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Abstract

Average entanglement of random pure states of an N×N composite system is analyzed. We compute the average value of the
determinant D of the reduced state, which forms an entanglement monotone. Calculating higher moments of the determinant
we characterize the probability distribution P (D). Similar results are obtained for the rescaled N th root of the determinant, called
G–concurrence. We show that in the limit N →∞ this quantity becomes concentrated at a single point G⋆ = 1/e. The position
of the concentration point changes if one consider an arbitrary N ×K bipartite system, in the joint limit N,K →∞, K/N fixed.

Introduction

The measures of quantum entanglement [1] for a pure state of a
bipartite system, |ψ〉 ∈ H = HA ⊗ HB, rely on its Schmidt co-
efficients [2] {Λi}i equivalent to the spectrum ~Λ of the reduced
system, ρ = TrB(|ψ〉〈ψ|). An important set of monotones may be
constructed out of symmetric polynomials of the Schmidt coeffi-
cients of order k = 2, . . . , N [3]. Taking the N-th root of the poly-
nomials does not spoil the monotonicity [4]. The last polynomial
is equivalent to the determinant of the reduced matrix D = det ρ;
its rescaled N–th root is proportional to the geometric mean of all
Schmidt coefficients

G := ND
1
N = N [det ρ]

1
N = N [det (TrB|ψ〉〈ψ|)]

1
N (1)

and was called G–concurrence in [4].
The aim of this work is to compute mean values and to describe
probability distributions for the determinant D and its root G of
random pure states of a bipartite system, generated with respect
to the natural, unitary invariant measure on the space of pure
states, also called Fubini–Study (FS) measure.

Random pure states and induced measures

Consider a pure state of a bipartite N ×K system represented in
a product basis

|ψ〉 =

N∑

i=1

K∑

j=1

Ai j |i〉 ⊗ |j〉 .

The Schmidt coefficients Λi coincide with the eigenvalues of a
positive matrix ρN = AA

†, equal to the density matrix obtained by
a partial trace on the K–dimensional space. The matrix A needs
not to be Hermitian, the only constraint is the trace condition,
TrAA† = 1.
The natural measure (FS) on the space of pure states induces
the following ρN–eigenvalues’s distributions [5]

P
(β)
N,K(Λ1, . . . ,ΛN) = C

(β)
N,K δ(1−

∑

i

Λi)×

∏

i

Λ
(β(K−N)+β−2)/2
i θ(Λi)

∏

i<j

|Λi − Λj |
β , (2)

in which the cases of real or complex |ψ〉 are distinguished by the
repulsion exponent β being equal 1, respectively 2 and C(β)N,K is
just a normalization constant.
Induced distribution (2) coincide with the Hilbert–Schmidt distri-
bution [6] of N × N density matrices ρN, provide that

K =

{
N for complex |ψ〉 ( β = 2 or abbr. C )
N + 1 for real |ψ〉 ( β = 1 or abbr. R )

Average moments of G–concurrence

The moments of the G–concurrence (1) on the HS–probability
distribution P (β)N (G) are given by
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similar expression have been found for 〈DM
(β)
〉N. The firsts two

moments are depicted in Figure 1.

HS–Probability distribution P
(β)
N
(G)

When N = 2, the HS–Probability distribution P (β)2 (G) is simply
given by {

PC
2 (G) = 3 G

√
1− G2

PR
2 (G) = 2 G

, G ∈ [0, 1] · (4)

For N > 2 we construct the HS–distribution from all moments
〈GM
(β)
〉N given by equation (3). P (β)N (G) is simply given by an in-

verse Laplace transforming procedure, consisting in the following
integral along the imaginary M–axis (see Figure 2):

P
(β)
N (G) =

∫ +i∞

−i∞

dM

2πi
G−(1+M) 〈GM(β)〉N (5)

The same relation holds between P (β)N (D) and 〈DM
(β)
〉N.

Asymptotically, for D → (1/N)N, we find (see Figure 3)
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(6)

whereas for D → 0 we have (see Figure 4)
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Asymptotic behavior for P
(β)
N
(G) at large N

When the system becomes eventually large, we found the gen-
eral result

G(M) := lim
N→∞

〈
GM(β)

〉
N
= e−M (8)

that holds for both real and complex density matrices HS–
distributed.
Moreover (8) display that 〈G〉N is 1/e = 0. 367 879 441 . . . and
variance is 0; such behavior can be recognized in Figure 1.
For what concerns the limiting distribution, we have

P (β)(G) := lim
N→∞

P
(β)
N (G) = δ(G − e−1) (9)

again for both β = 1, 2.
A concentration of reduced density matrices around the maxi-
mally mixed state has been quantified [7] for bipartite N ×K sys-
tems in the case K ≫ N. Concerning the G–concurrence, a
similar concentration effect occurs even if K = N, provided that
N →∞.

Conclusion

The generalized G–concurrence is likely to be the first measure
of pure state entanglement for which one could find not only the
mean value over the set of random pure states, but also compute
explicitly all moments and describe its probability distribution, de-
riving an analytic expression in the large N limit. Our work may
also be considered as a contribution to the random matrix the-
ory: we have found the distribution of the determinants of random
Wishart matrices AA†, normalized by fixing their trace.

(a) Complex Random Pure States

(b) Real Random Pure States

Figure 1: Average of G–concurrence for (a)
complex and (b) real random pure states of
a N × (N + 2− β) system distributed accord-
ingly to the FS measure. The average is com-
puted by means of equation (3); error bars
represent the variance of P (β)N (G). Dashed
line represent the asymptote G⋆ = 1/e of
eq. (8).

(a) Complex Random Pure States

(b) Real Random Pure States

Figure 2: G–concurrence’s distributions
P
(β)
N (G) are compared for different N. The

distributions are obtained by performing nu-
merically the inverse Laplace transform of
equation (5). Dashed vertical line centered in
G⋆ = 1/e denotes the position of the Dirac–
delta corresponding to P (β)(G), as in eq. (9).

(a) Complex Random Pure States

(b) Real Random Pure States

Figure 3: 100 bins histogram of 108 deter-
minants of 3 × 3 density matrices distributed
accordingly to the HS measure is compared
with the right asymptote given by equation (6)
(plotted in solid line).

(a) N = 2 (b) N = 3

(c) N = 4 (d) N = 5

Figure 4: In panel (a), formula (4) is compared with a 100 bins histogram of 106 G–
concurrence of 2× 2 complex density matrices distributed accordingly to the HS measure.
The other panels shows histograms (for different N) together with the distribution of G–
concurrence obtained by inverse Laplace transforming as in equation (5) (plotted in solid
lines). The left asymptote given by eq. (7) is also plotted in dashed line for comparison.
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