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(T2
) 33B Proof of Proposition 5.1 35C Proof of Proposition 5.2 42Referenes 441. IntrodutionUnder the term of Quantum Chaos goes a rih phenomenology of behaviours [1�3℄ properto quantum systems whose lassial limit presents typial haoti features as positiveLyapunov exponents (hyperboli regime) [4�6℄.The footprints of lassial haos are usually studied semi�lassially when a suitable�~��like quantization parameter goes to zero; one then examines the di�erenes betweenquantum and lassial behaviours. In the hyperboli ase, quantum haos reveals itselfthrough the presene of a time�sale, over whih quantum and lassial motions mimieah other, that inreases as − log �~� [1�3,7�9℄. This peuliar logarithmi time sale hasto be ompared with the saling �~�−α, α > 0, whih is proper of quantum systems withregular lassial limit [1℄.Heuristial explanations of the logarithmi time-sale already indiate that the phe-nomenon is not exlusive of quantum systems, and thus of non�ommutativity, but thatit should also be present when the lassial dynamis is looked at as the ontinuous limitof a family of disrete lassial systems. [10℄.Intrinsially disrete systems [11℄ and disretized lassial ontinuous systems [12�14℄ have reently been objets of numerial analysis onerning the entropy produtionand the presene of a logarithmi time sale, whereas the ergodi properties of disretized



Continuous Limit of Disrete Sawtooth Maps and its Algebrai Framework 3disontinuous maps have been addressed in [15℄.In the following, we shall rigorously show this fat to be true for Sawtooth Maps onthe 2-dimensional torus [16�18℄: this will be done by foring them to move on a squarelattie and by retrieving the ontinuous dynamis when the lattie spaing goes to zero.Beause of the analogies between quantization and disretization, we will make use oftehnologies stritly resembling the so-alled Anti�Wik quantization [19℄.We shall prove that a time�sale logarithmi in the lattie-spaing appears; in om-parison to previous results obtained studying numerially the entropy prodution [14℄,a rigorous ontinuous limit is established that sueeds in ontrolling the disontinuitiesof Sawtooth Maps. Despite their lassial nature, the entropy previously investigatedwas quantum mehanial; somewhat analogously, in this artile, Sawtooth Maps will bestudied by means of states, whih play a role similar to quantum Coherent States, whosehoie is naturally provided by the lattie struture of disretized Sawtooth Maps. Theywill be shown to satisfy a dynamial loalization property that makes them remain loal-ized around the trajetories of the ontinuous dynamis, but only on a logarithmi timesale.2. Classial Dynamial SystemsClassial dynamis is usually desribed by means of a measure spae X , the phase�spae,endowed with the Borel σ�algebra and a normalized measure µ, µ(X ) = 1. The �volumes�
µ(E) =

∫

E
µ(dx)of measurable subsets E ⊆ X represent the probabilities that a phase�point x ∈ X belongto them: the measure µ de�nes the statistial properties of the system and representsa possible state, whih is taken to be an equilibrium state with respet to the givendynamis.In suh a sheme, a reversible disrete time dynamis amounts to an invertiblemeasurable map S : X 7→ X suh that µ ◦ S = µ and to its iterates {Sk | k ∈ Z}:phase�trajetories passing through x ∈ X at time 0 are then sequenes {Sk x

}
k∈Z [6℄.Classial dynamial systems are thus onveniently desribed by triplets (X , µ, S);in the present work, we shall fous upon the following hoies:

X : the 2�dimensional torus T2 = R2/Z2 =
{
x = (x1, x2) ∈ R2 (mod 1)

};



4 F. Benatti and V. Cappellini
µ: the Lebesgue measure, µ(dx) = dx1 dx2, on T2;
S: an invertible measurable transformations on T2 that preserves the Lebesgue mea-sure.It is onvenient to assoiate an algebrai triple (M, ω,Θ) to the measure�theoretitriple (T2, µ, S), onsisting of

M: the (Abelian) Von Neumann *-algebra L∞
µ

(T2
) of essentially bounded funtionson T2 [20, 21℄.

ωµ: the state (expetation) on M, given by
ωµ : L∞

µ

(T2
)
∋ f 7−→ ωµ(f) :=

∫T2

µ(dx) f(x) ∈ R+ · (1)
Θ: the automorphism of M suh that Θ (f) = f ◦ S, ω ◦ Θ = ω.In the following, we shall onsider a disretized version of (T2, µ, S) whih arises byforing the ontinuous lassial system to live on a square lattie LN ⊆ T2 of spaing 1

N :
LN :=

{ p

N

∣∣∣ p ∈ (Z/NZ)2
}

, (2)where (Z/NZ) denotes the residual lass (mod N), that is 0 6 pi 6 N − 1.Taking the N2 points as labels of the elements {|ℓ〉}ℓ∈(Z/NZ)2 of an orthonormalbasis (o.n.b.) of the N dimensional Hilbert spae HN , N := N2, we will onsider disretealgebrai triples (DN , τN ,ΘN
), onsisting of

DN : an N ×N matrix algebra diagonal in the orthonormal basis introdued above;
τN : the uniform state (expetation) on DN de�ned by

τN : DN ∋ D 7−→ τN (D) :=
1

N Tr (D) ∈ R+ ; (3)
ΘN : an automorphism of DN suitably reproduing Θ when N −→ ∞ (see Setion 4.2).Remark 2.1As it will beome evident in the following, up to a ertain extent, disretizationresembles quantization; in the latter ase, instead of DN , one deals with non�ommutative matrix algebras, the typial instane being the �nite dimensionalquantization of the Arnold Cat Map [22, 23℄.



Continuous Limit of Disrete Sawtooth Maps and its Algebrai Framework 53. Disretization of phase�spaeAs skethed in the previous Remark, we proeed now to setup a disretization proedurelose to the so�alled Anti�Wik quantization [19℄.Given the lassial algebrai triple (L∞
µ

(T2
)
, ωµ,Θ), the aim of a disretization�dedisretization proedure (spei�ally an N�dimensional disretization) is twofold:

• �nding a pair of *-morphisms, JN ,∞ mapping L∞
µ

(T2
) into the abelian �nite di-mensional algebra DN and J∞,N mapping bakward DN into L∞

µ

(T2
);

• providing an automorphism ΘN , the disrete dynamis, ating on DN suh that itapproximates the ontinuous one, Θ, on L∞
µ

(T2
) as follows

J∞,N ◦ Θj
N ◦ JN ,∞ −−−−→

N→∞
Θj · (4)The latter requirement an be seen as a modi�ation of the so alled Egorov's property(see [24℄). Intuitively, a disrete desription of the measure�theoreti triple (T2, µ, S

)beomes �ner when we inrease N , the number of points per linear dimension on the grid
LN in (2): this orresponds to enlarging the dimension of the Hilbert spae HN assoiateto the orresponding algebrai triple (DN , τN ,ΘN

). In this sense, the lattie spaing
a := 1

N of the grid LN is a natural �disretization parameter� playing an analogous roleto the quantization parameter ~.The di�ulty is to �nd onvenient *-morphisms JN ,∞ and J∞,N that set up arigorous asymptoti (in N) orrespondene, of funtions on L∞
µ

(T2
) and matries in DNand, above all, between the disrete dynamis ΘN and the ontinuous one Θ.Due to the similarities with quantization, we shall onsider a disretization proedurebased on states that we shall refer to as Lattie States (LS for short) whih mimi the useof Coherent States in the study of the semi�lassial limit. In the next setion we willgive a suitable de�nitions of LS belonging to the Hilbert spae HN , that we shall use todisretize (L∞

µ

(T2
)
, ωµ,Θ).3.1. Lattie States on T2In analogy with the the properties of quantum Coherent States, we shall look for a lass

{|CN (x)〉 | x ∈ T2} ∈ HN of vetors, indexed by points x ∈ T2, satisfying the following



6 F. Benatti and V. Cappellinionditions whih are borrowed from analogous quantum ones [25℄:Properties 3.11. Measurability: x 7→ |CN (x)〉 is measurable on T2;2. Normalization: ‖CN (x)‖2 = 1, x ∈ T2;3. Completeness: N ∫T2

µ(dx) |CN (x)〉〈CN (x)| = 1;4. Loalization: given ε > 0 and d0 > 0, there exists N0(ǫ, d0) suh that for
N ≥ N0(ǫ, d0) and dT2(x,y) ≥ d0 one has

N |〈CN (x), CN (y)〉|2 ≤ ε.The symbol dT2(x,y) used in the loalization property stands for the length of the shortersegment onneting the two points x,y ∈ T2, namelyDe�nition 3.1We shall denote by dT2 (x,y) := min
n∈Z2

‖x − y + n‖R2 the distane on T2.We shall now onstrut a family of |CN (x)〉. Let ⌊·⌋ denote the integer part of areal number, namely x − 1 < ⌊x⌋ 6 x is the largest integer smaller than x; further, let
〈·〉 denote the frational parts, that is 〈x〉 := x − ⌊x⌋. Thus we will writeT2 ∋ x =

(⌊Nx1⌋
N

,
⌊Nx2⌋

N

)
+

(〈Nx1〉
N

,
〈Nx2〉

N

)
,or, more ompatly, x =

⌊Nx⌋
N

+
〈Nx〉

N
. We proeed by assoiating to points of T2spei� lattie points.De�nition 3.2 (Lattie States)Given x ∈ T2, we shall denote by x̂N the element of (Z/NZ)2 given by

x̂N = (x̂N,1, x̂N,2) :=
(
⌊Nx1 + 1

2
⌋ , ⌊Nx2 + 1

2
⌋
)

, (5)and all Lattie States on T2 the vetors |CN (x)〉 de�ned byT2 ∋ x 7→ |CN (x)〉 := | x̂N 〉 ∈ HN · (6)



Continuous Limit of Disrete Sawtooth Maps and its Algebrai Framework 7Remark 3.1The family of states |CN (x)〉 is onstruted by hoosing, for eah x ∈ T2,that element of the basis of HN whih is labeled by the losest element of LNto x.
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Figure 1: The above piture represents a square lattie (L5) of spaing 1
5 by irles andonneting lines. All points in the blue square I( 3

5
, 3
5)

