y_; such that
dy2 (@, y") = dp2 (T, 2) + dy2 (2,97) - (52)
Then, from (51) and (52),
€ 2 dy2 (x,y") 2 dr2 (z, 2) -
Since, according to (16), S;! (2) € 79, from point (1a) we get
dr2 (S5 () ,70) < dy= (557 (), 55" (2) <ne
that is S, ! (z) € 7, (ne).
(3) From point (2), it follows that, when 0 < & < %, for p € NT,
z & (3, (€) UT () = Sa () 7,1 (n7'e) - (53)
We prove by induction that, when 0 < e < 1, for m € IN*,
m m—1
2 |J 7,6 = Sa(x) ¢ |J 7, (n7"e) - (54)
p=0 p=0

For m =1, (54) follows from (53); if (54) holds for m = r, then take

r+1

x & U ¥p (€) . This means that x ¢ U ¥p(e) and x=¢ (7r+1 (e) U7, (6)) .
p=0

p=0

!we stipulate that, if y* € y_1 or € y_1, we are still in a non—crossing condition
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Now, using the induction hypothesis and (53), we get

r+1 r—1
x ¢ U 7;) (6) - Sa (m) ¢ U 7}) (77_16) a‘nd SCV (m) ¢ 77“ (77_16) :
p=0 p=0

Setting m = n — 1 and iterating ¢ times the implication (54) argument, we get

n—1—q

n—1
z¢ |J 7,60 =8¢ J 7,0%) . vo<g<n:
p=0 p=0

In particular S () € 7, (n_qs), which leads to the lower bound

dyp2 (S4(xz),v0)>n% , VO<qg<n,

whence the result follows in view of Definitions (10) and (19). [ ]

C. Proof of Proposition 5.2

(a) In (16a), we have defined v, = Sa” (79) where S;! (z) (as well as So” (z)) is a
piecewise continuous mapping onto T? with jump-discontinuities across the vp lines due
to the presence of the function (-) in (9). Away from the discontinuities, So? (z) be-
haves as the matrix action S,” - . We want now to estimate the length I(v,); in
order to do that, we unfold v, on the plane and calculate the length of the segment
{m c R? ‘ x=5."" (2) , y €0, 1)}, which, in its turn, is the image of «y under the
matrix action given by So” - @. Therefore, using (46a), the result follows.

(b) Let L () denote the set of points having distance from a segment of length L smaller

or equal than e: it has a volume (under the Lebesgue measure p) given by
p(L(e)) =2Le+me?,

where the last term on the r.h.s. takes into account rounding of the extremes of the strip

by to semi-circle of radius €. Then (29b) follows from (29a).
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(c) This follows from Definition (19):

n—1 n—1

pTn@)=nU%E ] <> n@E0) -

p=0 p=0

Using (29b), we can write:

xp_

1
Finally, the estimate 1 < (\/5 + 1) 2P, valid for x > /2, yields

xr —

© (T () <26 (\/5—1—1) N +nme?

(d) By writing the left inclusion in (22) in terms of complementary sets, with ¢ = %,

we get:
N\ (N 1
N Cly | —=+ —
G, (2]\7)] Cly 2N+\/§N and so
N\ _ (N 1
N _ g 1" _ . .
Lo ()] ) <

By substituting in (29c) N;]\}/i = % + ﬁ in the place of €, we get:

Kf ° ]v + \/§ n ]v + \/§
M < 24+1) (29" :
“(G” <2N>]> ON <f+) Tt a1 N (55)
Finally, the r.h.s of (55), can be estimated by the following upper bounds:
N ++2
2N
n

N
<N+ﬁ) (\/§+1> <19 "

<2

s

n

which hold for V N > N, n>v2and ¥V n e NT. This ends the proof. [ |
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