:=
[

5
10 , 7

10

)
×
[

5
10 , 7

10

)
⊂ T2 areassoiated with the grid point (3

5 , 3
5

) (blak dot). Thus, for all x ∈ I( 3
5
, 3
5)
, it turns outthat |CN (x)〉 = | (3, 3)〉 ∈ HN .Proposition 3.1The family of LS {|CN (x)} satis�es Properties 3.1.Proof:Measurability and normalization are straightforward.Completeness an be expressed as

N
∫T2

µ(dx) 〈ℓ |CN (x)〉〈CN (x)| m〉 = δ
(N)
ℓ,m, ∀ℓ,m ∈ (Z/NZ)2 ,where we have introdued the periodi Kroneker delta, that is δ

(N)
n,0 = 1 if and only if

n ≡ 0 (mod N). This is proved as follows:
N
∫T2

µ(dx) 〈 ℓ |CN (x) 〉〈CN (x) |m 〉 = N
∫ 1

0
dx1

∫ 1

0
dx2 〈 ℓ | x̂N 〉〈 x̂N |m 〉 =
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= N δ

(N)
ℓ1 , m1

δ
(N)
ℓ2 , m2

[∫ 1

0
dx1 δ

(N)

ℓ1 , ⌊Nx1+
1
2⌋

] [∫ 1

0
dx2 δ

(N)

ℓ2 , ⌊Nx2+
1
2⌋

]

= N
(
δ
(N)
ℓ1 , m1

δ
(N)
ℓ2 , m2

)


∫ ℓ1+

1
2

N

ℓ1−
1
2

N

dx1





∫ ℓ2+

1
2

N

ℓ2−
1
2

N

dx2


 = N2 δ

(N)
ℓ,m

1

N2
= δ

(N)
ℓ,m ·Loalization omes as follows: from De�nition 3.2 (see Remark 3.1 and Figure 1),it turns out that |CN (x)〉 is orthogonal to every basis element labeled by a point of

LN whose toral distane dT2 (see De�nition (3.1)) from x is greater than 1
N
√

2
. As aonsequene, the quantity 〈CN (x), CN (y)〉 = 0 if the distane on the torus between xand y is greater than √

2
N . Thus, given d0 > 0, it is su�ient to hoose N0(ǫ, d0) >

√
2/d0,to have

N > N0(ǫ, d0) =⇒ N 〈CN (x), CN (y)〉 = 0 ·Remarks 3.2(1) The last result in the previous Proposition amounts to an even strongerloalization property than property 3.1.4; this is due to our partiular hoieof Lattie States, whih, as we shall see, is suited to the task of ontrollingSawtooth Maps. In general, one an hardly hope to ahieve orthogonalityand must be ontent with the weaker loalization ondition 3.1.4.(2) Although the set of LS of De�nition 3.2 ful�ll Properties 3.1, whih aretypial of Coherent States, LS di�er from them in that the ontext we areonsidering is ommutative. In spite of this, it is onvenient to adopt theformalism of Quantum Mehanis; in partiular the set of LS is interpretedas a Hilbert orthonormal basis of Dira kets, whose orresponding projetorsform a partition of unit into indiator funtions having support on smallsquares of the torus, as in Figure 1, whose sides sales as 1
N ·3.2. Anti�Wik Disretization and its ontinuous limit on T2In order to study the ontinuous limit and, more generally, the quasi�ontinuous be-haviour of (DN , τN ,ΘN

) when N → ∞, we follow the semi�lassial tehnique known asAnti�Wik quantization. The other standard quantization tehnique, namely the Weylproedure, despite being more straightforward and less tehnially heavy, is neverthelessmore suited to smooth spaes of funtions and was indeed instrumental in the study ofdisretized Cat Maps [14℄. Instead, in our ase, the Anti�Wik proedure is a better



Continuous Limit of Disrete Sawtooth Maps and its Algebrai Framework 9hoie due to the disontinuous harater of the dynamis, as it will learly appear in thenext Setion.We start hoosing onrete disretization/de�disretization *-morphisms.De�nitions 3.3Given the family {|CN (x)〉} of Lattie States in HN , the Anti-Wik�like dis-retization sheme (AW, for short) will be desribed by a one parameter familyof (ompletely) positive unital map JN ,∞ : L∞
µ

(T2
)
→ DN

L∞
µ

(T2
)
∋f 7→ N

∫T2

µ(dx) f(x) |CN (x)〉〈CN (x)| =: JN ,∞(f) ∈ DN .The orresponding de�disretization operation will be desribed by the (om-pletely) positive unital map J∞,N : DN → L∞
µ

(T2
)

DN ∋ X 7→ 〈CN (x),X CN (x)〉 =: J∞,N (X)(x) ∈ L∞
µ

(T2
)

.Remarks 3.3i. Both maps are identity preserving (unital) beause of the onditions satis-�ed by the family of Lattie States and are ompletely positive, sine both
L∞

µ

(T2
) and DN are ommutative algebras. One an also hek that:

‖J∞,N ◦ JN ,∞(g)‖∞ ≤ ‖g‖∞, g ∈ L∞
µ

(T2
)
·ii. De�nition 3.3 yields τN ◦ JN ,∞ = ωµ, with τN given in (3).In Appendix A, more operative details are presented, whereas in the following we provesome simple properties that inorporate minimal requests for rigorously de�ning the sensein whih the disrete dynamial systems (DN , τN ,ΘN

) tends to (L∞
µ

(T2
)
, ωµ,Θ), when

1
N → 0.Proposition 3.2(1) For all f ∈ L∞

µ

(T2
) and X ∈ DN ,

ωµ (g J∞,N (X)) = τN
(
JN ,∞(g)∗X

)
;



10 F. Benatti and V. Cappellini(2) For all f, g ∈ L∞
µ

(T2
)

lim
N→∞

τN
(
JN ,∞(f)∗JN ,∞(g)

)
= ωµ(fg) =

∫T2

µ(dx) f(x)g(x).(3) For all X ∈ DN , and for all N ∈ N+,
JN ,∞ ◦ J∞,N (X) = X ;(4) For all f ∈ L∞

µ

(T2
)

lim
N→∞

J∞,N ◦ JN ,∞(f) = f µ � a.e.Proof:The �rst two statements in the above Proposition diretly follow from De�nitions 3.3together with (6); the latter two are equivalent and their proof an be found in [25℄, theonly di�erene being the dimension N of the Hilbert spae HN , here N = N2, there
N = N .

Remark 3.4
Properties 1 and 2 in the previous Proposition show how (GNS) salar prod-uts in the disrete, respetively ontinuous limit, are related; properties 3and 4 onern instead the diret�inverse relations between the disretizationand the de�disretization maps.



Continuous Limit of Disrete Sawtooth Maps and its Algebrai Framework 114. Disretization of the Dynamis4.1. Classial desription of Sawtooth MapsWe shall now fous on a speial lass of automorphisms of the torus, namely the SawtoothMaps [16, 17℄ (SM for short), that is on triples (T2, µ, Sα) where
Sα

(
x1

x2

)
=

(
1 + α 1

α 1

)(
〈x1〉
x2

)
(mod 1) , α ∈ R (7)

=

(
〈(1 + α) 〈x1〉 + x2〉

〈α 〈x1〉 + x2〉

)Remarks 4.1i. In the following, a point x of the torus, will orrespond to an equivalenelass of R2 points whose oordinates di�er by integer values;ii. without the frational part, (7) is not well de�ned on T2 for not�integer α;indeed, the same point x = x + n ∈ T2,n ∈ Z2, would have (in general)
Sα (x) 6= Sα (x + n). Of ourse, 〈·〉 is not neessary when α ∈ Z;iii. the Lebesgue measure on T2 is invariant for all α ∈ R;iv. if α 6∈ Z, the Sα are known as Sawtooth Maps;v. when α ∈ Z, we shall write Tα instead of Sα. T1 = ( 2 1

1 1 ) is the Arnold CatMap [6℄. In general, T1 ∈ {Tα}α∈Z ⊂ SL2 (Z) ⊂ GL2 (Z) ⊂ M2 (Z) whereM2 (Z) is the subset of 2 × 2 matries with integer entries, GL2 (Z) thesubset of invertible matries and SL2 (Z) the subset of matries with deter-minant one: the dynamis generated by Tα ∈ SL2 (Z) is alled UnimodularGroup [6℄ (UMG for short);vi. after identifying x with anonial oordinates (q, p) and imposing the
(mod 1) ondition on both of them, the above dynamis reads





q′ = q + p′

p′ = p + α 〈q〉
(mod 1) · (8)This is nothing but the Chirikov Standard Map [3℄ in whih − 1

2π sin(2πq)is replaed by 〈q〉. The dynamis in (8) an also be thought of as generated



12 F. Benatti and V. Cappelliniby the (singular) Hamiltonian
H(q, p, t) =

p2

2
− α

〈q〉2
2

δp(t),where δp(t) is the periodi Dira delta whih makes the potential atthrough periodi kiks with period 1 [26℄;vii. Sawtooth Maps are invertible and the inverse is given by the expression
S−1

α

(
x1

x2

)
=

(
1 0

−α 1

)〈(
1 −1

0 1

)(
x1

x2

)〉
(mod 1) (9)

=

(
〈x1 − x2〉

〈〈x2〉 − α 〈x1 − x2〉〉

)or, in other words,




q = q′ − p′

p = −α q + p′
(mod 1) .It an indeed be heked that Sα

(
S−1

α (x)
)

= S−1
α (Sα (x)) = x, ∀x ∈ T2.Further, S−1

α preserves the Lebesgue measure on T2.We now list a set of properties [16�18℄ of Sawtooth Maps that will be used in the followingProperties 4.1 (of Sawtooth Maps)(1) Sawtooth Maps {Sα} are disontinuous on the subset
γ0 : = {x = (0, p) , p ∈ T} ∈ T2: two points lose to γ0, A := (ε, p) and
B := (1 − ε, p), have images that di�er, in the ε → 0 limit, by a vetor
d
(1)

Sα
(A,B) = (α,α) (mod 1).(2) Inverse Sawtooth Maps {S−1

α } are disontinuous on the subset
γ−1 := Sα (γ0) = {x = (p, p) , p ∈ T} ∈ T2: two points lose to γ−1, namely
A := (p + ε, p − ε) and B := (p − ε, p + ε), have images that di�er, in the
ε → 0 limit, by a vetor d

(1)

S−1
α

(A,B) = (0, α) (mod 1).(3) The maps Tα and T−1
α are ontinuous:

α ∈ Z =⇒ d
(1)

Tα
(A,B) = d

(1)

T−1
α

(A,B) = (0, 0) (mod 1).(4) The eigenvalues of the matrix Sα =
(

1+α 1
α 1

) are (α + 2 ±
√

(α + 2)2 − 4
)

/2.They are onjugate omplex numbers if α ∈ [−4, 0], whereas one eigenvalue
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λ > 1 if α 6∈ [−4, 0]. In this ase, distanes are strethed along the dire-tion of the eigenvetor |e+〉, Sα|e+〉 = λ|e+〉, ontrated along that of |e−〉,
Sα|e−〉 = λ−1|e−〉: log λ is a (positive) Lyapunov exponent.For suh α's all periodi points are hyperboli [18℄.

�
-

-
�

S−1
1
2

S 1
2

S 1
2

S−1
1
2

�
-

-
�

S−1
1 S1

S1 S−1
1

Figure 2: In the upper row, we depit the e�ets of the disontinuities of a SM with
α = 1

2 ; the piture in the middle shows the disontinuity lines γ0 and γ−1, whereas thoseon the right and left show how they evolve bakward and forward in time. The di�erentparallel bands help the reader to �gure out the toral periodiity and the disontinuousharater of the map, also highlighted by the aperiodi splits of two spots. Further, forsake of omparison, the lower row presents the same ase of the upper one but for theontinuous dynamis (α = 1).Remarks 4.2Beause of the presene of the frational part in (7) and (9), we have todistinguish the ation of Sα and S−1
α from a mere matrix ation. We shalladopt the following notations:i. With Sα the matrix ( 1+α 1

α 1

) in Property 4.1.4, the expression Sα (x) willdenote the ation represented by (7), whereas Sα ·x will denote the matrixation of Sα on the vetor x.ii. When the dynamis arises from the ation of the UMG (see Remark 4.1.v.),



14 F. Benatti and V. Cappelliniso, in partiular, when {Tα}α∈Z is the family of toral automorphisms, equa-tion (7) assumes the simpler form Tα (x) = Tα · x (mod 1).iii. Analogously, expressions like Tα · x, T tr
α · x, T−1

α · x and (T tr
α

)−1 · x, willdenote the ations by Tα itself, its transposed, its inverse and the inverseof the transposed, respetively.
4.2. Algebrai desription of ontinuous and disretized SawtoothMapsIn this Setion we make use of the ommutative (Von Neumann) algebra L∞

µ

(T2
) intro-dued in Setion 2 and onsider the algebrai desription of Sawtooth Maps by triples(

L∞
µ

(T2
)
, ωµ,Θα

), where ωµ has been de�ned in (1) and Θα : L∞
µ

(T2
)
7→ L∞

µ

(T2
) isthe disrete�time dynamis generated as follows:

Θα (f) (x) := f(Sα (x)) , α ∈ R ·The maps Θj
α, j ∈ Z are automorphisms of L∞

µ

(T2
) and leave the state ωµ invariant.Our aim is now to de�ne a suitable disrete evolution ΘN ,α on DN , suh that thedisretized triplets (DN , τN ,ΘN ,α

) onverge to the ontinuous SM.We start by introduing two di�erent kinds of maps: the �rst ones, U±j
α , j ∈ Z, arede�ned on the torus T2

(
[0, N)2

), namely [0, N) × [0, N) (mod N), and given byT2
(
[0, N)2

)
∋ x 7→ U0

α (x) := x

= N S0
α

( x

N

)
∈ T2

(
[0, N)2

)
, (10a)T2

(
[0, N)2

)
∋ x 7→U±1

α (x) := N S±1
α

( x

N

)
∈ T2

(
[0, N)2

)
, (10b)T2

(
[0, N)2

)
∋ x 7→U±j

α (x) := U±1
α (U±1

α ( · · ·U±1
α (U±1

α (︸ ︷︷ ︸
j times x ) ) · · · ) ) , j ∈ N+ ,

= N S±j
α

( x

N

)
∈ T2

(
[0, N)2

)
· (10)The seond lass onsists of maps V ±j

α from T2
(
[0, N)2

) onto its subset (Z/NZ)2, whose
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(
[0, N)2

)
∋ x 7→ V 0

α (x) := ⌊x⌋

= ±
⌊
±U0

α (⌊x⌋)
⌋
∈ (Z/NZ)2 , (11a)T2

(
[0, N)2

)
∋ x 7→ V ±1

α (x) := ±
⌊
±U±1

α (⌊x⌋)
⌋
∈ (Z/NZ)2 , (11b)T2

(
[0, N)2

)
∋ x 7→ V ±j

α (x) := V ±1
α (V ±1

α ( · · · V ±1
α (V ±1

α (︸ ︷︷ ︸
j times ⌊x⌋ ) ) · · · ) ) , j ∈ N+ ,

= ±⌊±U±1
α (±⌊±U±1

α ( · · · ± ⌊±U±1
α (±⌊±U±1

α (︸ ︷︷ ︸
j times ⌊x⌋ )⌋ )⌋ · · · )⌋ )⌋ ∈ (Z/NZ)2 · (11)Remark 4.3The maps U j

α are extensions of the Sj
α on the enlarged torus T2

(
[0, N)2

);however, they do not map the lattie LN into itself, therefore we are foredto use the maps V j
α to de�ne a onsistent disretized dynamis.De�nition 4.1

ΘN ,α will denote the map:
DN ∋ X 7→ ΘN ,α (X) :=

∑

ℓ∈(Z/NZ)2

XVα(ℓ),Vα(ℓ) |ℓ〉 〈ℓ | ∈ DN · (12)
ΘN ,α is a *-automorphism of DN ; indeed, the map

(Z/NZ)2 ∋ ℓ 7−→ Vα (ℓ) ∈ (Z/NZ)2is a bijetion, so that (12) an be rewritten in the more onvenient form
ΘN ,α (X) =

∑

ℓ∈(Z/NZ)2

XVα(ℓ),Vα(ℓ) |ℓ〉 〈ℓ | =

=
∑

V −1
α (s)∈(Z/NZ)2

Xs,s

∣∣V −1
α (s)

〉 〈
V −1

α (s)
∣∣ =(see Remark 4.4.iii. below) = Wα,N




∑all equiv.lasses Xs,s |s 〉 〈s |


W ∗

α,N = (13)
= Wα,N X W ∗

α,N ,



16 F. Benatti and V. Cappelliniwhere the operators Wα,N , de�ned by linearly extending the maps
HN ∋

∣∣ℓ
〉
7−→ Wα,N

∣∣ℓ
〉
:=
∣∣V −1

α (ℓ)
〉
∈ HN · (14)to HN , are unitary: W ∗

α,N

∣∣ℓ
〉
:= |Vα (ℓ) 〉.For the same reason the state τN is ΘN ,α�invariant and Vα is invertible too.Note that Θj

N ,α := ΘN ,α ◦ · · · ◦ ΘN ,α︸ ︷︷ ︸
j times is implemented by V j

α (ℓ) given in (11).Remarks 4.4i. The double ± sign in front and within every �oor funtion in equations (11)is needed in order to have V ±j
α (V ∓j

α (x)) = V 0
α (x) (the identity when

x ∈ (Z/NZ)2); the reason is that, in general, ⌊−x⌋ 6= −⌊x⌋, for x 6∈ Z(see [27℄).ii. When α ∈ Z, (Z/NZ)2 ∋ ℓ 7−→ Vα (ℓ) = Tα · ℓ ∈ (Z/NZ)2, namely theation of the map Vα beomes that of a matrix (mod N). Moreover, inthat ase, Uα and Vα oinide.iii. Sine ℓ 7−→ Vα (ℓ) is a bijetion, in (13) one an sum over the equivalenelasses.5. Continuous limit of the dynamisOne of the main issues in the semi-lassial analysis is to ompare if and how the quantumand lassial time evolutions mimi eah other when a suitable quantization parametergoes to zero.In this artile we are instead onsidering the possible agreement between the dy-namis of ontinuous lassial systems and that of a lass of disrete approximants. Inpratie, in our ase, we will study the di�erene
Θj

α − J∞,N ◦ Θj
N ,α ◦ JN ,∞ (15)whih represents how muh the disrete dynamis at timestep j di�ers from the ontin-uous one at the same timestep.



Continuous Limit of Disrete Sawtooth Maps and its Algebrai Framework 17For quantum systems, whose lassial limit is haoti, the situation is strikinglydi�erent from those with regular lassial limit. In the former ase, lassial and quantummehanis agree, that is a di�erene as in (15) is negligible, only over times j whih salelogarithmially (and not as a power law) in the quantization parameter.As we shall see, suh a type of saling is not exlusively related with non�ommutativity;in fat, the quantization�like proedure developed so far, exhibits a similar behavior when
N → ∞ and we reover (L∞

µ

(T2
)
, ωµ,Θα

) as a ontinuous limit of (DN , τN ,ΘN ,α

).5.1. Continuous limit for Sawtooth MapsLater on we shall show that the di�erene in (15) goes to zero in a suitable topology;for the moment we just note that the major di�ulties in the proof are due to thedisontinuous harater of the frational part that appears in (7).It is therefore important to brie�y disuss the disontinuities of the maps Sα [16�18℄.As already noted in Property 4.1.1, Sα is disontinuous on the irle γ0; therefore Sn
α willbe disontinuous on the preimages

γm := S−m
α (γ0) for 0 6 m < n , (16a)whereas the disontinuities of S−n

α lie on the sets
γ−m := S m

α (γ0) for 0 < m 6 n · (16b)Apart from γ−1, whose projetion on the [0, 1)2 square is its diagonal (see Fig. 5), eahset of the type γm (for γ−m the argument is similar) is the (disjoint) union of segmentsparallel to eah other whose endpoints lie either on the same segment belonging to γp,
p < m, or on two di�erent segments belonging to γp and γp′ , with p′ 6 p < m [17℄.It proves onvenient to introdue the disontinuity set of Sn

α,T2 ⊃ Γn :=

n−1⋃

p=0

γp , (17)and its omplementary set, Gn := T2 \ Γn.We now enlarge the previous de�nition from ontinuous Sawtooth Maps, to disretizedones.



18 F. Benatti and V. CappelliniDe�nitions 5.1We shall all �segment�, and denote it by (A,B), the shortest urve joining
A,B ∈ T2, by l (γp) the length of the urve γp and by

γp (ε) :=
{
x ∈ T2

∣∣∣ dT2 (x, γp) 6 ε
} (18)the strip around γp of width ε, where the distane dT2 (·, ·) on the torus hasbeen introdued in De�nition 3.1.Further, we shall denote by

Γn (ε) :=

n−1⋃

p=0

γp (ε) (19)the union of the strips up to p = n − 1 and by GN
n (ε) the subset of points

GN
n (ε) :=

{
x ∈ T2

∣∣∣
x̂N

N
6∈ Γn (ε)

}
, (20)where the lattie points x̂N have been introdued in De�nition 3.2.As already observed, in order to prove that the disretized SM tend to ontinuous SMwhen N → ∞, the main problem is to ontrol the disontinuities. It proves onvenientto subdivide the lattie points in a good and a bad set and show that, on the former,

V q
α ≃ U q

α, at least on a ertain time�sale (see Remark 4.3). This will not turn out to betrue for the bad set, however we shall show that the latter tends with N to a set of zeroLebesgue measure and thus beomes ine�etive.Following this strategy, we shall onretely show that the di�erene (15) goes tozero with N → ∞ in the strong topology over the Hilbert spae L2
µ

(T2
). More preisely,we have the following theoremTheorem 1Let (DN , τN ,ΘN ,α

) be a sequene of disretized SM as de�ned in Setion 4:for all γ > 3,
∀f ∈ L∞

µ

(T2
)

, s–lim
j,N→∞

j< 1
γ

log N
log η

(
Θj

α − J∞,N ◦ Θj
N ,α ◦ JN ,∞

)
(f) = 0 , (21)



Continuous Limit of Disrete Sawtooth Maps and its Algebrai Framework 19where the limit is in the strong topology over the Hilbert spae L2
µ

(T2
) and

η >
√

2 is the largest eigenvalue of the matrix |Sα | : =

√
S†

αSα, with Sαde�ned in Property 4.1.4.The previous Theorem indiates that the time limit and the ontinuous limit donot ommute. In partiular, the di�erene between the disretized dynamis and theontinuous one an be made small by inreasing N , while it beomes large beyond thetime sale j ≃ 1
γ

log N
log η . This phenomenon is the same as in quantum haos and pointsto disretization of phase spae (in the traditional semi�lassial treatment of quantumsystems), rather than to non�ommutativity, as the soure of the so�alled logarithmibreaking time. The onstant γ is a form fator, whih re�ets the �ne struture of thedynamis: for instane, in the ase of quantum at maps [25℄, γ = 2.Remark 5.1The parameter γ > 3 in Theorem 1 may seem overestimated if omparedwith the ase of the quantum Cat Map, where γ = 2. As we shall see (inpartiular in the next Proposition 5.2), the upper bound for γ is ditated bythe disontinuities of the Sawtooth Maps, and not by ommutativity. Theorresponding exponent assumes the lower value γ > 1 in the ase of dis-retized Cat Maps, that inlude Sawtooth Maps with integer α. This resultwill be presented in a forthoming paper [28℄, in whih we study the breakingtime τB (N), here 1

γ
log N
log η , relative to the haoti or non�haoti properties ofthe dynamis. In partiular, in the hyperboli regime, the parameter log η ofTheorem 1 is replaed by the Lyapunov exponent log λ whereas, in the elliptiregime, the two limits j,N −→ ∞ do ommute and in the paraboli one, thebreaking time is given by τB (N) = N

1
γ .The proof of Theorem 1 onsists of several steps, among whih the most importantis a property, satis�ed by our hoie of Lattie States, whih we shall all dynamialloalization.We give a full proof that our hoie of Lattie States satis�es suh property, sine itrepresents a natural request that should be ful�lled by any onsistent disretization/de�disretization (quantization/de�quantization) sheme.Remarks 5.2(1) In analogy to the quantum ase, Dynamial loalization is what one ex-pets from a good hoie of states suited the study of the ontinuous limit:



20 F. Benatti and V. Cappelliniin fat, it essentially amounts to asking that LS remain deently loalizedaround the ontinuous trajetories while evolving with the orrespondingdisrete evolution. As we shall see this is the ase only on logarithmitime�sales. Informally, when N → ∞, the quantities
Kj(x,y) := 〈CN (x),W j

α,N CN (y)〉should behave as if N|Kj(x,y)|2 ≃ δ(Sj
α x − y): this would make thedisretization analogous to the notion of regular quantization desribed inSetion V of [29℄. Atually, with our hoie of LS, the quantity Kj(x,y) isa Kroneker delta.(2) In quantum haos, instead of seeking for the dynamial loalization, onean study the dynamial spreading of Coherent States. Consider for instanethe lassial funtion f over the phase spae, its orresponding quantum ob-servable Op~ (f) and a Coherent State |C~(x)〉 entred at the point x. Thetime needed for the quantum mehanial expetation 〈C~(x),Op~ (f)C~(x)〉to onverge to the average of f over a suitable invariant measure an beexpliitly analyzed. Reent work [7, 9℄ shows that also this time saleslogarithmially in ~, at least for the automorphisms on the 2�torus.(3) The onstraint j ≤ C logN is typial of hyperboli behavior with Lyapunovexponent log λ and omes heuristially as follows: the expansion of an initialsmall distane δ an be exponential until the distane beomes the largestpossible, namely δλTB ≃ 1. After disretization, the minimal distane gives

δ = 1
N , therefore one estimates TB ≃ log N

log λ , whih is alled breaking timeand sets the time�sale over whih ontinuous and disretized dynamismimi eah other.(4) In quantum haos, the semi�lassial analysis leads to an estimate of TBexatly as above; further, the logarithmi dependene on ~ of TB is a sig-nature of the hyperboli harater of the lassial limit. Conversely, if thelassial limit is regular, then the time sale when quantum and lassialbehaviors are more or less indistinguishable goes as ~
−b, b > 0. Anotherinterpretation of the breaking time is given in [8℄, where it is related to theshortest time needed for the system to transfer all sales 1 > ℓ > ~ downto the �quantum sale� ~. Indeed, this is the sale at whih the di�erenesamong quantum and lassial mehanis ome up. Regarding the SM, thehyperboli ase orresponds to Sα with eigenvalue λ > 1, whereas the reg-ular ases are the ellipti one (two omplex eigenvalues) and the paraboli
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(5) The dynamial loalization property has fruitfully been used in severalquantum ontexts [25℄; however, to our knowledge, this is the �rst instane,though not properly quantal, where dynamial loalization is fully exposed.

Before proeeding with the proof of Theorem 1, it is important to notie that in itsstatement the Lyapunov exponent log λ does not appear but log η, instead; of ourse λand η are related for λ is eigenvalue of Sα, and η of √S†
αSα (see Remark 5.1).As will beome lear during the proof, the use of η and not of λ is required bythe disontinuous harater of SM. In fat, the disontinuities do not allow us to ontrolthe di�erene between the n�th iterates of the disretized and the ontinuous dynamis,but instead fore us to estimate that di�erene at eah single time�step up to n andto put all the estimates together. In the single time�step estimate, independently ofwhether the map is ontinuous or not, one must use η, whih oinides with λ onlywhen the dynamial matrix Sα is symmetri. Indeed, Figure 3 shows that the eigenvalue

η orretly desribes how volumes behaves under a single appliation of the dynamis,whereas λ underestimates it. On the ontrary, it is λn whih asymptotially ontrolsthe strething, whereas ηn largely overestimates it. In the regular ellipti ase, where
λ = 0 and η >

√
2, the use of η gives the impression of hyperboli strething, whereasthe ellipti motion is on�ned: from the lower strip in Figure 3 it is apparent that suhhyperboliity is spurious.
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D E

Figure 3: In Plots A, B and C we ompare the estimates of the (maximum) strethinggiven by the ation of the SM S1/10 and its temporal iterates Sn
1/10 (n 6 5) given by λ,respetively η, on a small ball B0

v of radius v, entered in (1
2 , 1

2

)
∈ T2. The �ve evolvedimages of the ball, namely {Bn

v , 1 < n 6 5}, are plotted together with B0
v, using di�erentolors. In A we surround every evolved ball Bn

v with the smallest irle ontaining it. Weompare that plot with B and C, in whih the surrounding irles have radii proportionalto λnv, respetively ηnv; in both ases the orret radii of A are overestimated although,on the long run, irles in B provide a good approximation.The fake hyperboliity given by η is learly shown in D and E, where a paraboli SM S0and an ellipti one S−1/20 are presented: in the �rst ase the maximum spreading growslinearly, whereas in the seond one it remains on�ned, and the estimate given by thesurrounding irles of radii growing as powers of η is inappropriate.Note that in all examples C�E, the blak irles of radii η v rightly surround B1
v.Theorem 2 (Dynamial loalization with {|CN(x)〉} states)For α ∈ R, β ∈ R+ \ (0, 2 ] and d0 > 0, there exists N0 = N0(α, β, d0) ∈ N+with the following property: if N > N0 and n < 1

β
log N
log η , then

dT2 (Sn
α (x) ,y) > d0 =⇒

〈
CN (x)

∣∣W n
α,N CN (y)

〉
= 0 ,for all y ∈ T2 and x ∈ GN

n

(
Ñ
2N

), where W n
α,N is the unitary operator de�ned
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√

2
(√

2 + 1
)
η2n and GN

n (ε) has been introdued in De�ni-tions 5.1.In order to prove Theorem 2, we need the following result, whose proof an be found inAppendix B.Proposition 5.1With the notation of De�nitions 3.1 and 5.1, and with [E]◦ denoting theomplement of E ⊆ T2, [E]◦ := T2 \ E, the following inlusions hold:
[
Γn

(
ε +

1√
2N

)]◦
⊆ GN

n (ε) ⊆
[
Γn

(
ε − 1√

2N

)]◦
· (22)Further, for α ∈ R and n ∈ N+, if

N > Ñ = 2
√

2
(√

2 + 1
)

η2n and x ∈ GN
n

(
Ñ

2N

) then
dT2

(
Up

α (Nx)

N
,
V p

α (x̂N )

N

)
6

√
2

N

(
ηp+1 − 1

η − 1

)
, ∀p 6 n · (23)Proof of Theorem 2 :Using the de�nition of {|CN (x)〉} in (6), we easily ompute

〈
CN (x)

∣∣W n
α,N CN (y)

〉
=
〈
x̂N

∣∣∣ V −n
α (ŷN )

〉
= δ

(N)
V n

α (x̂N ) , ŷN
· (24)Using the triangular inequality, we get:

dT2

(
Un

α (Nx)

N
, y

)
6 dT2

(
Un

α (Nx)

N
,

V n
α (x̂N )

N

)
+

+ dT2

(
V n

α (x̂N )

N
,

ŷN

N

)
+ dT2

(
ŷN

N
, y

)or equivalently, using the De�nitions (10),
dT2

(
V n

α (x̂N )

N
,

ŷN

N

)
> dT2 (Sn

α (x) , y)−

− dT2

(
Un

α (Nx)

N
,

V n
α (x̂N )

N

)
− dT2

(
ŷN

N
, y

)
·



24 F. Benatti and V. CappelliniNow, sine dT2 (Sn
α (x) , y) > d0 by hypothesis, using (40) in Appendix B and observingthat x ∈ GN

n

(
Ñ
2N

) permits us to use (23) in Proposition 5.1, namely that
N > Ñ =⇒ dT2

(
Un

α (Nx)

N
,
V n

α (x̂N )

N

)
6

√
2

N

(
ηn+1 − 1

η − 1

)
, (25)we an derive

dT2

(
V n

α (x̂N )

N
,

ŷN

N

)
> d0 −

√
2

N

(
ηn+1 − 1

η − 1

)
− 1√

2N
·The r.h.s. of the previous inequality an always be made stritly larger than 1

N ,
dT2

(
V n

α (x̂N )

N
,

ŷN

N

)
>

1

N
, (26)by hoosing an N larger than

NM (n) = max

{
1

d0

[
1 +

√
2

(
ηn+1 − 1

η − 1

)
+

1√
2

]
, Ñ = 2

√
2
(√

2 + 1
)

η2n

}
, (27)so that the ondition on the l.h.s. of (25) is also satis�ed. From (24) and (26), we have

N > NM (n) =⇒
〈
CN (x)

∣∣W n
α,N CN (y)

〉
= 0 · (28)Indeed, if the toral distane between two points (z,w) exeeds 1

N , then the orrespondinggrid points (ẑN , ŵN ) are di�erent and then the periodi Kroneker delta in (24) vanishes.Sine the (non�dereasing) funtion NM in (27) is eventually bounded by ηβn (β beingstritly greater than two), we de�ne n as the time when NM (n) = ηβn =: N0, and hoose
N > N0, x ∈ GN

n

(
Ñ
2N

). Thus, if 0 < n < n, then N > N0 = NM (n) > NM (n), whereasif n 6 n < 1
β

log N
log η , then N > ηβn > NM (n) and (28) holds for all 0 < n < 1

β
log N
log η .In order to proeed with the proof of Theorem 1, we need another auxiliary result whihis proved in Appendix C.Proposition 5.2With the notation of De�nition 5.1, the following relations hold for all p ∈ N,

n ∈ N+ and ε ∈ R+:
l (γp) 6 ηp , (29a)

µ
(
γp (ε)

)
6 2 ε ηp + πε2 , (29b)
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µ
(
Γn (ε)

)
6 2

(√
2 + 1

)
ε ηn + π n ε2 · (29)Moreover, if N ∈ N+ and Ñ = 2

√
2
(√

2 + 1
)
η2n (fr. equation (23) inProposition 5.1):

N > Ñ =⇒ µ

([
GN

n

(
Ñ

2N

)]◦)
6

38 η3n

N
· (29d)We are �nally in position to onlude withProof of Theorem 1:We subdivide the proof in two steps: in the �rst we onentrate on ontinuous f , that is

f ∈ C0
(T2

) (
⊂ L2

µ

(T2
)); in the seond one we extend the result to essentially boundedfuntion by applying the following Corollary of Lusin's Theorem [21, 30, 31℄:Given f ∈ L∞

µ (X ), with X ompat, there exists a sequene {fn} of ontin-uous funtions on X suh that |fn| ≤ ‖f‖∞ and onverging to f µ � almosteverywhere.
(1) Let f ∈ C0

(T2
) and Opj,N (f) :=

(
Θj

α − J∞,N ◦ Θj
N ,α ◦ JN ,∞

)
(f): notie thatOpj,N (f) is a multipliation operator on L2

µ

(T2
), but also an L∞

µ

(T2
) (and thus alsoan L2

µ

(T2
)) funtion. Aording to (21), we must show that

∀g ∈ L2
µ

(T2
)

, lim
j,N→∞

j< 1
γ

log N
log η

ww Opj,N (f) g
ww

2
= 0 ·Using Shwartz's inequality �rst with g in the lass of simple funtions and then usingtheir density in L2

µ

(T2
), we have just to show that

lim
j,N→∞

j< 1
γ

log N
log η

ww Opj,N (f)
ww

2
= 0 ·Expliitly, using (1), we write:

ww Opj,N (f)
ww2

2
= ωµ

(Opj,N (f)∗Opj,N (f)
)

= ωµ

[(
Θj

αf
)∗ (

Θj
αf
)]

+

+ ωµ

[(
J∞,N ◦ Θj

N ,α ◦ JN ,∞
)

(f)∗
(
J∞,N ◦ Θj

N ,α ◦ JN ,∞
)

(f)
]
+

− 2 Re
{

ωµ

[(
Θj

αf
)∗ (J∞,N ◦ Θj

N ,α ◦ JN ,∞
)

(f)
]}

,



26 F. Benatti and V. Cappelliniwhih, via Proposition 3.2.1, beomes
= ωµ

[
Θj

α

(
f
)
Θj

α (f)
]
− 2 Re

{
τN
[
JN ,∞

(
Θj

αf
)∗ (

Θj
N ,α ◦ JN ,∞

)
(f)
]}

+

+ τN
[(

JN ,∞ ◦ J∞,N ◦ Θj
N ,α ◦ JN ,∞

)
(f)∗

(
Θj

N ,α ◦ JN ,∞
)

(f)
]

,that, using Proposition 3.2.3, an be reast as
=
(
ωµ ◦ Θj

α

) (
ff
)

+ τN
[(

Θj
N ,α ◦ JN ,∞

)
(f)∗

(
Θj

N ,α ◦ JN ,∞
)

(f)
]
+

− 2 Re
{

τN
[(

JN ,∞ ◦ Θj
α

)
(f)∗

(
Θj

N ,α ◦ JN ,∞
)

(f)
]}

= ωµ

(
|f |2

)
+
(
τN ◦ Θj

N ,α

)
[JN ,∞ (f)∗ JN ,∞ (f)] − 2 Re (Ij,N (f)) ,with

Ij,N (f) := τN
[(

JN ,∞ ◦ Θj
α

)
(f)∗

(
Θj

N ,α ◦ JN ,∞
)

(f)
]

= N
∫T2

µ(dx)

∫T2

µ(dy) f(y) f(Sj
αx)|〈CN (x),W j

α,NCN (y)〉|2 ·Now, Proposition 3.2.2 yields
(
τN ◦ Θj

N ,α

)
[JN ,∞ (f)∗ JN ,∞ (f)] = τN [JN ,∞ (f)∗ JN ,∞ (f)] −−−−−→

N−→∞
ωµ

(
|f |2

)
,so that the strategy is to prove that also Ij,N (f) goes to ωµ

(
|f |2

)
=

∫T2

µ(dx)|f(x)|2when j,N → ∞ with j < 1
γ

log N
log η .Resorting to GN

n

(
Ñ
2N

) in De�nition 5.1, and to its omplementary set
[
GN

n

(
Ñ
2N

)]◦
= T2 \ GN

n

(
Ñ
2N

), we an write
∣∣∣∣Ij,N (f) −

∫T2

µ(dy) |f(y)|2
∣∣∣∣

=

∣∣∣∣
∫T2

µ(dx)

∫T2

µ(dy) f(y)
(
f(Sj

αx) − f(y)
)
N|〈CN (x),W j

α,NCN (y)〉|2
∣∣∣∣

≤
∣∣∣∣∣

∫
[
GN

n

(
Ñ
2N

)]
◦
µ(dx)

∫T2

µ(dy) f(y)
(
f(Sj

αx) − f(y)
)
N|〈CN (x),W j

α,NCN (y)〉|2
∣∣∣∣∣

+

∣∣∣∣∣

∫

GN
n

(
Ñ
2N

) µ(dx)

∫T2

µ(dy)f(y)
(
f(Sj

αx) − f(y)
)
N|〈CN (x),W j

α,NCN (y)〉|2
∣∣∣∣∣ . (30)
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∣∣∣∣∣

∫
[
GN

n

(
Ñ
2N

)]
◦
µ(dx)

∫T2

µ(dy) f(y)
(
f(Sj

αx) − f(y)
)
N|〈CN (x),W j

α,NCN (y)〉|2
∣∣∣∣∣

≤ 2(‖f‖∞)2
∫
[
GN

n

(
Ñ
2N

)]
◦
µ(dx)

∫T2

µ(dy)N|〈
(
W ∗

α,N

)j
CN (x), CN (y)〉|2

≤ 2(‖f‖∞)2µ

([
GN

n

(
Ñ

2N

)]◦)
6

76 η3j

N
(‖f‖∞)2where we have used ompleteness and normalization Properties 3.1 and equation (29d)from Proposition 5.2; this term beomes negligible for large N > Ñ i� j < 1

γ
log N
log η , with

γ > 3.Now it remains to prove that the seond term in (30) is also negligible for large N :seleting a ball B(Sj
αx, d0), one derives

∣∣∣∣∣

∫

GN
n

(
Ñ
2N

) µ(dx)

∫T2

µ(dy) f(y)
(
f(Sj

αx) − f(y)
)
N|〈CN (x),W j

α,NCN (y)〉|2
∣∣∣∣∣

≤
∣∣∣∣∣

∫

GN
n

(
Ñ
2N

) µ(dx)

∫

B(Sj
αx,d0)

µ(dy) f(y)
(
f(Sj

αx) − f(y)
)
N|〈CN (x),W j

α,NCN (y)〉|2
∣∣∣∣∣

+

∣∣∣∣∣

∫

GN
n

(
Ñ
2N

) µ(dx)

∫T2\B(Sj
αx,d0)

µ(dy)f(y)
(
f(Sj

αx) − f(y)
)
N|〈CN (x),W j

α,NCN (y)〉|2
∣∣∣∣∣ .Applying the mean value theorem in the �rst double integral, we get that ∃c ∈ B(Sj

αx, d0)suh that
∣∣∣∣∣

∫

GN
n

(
Ñ
2N

) µ(dx)

∫T2

µ(dy) f(y)
(
f(Sj

αx) − f(y)
)
N|〈CN (x),W j

α,NCN (y)〉|2
∣∣∣∣∣

≤
∫

GN
n

(
Ñ
2N

) µ(dx)
∣∣∣f(c)

(
f(Sj

αx) − f(c)
)∣∣∣
∫

B(Sj
αx,d0)

µ(dy)N|〈
(
W ∗

α,N

)j
CN (x), CN (y)〉|2

+ 2‖f‖ 2
∞

∫

GN
n

(
Ñ
2N

) µ(dx)

∫T2\B(Sj
αx,d0)

µ(dy)N|〈CN (x),W j
α,NCN (y)〉|2 ·



28 F. Benatti and V. CappelliniFinally, using ompleteness and normalization (Properties 3.1), we arrive at the upperbound
≤ ‖f‖∞ sup

z∈T2

c∈B(z,d0)

∣∣(f(z) − f(c)
)∣∣+ 2 ‖f‖ 2

∞ N sup
x∈GN

n

(
Ñ
2N

)

y 6∈B(Sj
αx,d0)

|〈CN (x),W j
α,NCN (y)〉|2 ·By uniform ontinuity, the �rst term an be made arbitrarily small, provided we hoose

d0 small enough. For the seond integral, we use Theorem 2, whih provides us with
N0 = N0(d0) depending on the same d0 , suh that the seond term vanishes for all
N > N0 and far all j < 1

γ
log N
log η .

(2) In order to extend the result of point (1) to f ∈ L∞
µ

(T2
), we use the Corollary ofLusin's Theorem, hoose a sequene {fn}n as in its statement and estimate

lim
j,N→∞

j< 1
γ

log N
log η

ww Opj,N (f)
ww

2
6 lim

j,N→∞
j< 1

γ
log N
log η

ww Opj,N (f − fn)
ww

2
+ lim

j,N→∞
j< 1

γ
log N
log η

ww Opj,N (fn)
ww

2
·Using point (1), the seond term in the r.h.s. of the previous equation an bebounded by arbitrarily small ε, indeed fn ∈ C0

(T2
).For the �rst term we proeed as follows: using De�nition 4.1 together with equa-tions (37) and (38) of Appendix A, we �nd

(
J∞,N ◦ Θj

N ,α ◦ JN ,∞
)

(g)(x) =
∑

ℓ∈(Z/NZ)2

ΓN (g)

(
Vα (ℓ)

N

)
XQN( ℓ

N )(x) , (31)where g is any measurable funtion on T2. Then, beause of how the running averageoperator (RAO) ΓN is de�ned, for all g ∈ L1
µ

(T2
) it follows that

www
(
J∞,N ◦ Θj

N ,α ◦ JN ,∞
)

(g)
www

1
6

www
(
J∞,N ◦ Θj

N ,α ◦ JN ,∞
)

(|g |)
www

1
= ‖g‖1 ,where ‖·‖1 denotes the L1

µ

(T2
)�norm, and that

www
(
J∞,N ◦ Θj

N ,α ◦ JN ,∞
)

(g)
www

∞
= sup

ℓ∈(Z/NZ)2

{∣∣∣∣ΓN (g)

(
ℓ

N

)∣∣∣∣
}

6 ‖ΓN (g)‖0 6 ‖g‖∞ ·Indeed, the �rst equality in the last formula omes from the de�nition of essentialnorm [21℄ (whih in this ase amounts to the greater absolute value assumed by thesimple funtion J∞,N ◦ Θj
N ,α ◦ JN ,∞), whereas the �rst inequality is a onsequene of



Continuous Limit of Disrete Sawtooth Maps and its Algebrai Framework 29the ontinuity of ΓN and the last one from Proposition A.1. Putting last two inequalitytogether, we obtain
www
(
J∞,N ◦ Θj

N ,α ◦ JN ,∞
)

(g)
www

2
6 ‖g‖∞‖g‖1 ,whene, setting g = f − fn,

ww Opj,N (f − fn)
ww

2
=
www Θj

α (f − fn) − J∞,N ◦ Θj
N ,α ◦ JN ,∞ (f − fn)

www
2

(32)
6 ‖ f − fn ‖2 + ‖ f − fn ‖∞‖ f − fn ‖1 , ∀j,N ·Now onvergene follows from Lusin's Corollary.
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Figure 4: These two plots show how the di�erene between JN ,∞ ◦Θα and ΘN ,α ◦JN ,∞beomes smaller with N . For the ontinuous SM, Θ1, the ations JN ,∞ ◦Θ1 and ΘN ,1 ◦
JN ,∞ on f ∈ L∞

µ

(T2
) (left part of both plots) are plotted for two di�erent N : N = 16(top) and N = 48 (bottom). The resulting matries are mapped bak, together with thefuntion Θ1 (f), on the unfolded torus, by means of the de�disretization operator J∞,N .
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γ0: Disontinuityline for S3/2

γ−1 = S3/2 (γ0):Disontinuity linefor S−1
3/2 and S−2

3/2

γ−2 = S 2
3/2 (γ0):Disontinuity linefor S−2
3/2
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µ

(T2
)

Θ 2
3/2

J 14
40

0,
∞
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Θ2
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2

Figure 5: Here, the same piture as in Figure 4, is represented, with a �ner disretizationgiven by N = 120 and a di�erent funtion g ∈ L∞
µ

(T2
), for a disontinuous SM, Θ3/2,ating two times. Choosing a funtion g with sharp variation aross γ0 (blue lines),the preimage of γ−1, the disontinuity of Θ3/2 makes it evident how the di�erenesbetween J14400,∞ ◦ Θ2

α and Θ2
14400,α ◦ J14400,∞ are the greater the loser they are tothe disontinuity line γ−1 (red lines). Of ourse, the longer the temporal evolution, theworst the orrespondene, in the sense that several new disontinuity lines ome to playa role. In the ase at hands, the map ats twie, and γ−2 is felt by Θ2

14400,α ◦ J14400,∞,as expeted.



32 F. Benatti and V. Cappellini6. Conlusions
In this artile we have onsidered disrete approximants of Sawtooth Maps on the torusand we have studied them in an algebrai framework modeled on the so�alled Anti�Wikquantization; In fat, �nite�dimensional disretization and quantization an be seen assimilar proedures in that they map an abelian Von Neumann algebra (of essentiallybounded funtions on phase�spae) into �nite�dimensional matrix subalgebras, the onlydi�erene being whether the latter are diagonal (ommutative) or not.In the semi�lassial analysis of lassially haoti quantum systems, the orrespon-dene lassial/quantum is usually observed only on time�sales that are logarithmi inthe quantization parameter ~. The motivation of our study was to show that the samephenomenon arises when a hyperboli lassial system is disretized, namely fored tomove on a lattie, and afterwards the lattie spaing is sent to zero.Previous results [14℄ based on the numerial investigation of the entropy prodution,indiate that it should indeed be so; however, these results were not supported by a solidframework where to analyze the ontinuous limit of the family of disrete approximants.This is the ontent of this artile.The major di�ulty was represented by the need of ontrolling the disontinuousharater of Sawtooth Maps, whih was made possible by an appropriate hoie of LattieStates. In fat, similarly to the entropi approah whih, despite the dynamis beinglassial, was based on a quantum dynamial entropy, the disretization/de�disretizationproedure we set up is based on quantum tools.The hoie of Lattie States was naturally pointed to by the lattie struture ofthe disrete phase�spae and turned out to posses the right loalization properties formastering the disontinuities. The result is the appearane of a logarithmi time�salewhen the disrete hyperboli SM tend to their ontinuous limit; namely, the ontinuousand disrete dynamis agree up to a breaking time whih is proportional to the logarithmof the lattie spaing.The proportionality onstant does not involve the Lyapunov exponent, that is theeigenvalue λ > 1 of the dynamial matrix Sα, rather the largest eigenvalue, η, of√S†

αSα.In the ase of ellipti SM, |λ | = 1, η >
√

2; however the resulting breaking time is aspurious e�et, while when λ > 1, the presene of η in the breaking time seems to be anunavoidable onsequene of the disontinuous dynamis.
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µ

(T2
)In this appendix we will apply De�nitions 3.3 and disretize L∞

µ

(T2
) by means of theLS set {|CN (x)〉 | x ∈ T2} ∈ HN introdued in Setion 3.1.In this framework, the disretizing/de�disretizing operators of De�nitions 3.3 read:

L∞
µ

(T2
)
∋f 7→ N2

∫T2

µ(dx) f(x) | x̂N 〉〈 x̂N | =: JN ,∞(f) ∈ DN , (33)
DN ∋ X 7→ 〈 x̂N |X | x̂N 〉 =: J∞,N (X)(x) ∈ S

(T2
)
⊂ L∞

µ

(T2
)

, (34)where S
(T2

) denotes the set of simple funtions [21℄ on the torus. The matrix elementsof JN ,∞(f) are as follows:
M

(f)
ℓ,m := 〈 ℓ | JN ,∞(f) | m 〉

= N2

∫T2

µ(dx) f(x) 〈 ℓ | x̂N 〉〈 x̂N |m 〉

= N2

∫ 1

0
dx1

∫ 1

0
dx2 f(x) δ

(N)
ℓ1 , x̂N,1

δ
(N)
ℓ2 , x̂N,2

δ
(N)
m1 , x̂N,1

δ
(N)
m2 , x̂N,2

= N2 δ
(N)
ℓ1 , m1

δ
(N)
ℓ2 , m2

∫ 1

0
dx1

∫ 1

0
dx2 f(x) δ

(N)

ℓ1 , ⌊Nx1+ 1
2⌋

δ
(N)

ℓ2 , ⌊Nx2+
1
2⌋

·This implies
M

(f)
ℓ,m = N2 δ

(N)
ℓ,m

∫ ℓ1+
1
2

N

ℓ1−
1
2

N

dx1

∫ ℓ2+
1
2

N

ℓ2−
1
2

N

dx2 f(x) , (35)so that varying f ∈ L∞
µ

(T2
) yields Ran (JN ,∞) = DN . In order to reast (35) into anier expression, we introdueDe�nition A.1 (Running Average Operator (RAO))Let QN (x) denote the square of side 1/N , oriented parallel to the axis of thetorus and entered around x; then, the Running Average Operator

ΓN : L∞
µ (X ) 7−→ C0

(T2
), is de�ned by

L∞
µ

(T2
)
∋ f(x) 7−→ ΓN (f) (x) =: N2

∫

QN (x)
µ(dy) f(y) ∈ C0

(T2
)
·



34 F. Benatti and V. CappelliniProposition A.1Given f ∈ L∞
µ

(T2
), the funtion f

(Q)
N := ΓN (f) is uniformly ontinuous on T2;moreover, the Running Average Operator has norm

‖ΓN‖B := sup
f∈L∞

µ (T2)

‖ΓN (f)‖0

‖f‖∞
= 1 · (36)Proof:Let x0 ∈ T2, x ∈ QN (x0) and XE denote the harateristi funtion of E ⊂ T2. ByDe�nition (A.1):

∣∣∣f (Q)
N (x0) − f

(Q)
N (x)

∣∣∣ = N2

∣∣∣∣
∫T2

µ(dy) f(y)
(
XQN (x0)(y) −XQN (x)(y)

)∣∣∣∣

6 N2 ‖f‖∞
∫T2

µ(dy)
∣∣XQN (x0)(y) −XQN (x)(y)

∣∣

= N2 ‖f‖∞
[
µ
(
QN (x0) ∪ QN (x)

)
− µ

(
QN (x0) ∩ QN (x)

)]
·Aording to our hypothesis, x ∈ QN (x0), thus geometrial onsiderations lead to:

µ
(
QN (x0) ∪ QN (x)

)
6

( 1

N
+ |x1 − x01 |

)( 1

N
+ |x2 − x02 |

)

µ
(
QN (x0) ∩ QN (x)

)
=
( 1

N
− |x1 − x01 |

)( 1

N
− |x2 − x02 |

)

µ
(
QN (x0) ∪ QN (x)

)
− µ

(
QN (x0) ∩ QN (x)

)
6

2

N

(
|x1 − x01 | + |x2 − x02 |

)

6
2
√

2

N
‖x0 − x‖ ,so that ∣∣∣f (Q)

N (x0) − f
(Q)
N (x)

∣∣∣ 6 2
√

2 N ‖f‖∞ ‖x0 − x‖, whih proves the ontinuity of
f

(Q)
N , while uniform ontinuity omes from T2 being ompat.Conerning the norm in (36), the upper bound ‖ΓN‖B 6 1 is lear and the maxi-mum is reahed by hoosing f onstant.By means of the RAO, the disretization operator in (33) an be onveniently written as

JN ,∞(f) =
∑

ℓ∈(Z/NZ)2

f
(Q)
N

(
ℓ

N

)
|ℓ〉 〈ℓ | · (37)
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J∞,N (X)(x) =

∑

ℓ∈(Z/NZ)2

Xℓ,ℓ δ
(N)
ℓ , x̂N

=
∑

ℓ∈(Z/NZ)2

Xℓ,ℓ XQN( ℓ
N )(x) , (38)thus proving that Ran (J∞,N ) = S

(T2
).Moreover, ombining equations (37) and (38), we expliitly get the simple funtionarising from f ∈ L∞

µ

(T2
), via AW disretization/de�disretization:

(J∞,N ◦ JN ,∞) (f)(x) =
∑

ℓ∈(Z/NZ)2

ΓN (f)

(
ℓ

N

)
XQN( ℓ

N )(x) · (39)The ation of the operator J∞,N ◦ JN ,∞ an be seen in Figures 4 and 5.
B. Proof of Proposition 5.1We start by proving the inlusions (22).For every real number t, we have 0 6

〈
Nt + 1

2

〉
= Nt + 1

2 −
⌊
Nt + 1

2

⌋
< 1, so that

∣∣∣∣∣ t −
⌊
Nt + 1

2

⌋

N

∣∣∣∣∣ 6
1

2N
, ∀ t ∈ R·From (5) in De�nition 3.2, we derive

dT2

(
x ,

x̂N

N

)
6

1√
2N

, ∀ x ∈ T2· (40)Then, let us onsider the triangular inequality
dT2 (x , y) 6 dT2

(
x ,

x̂N

N

)
+ dT2

(
x̂N

N
, y

)
∀ y ∈ T2 , (41)and let us take the in�mum over the set y ∈ Γn de�ned in (17)

dT2

(
x̂N

N
, Γn

)
> dT2 (x , Γn) − dT2

(
x ,

x̂N

N

)

> dT2 (x , Γn) − 1√
2N

,



36 F. Benatti and V. Cappelliniwhere we used (40). Therefore, onsidering the omplement [Γn (ε)
]◦ of the union ofstrip of width ε, Γn (ε) de�ned in (19), we get that

x ∈
[
Γn (ε)

]◦
=⇒ x̂N

N
∈
[
Γn

(
ε − 1√

2N

)]◦
·Further, from (20), it follows that, if the lattie point x̂N

N does not belong to Γn

(
ε − 1√

2N

),then the orresponding point x ∈ T2 must belong to GN
n

(
ε − 1√

2N

).Changing ε− 1√
2N

7−→ ε we obtain the �rst inlusion relation in equation (22); the seondone follows by interhanging the role played by x̂N

N and x in (41).In order to prove (23) , we start by onsidering the matries Sα =
(

1+α 1
α 1

) andits inverse S−1
α =

(
1 −1
−α 1+α

). Let η be the largest (positive) eigenvalue of √S†
αSα; itsharateristi polynomial for η is η4 −

(
2 α2 + 2 α + 3

)
η2 + 1 = 0, whene η attains itsminimum ηmin =

√
2 at α = −1

2 . Then, we set Ñ := 2
√

2
(√

2 + 1
)
η2n, n ∈ N, hoose

N > Ñ and proeed by indution.
p = 0 : from de�nitions (10) and (11), it follows

dT2

(
U0

α (Nx)

N
,

V 0
α (x̂N )

N

)
= dT2

(
x ,

x̂N

N

)
<

1√
2N

<

√
2

N
,where the �rst inequality follows from (40), thus relation (23) holds for p = 0.

p = q − 1 , 1 6 q 6 n : sine
dT2

(
U q

α (Nx)

N
,
V q

α (x̂N )

N

)
6 dT2




Uα

(
U q−1

α (Nx)
)

N
,
Uα

(
V q−1

α (x̂N )
)

N


+

+ dT2




Uα

(
V q−1

α (x̂N )
)

N
,
Vα

(
V q−1

α (x̂N )
)

N


 ,using (10) in the �rst term and noting that, from de�nitions (10) and (11), the seondterm is less or equal to √

2
N , we get

dT2

(
U q

α (Nx)

N
,
V q

α (x̂N )

N

)
6 dT2

(
Sα

(
U q−1

α (Nx)

N

)
, Sα

(
V q−1

α (x̂N )

N

))
+

√
2

N
·
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dT2

(
U q−1

α (Nx)

N
,
V q−1

α (x̂N )

N

)
6

√
2

N

(
ηq − 1

η − 1

) (42)
6

√
2

N

1√
2 − 1

ηq

(
η >

√
2 , 1 6 q 6 n =⇒

)
<

1

2
ηq−2n <

1

2
η−1 · (43)Now we set ε = Ñ

2N , taking into aount that η >
√

2 and use the right inlusion in (22)to dedue that
x ∈ GN

n

(
Ñ

2N

)
=⇒ x 6∈ Γn

(
Ñ

2N
− 1√

2N

)
.At this point, we make use of the following result, whih shall be proved in Lemma B.1.3:it states that if a point does not belong to Γn (ε), the union of the the strips of width

ε 6
1
2 up to time n, then its orbit under Sα up to time n − 1 is farther away than

εη−q, 0 6 q < n from the disontinuity line γ0. Expliitly
x 6∈ Γn (ε) =⇒ dT2 (Sq

α (x) , γ0) > ε η−q , ∀ 0 6 q < n ,whene
dT2

(
U q−1

α (Nx)

N
, γ0

)
>

(
Ñ

2N
− 1√

2N

)
η1−q

>

√
2

N

(
η2n−1 − ηq−1

η − 1

)
η1−q

>

√
2

N

(
ηq − 1

η − 1

)
, (44)where the seond inequality omes from η >

√
2, the relation ηn − 1

η − 1
6

1√
2 − 1

ηn and
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(

Ñ

2N
− 1√

2N

)
=

√
2

N

((√
2 + 1

)
η2n − 1

2

)

>

√
2

N

[(√
2 + 1

)(√
2 − 1

) η2n − η + η − 1

η − 1
− 1

2

]

>

√
2

N

[
η

η2n−1 − 1

η − 1
+

1

2

]
>

√
2

N

(
η2n−1 − ηq−1

η − 1

)
·Therefore, omparing (44) with (42)

dT2

(
U q−1

α (Nx)

N
,
V q−1

α (x̂N )

N

)
< dT2

(
U q−1

α (Nx)

N
, γ0

)
, ∀q 6 n ·As a onsequene, the segment (Uq−1

α (Nx)
N , V q−1

α (x̂N )
N

) annot ross the line γ0. Thisondition, together with (43), allows us to use another result proved in Lemma B.1.1b,whih states that if a segment (A,B) on the torus does not ross the disontinuity line
γ0 then dT2 (Sα (A) , Sα (B)) 6 η dT2 (A,B). We an �nally onlude with:

dT2

(
U q

α (Nx)

N
,
V q

α (x̂N )

N

)
6 η

√
2

N

(
ηq − 1

η − 1

)
+

√
2

N
=

√
2

N

(
ηq+1 − 1

η − 1

)
·The following Lemma, whih has been used in the proof of the previous Proposition,deals with the geometrial properties of the Sawtooth dynamis.

Lemma B.1With η the largest (positive) eigenvalue of√S†
αSα and A,B ∈ T2 suh that

dT2 (A,B) < 1
2 η−1, it follows:(1a) If the segment (A,B) does not ross γ−1, then

dT2

(
S−1

α (A) , S−1
α (B)

)
6 η dT2 (A,B) · (45a)(1b) If (A,B) does not ross γ0, then

dT2 (Sα (A) , Sα (B)) 6 η dT2 (A,B) · (45b)
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1
2 η−1,

x ∈ γp−1 (ε) =⇒ S−1
α (x) ∈

(
γp (η ε) ∪ γ0 (η ε)

)
·(3) For any given α ∈ R, n ∈ N+ and 0 6 ε 6 1

2 , with U q
α as in (10),

x 6∈ Γn (ε) =⇒ dT2

(
U q

α (Nx)

N
, γ0

)
> ε η−q , ∀ 0 6 q < n ·Proof:In the ourse of the proof, we shall use that

wwS±1
α · v

wwR2 6 η ‖v‖R2 , (46a)
wwS±1

α · v
wwR2 > η−1‖v‖R2 , (46b)whih diretly follows from the de�nition of η, where v is any 2�dimensional real vetor.In order to prove (45), it is onvenient to unfold T2 and the disontinuity of Sαon the plane R2. This is most easily done as follows. Points A ∈ T2 = R2/Z2 arerepresented by equivalene lasses

[a] :=
{
a + n , n ∈ Z2

}
, a ∈ [0, 1)2 · (47)Given A,B ∈ T2, let Ab ∈ [a] be suh that

dT2 ([a] , [b]) =
wwwAb − b

wwwR2
·Notie that

dT2 ([a] , [b]) = ‖a − b‖R2 i� ‖a − b‖R2 6
1

2
(48)(1a) (A,B) not rossing γ−1 means that the segment (Ab , b

) does not interset γ−1.Periodially overing the plane�R2 by squares [0, 1)2, the γ−1-lines form a set of (parallel)straight lines x1 − x2 = n ∈ Z; it follows that (Ab , b
) does not ross γ−1 i�

⌊
Ab

1 − Ab
2

⌋
= ⌊b1 − b2⌋ , (49)where the integral part on the r.h.s. takes values 0,−1, depending on whih side of thediagonal γ−1 the point b lies within.
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α are not sensitive to the integer part of their arguments, their ations are the sameon all elements of the equivalene lasses (47), that is

dT2

(
S−1

α (A) , S−1
α (B)

)
= dT2

(
S−1

α ([a]) , S−1
α ([b])

)
= dT2

(
S−1

α

(
Ab
)

, S−1
α (b)

)
·By expanding 〈x〉 = x − ⌊x⌋, using the de�nition of S−1

α (·) and putting together allintegral ontributions, ondition (49) yields
dT2

(
S−1

α (A) , S−1
α (B)

)
= min

m∈Z2

wwS−1
α (A) − S−1

α (B) + m
wwR2

= min
m′∈Z2

wwwS−1
α ·

(
Ab − b

)
+ m′

wwwR2

= dT2

(
S−1

α ·
(
Ab − b

)
, 0
)

·Applying (46a), sine we assumed dT2 (A,B) < 1
2 η−1, we estimate

wwwS−1
α ·

(
Ab − b

)wwwR2
6 η

wwwAb − b

wwwR2

= η dT2 (A,B) <
1

2
·In partiular, using (48), the previous inequalities imply

dT2

(
S−1

α ·
(
Ab − b

)
, 0
)

=
wwwS−1

α ·
(
Ab − b

)wwwR2
6 η dT2 (A,B) ·(1b) Using the same argument as (1a), the union of γ0-lines onstitute a set of straightlines x1 = n ∈ Z; Therefore the segment (Ab , b

) does not ross γ0 i�
⌊
Ab

1

⌋
= ⌊b1⌋ · (50)As done before, by means of (50), we arrive at

dT2 (Sα (A) , Sα (B)) = dT2

(
Sα

(
Ab
)

, Sα (b)
)

= dT2

(
Sα ·

(
Ab − b

)
, 0
)

·The proof an now be ompleted exatly as for point (2a) before.(2) We denote by dT2 (x, γ) = inf
y∈γ

dT2 (x,y) the distane of the point x ∈ T2 from aurve γ ∈ T2. Then, from De�nition (18) we have:
x ∈ γp−1 (ε) =⇒ ε > dT2 (x, γp−1) = dT2 (x,y⋆) , (51)
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α (y⋆) ∈ γp (see (16a)), we get

dT2

(
S−1

α (x) , γp

)
6 dT2

(
S−1

α (x) , S−1
α (y⋆)

)

6 η dT2 (x,y⋆) 6 η ε ·Therefore S−1
α (x) ∈ γp (η ε).(2′′) The segment (x,y⋆) rosses γ−1.In this ase, there exists z ∈ γ−1 suh that

dT2 (x,y⋆) = dT2 (x,z) + dT2 (z,y⋆) · (52)Then, from (51) and (52),
ε > dT2 (x,y⋆) > dT2 (x,z) ·Sine, aording to (16), S−1

α (z) ∈ γ0, from point (1a) we get
dT2

(
S−1

α (x) , γ0

)
6 dT2

(
S−1

α (x) , S−1
α (z)

)
6 η ε ,that is S−1

α (x) ∈ γ0 (η ε).(3) From point (2), it follows that, when 0 6 ε 6
1
2 , for p ∈ N+,

x 6∈
(
γp (ε) ∪ γ0 (ε)

)
=⇒ Sα (x) 6∈ γp−1

(
η−1ε

)
· (53)We prove by indution that, when 0 6 ε 6

1
2 , for m ∈ N+,

x 6∈
m⋃

p=0

γp (ε) =⇒ Sα (x) 6∈
m−1⋃

p=0

γp

(
η−1ε

)
· (54)For m = 1, (54) follows from (53); if (54) holds for m = r, then take

x 6∈
r+1⋃

p=0

γp (ε) . This means that x 6∈
r⋃

p=0

γp (ε) and x 6∈
(
γr+1 (ε) ∪ γ0 (ε)

)
·1we stipulate that, if y⋆

∈ γ−1 or x ∈ γ−1, we are still in a non�rossing ondition
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x 6∈

r+1⋃

p=0

γp (ε) =⇒ Sα (x) 6∈
r−1⋃

p=0

γp

(
η−1ε

) and Sα (x) 6∈ γr

(
η−1ε

)
·Setting m = n − 1 and iterating q times the impliation (54) argument, we get

x 6∈
n−1⋃

p=0

γp (ε) =⇒ Sq
α (x) 6∈

n−1−q⋃

p=0

γp

(
η−qε

)
, ∀ 0 6 q < n ·In partiular Sq

α (x) 6∈ γ0

(
η−qε

), whih leads to the lower bound
dT2 (Sq

α (x) , γ0) > η−qε , ∀ 0 6 q < n ,whene the result follows in view of De�nitions (10) and (19).
C. Proof of Proposition 5.2(a) In (16a), we have de�ned γp = S−p

α (γ0) where S−1
α (x) (as well as S−p

α (x)) is apieewise ontinuous mapping onto T2 with jump�disontinuities aross the γp lines dueto the presene of the funtion 〈·〉 in (9). Away from the disontinuities, S−p
α (x) be-haves as the matrix ation S−p

α · x. We want now to estimate the length l (γp); inorder to do that, we unfold γp on the plane and alulate the length of the segment{
x ∈ R2

∣∣∣ x = S−p
α ·

(
0
y

)
, y ∈ [0, 1)

}, whih, in its turn, is the image of γ0 under thematrix ation given by S−p
α · x. Therefore, using (46a), the result follows.(b) Let L (ε) denote the set of points having distane from a segment of length L smalleror equal than ε: it has a volume (under the Lebesgue measure µ) given by

µ
(
L (ε)

)
= 2Lε + πε2 ,where the last term on the r.h.s. takes into aount rounding of the extremes of the stripby to semi�irle of radius ε. Then (29b) follows from (29a).
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µ
(
Γn (ε)

)
= µ




n−1⋃

p=0

γp (ε)


 6

n−1∑

p=0

µ
(
γp (ε)

)
·Using (29b), we an write:

µ
(
Γn (ε)

)
6 2 ε

n−1∑

p=0

ηp +

n−1∑

p=0

π ε2 = 2 ε
ηn − 1

η − 1
+ n π ε2 ·Finally, the estimate xp − 1

x − 1
6

(√
2 + 1

)
xp, valid for x >

√
2, yields

µ
(
Γn (ε)

)
6 2 ε

(√
2 + 1

)
ηn + n π ε2 ·(d) By writing the left inlusion in (22) in terms of omplementary sets, with ε = Ñ

2N ,we get: [
GN

n

(
Ñ

2N

)]◦
⊆ Γn

(
Ñ

2N
+

1√
2N

) and so
µ

([
GN

n

(
Ñ

2N

)]◦)
6 µ

(
Γn

(
Ñ

2N
+

1√
2N

))
·By substituting in (29) Ñ+

√
2

2N = Ñ
2N + 1√

2N
in the plae of ε, we get:

µ

([
GN

n

(
Ñ

2N

)]◦)
6

Ñ +
√

2

2N

(√
2 + 1

)(
2 ηn +

n√
2 + 1

π
Ñ +

√
2

2N

)
· (55)Finally, the r.h.s of (55), an be estimated by the following upper bounds:

π
Ñ +

√
2

2N
< 2

n√
2 + 1

< ηn

(
Ñ +

√
2
)(√

2 + 1
)

< 19 η2nwhih hold for ∀ N > Ñ, η >
√

2 and ∀ n ∈ N+. This ends the proof.
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