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|δx| −→
n
|δx(n)| = λn |δx| = en log λ|δx|

log λ is Lyapounov Exponent

|δx(n)| increase no longer in compact systems...

λ := lim
n→+∞

lim
δx→0

1

n
log

|δx(n)|
|δx|

. . . and |δx| can’t decrease in discrete systems!

For a discrete system |δx| > a (a = lattice spacing)

∀a : λ(a) = 0
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• Cfr. Quantum Chaos:

∀~ : λ(~) = 0 but lim
n→∞

lim
~→0

λ(~) > 0

An indicator of chaos in classical continuous systems

• Entropy [S(n)]: information on the evolving system up
to time n.

• Loosely speaking, the Kolmogorov-Sinai metric entropy

is hµ(T ) := lim
n→∞

S(n)

n
(entropy per unit time).

Theorem 1 (Pesin)

Ergodicity =⇒ hµ(T ) =
∑

positive Lyapounov exponent

Theorem 2 (Brudno)

Ergodicity =⇒ hµ(T ) = Algorithmic Complexity

Classical
Sistemsy

Algorithmic
Complexity

Thm.←−−−−
Brudno

Kolmogorov–Sinai
metric Entropy

Thm.−−−→
Pesin

Lyapunouv
Exponent
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Which indicator of Chaos can we use
for discrete classical systems?

A Quantum concept is of help

The Alicki Lindblad Fannes Dynamical Entropy

For Quantum Dynamical Systems (M, ω, Θ)



M : a (not generally commutative) *algebra
Θ : a *automorphism on M that implements the dynamic
ω : an expectation (state) on M that is Θ-invariant

Let us Introduce:

• Y := {y`}D
`=1 ;

∑D
`=1 y∗`y` = 1M0 (Partition of unit)

y` ∈M0 ⊆M ; M0 (subalgebra) s.t. Θ (M0) = M0

• the time-evolving partition of unit: Θk(Y) :=
{
Θk(yi)

}D

i=1

• the refined partition:

Y [0,n−1]
Θ =

{
Θn−1

(
yin−1

)
Θn−2

(
yin−2

)
· · · Θ(yi1

) yi0

}

• the Dn ×Dn density matrices ρ
[
Y [0,n−1]

Θ

]
with elements

[
ρ
[
Y [0,n−1]

Θ

]]

i,j

:= ω
(
y∗j0Θ

(
y∗j1

) · · ·Θn−1 (
y∗jn−1

yin−1

) · · ·Θ (
yi1

)
yi0

)
·

• the Von Neumann Entropy Hω,M0

[
Y [0,n−1]

Θ

]
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The Alicki Lindblad Fannes Entropy hALF
ω,M0

(Θ) of (M, ω, Θ)

hALF
ω,M0

(Θ) := sup
Y⊂M0

lim sup
n

1

n
Hω,M0

[
Y [0,n−1]

Θ

]

The ALF-entropy can also be used for Classical Dynamical
System (X , µ, T ). Let’s take as a system (T2, dx, Tα) that
is the torus R2/Z2 equipped with the Lebesgue measure dx,
on which the dynamic is implemented by

xn 7→ xn+1 := Tα xn

Tα :=

(
1 1

α 1 + α

)
, α ∈ Z

Tα is a toral automorphism and a generalization of the so
called Arnold Cat Map. Depending on α we have two kind
of dynamics:

• α ∈ (−∞,−4) ∪ (0, +∞) Chaotic System

• α ∈ [−4, 0] Regular System

Algebraically the system (T2, dx, Tα) can be described by
(AX , ω, Θα) where





AX : The *algebra of bounded function f on T2

ω : the state defined by ω (f ) :=
∫
T2 f (x) dx

Θα : the *automorphism Θα (f (x)) =: f (Tα x)
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In order to get a partition of unit on AX we shall use a
partition on T2:

E := {E`}`=1,2,··· ,D : Partition
(

D⋃

`=1

E` = T2 ; E` ∩ Ek = ∅ ∀` 6= k

)

Y :=
{XE`

}
`=1,2,··· ,D : Partition of unit

(
D∑

`=1

X ∗
E`
XE`

= 1AX ‘

)

Here XE`
∈ A0 ⊆ AX where A0 is the subalgebra of simple

function.

With our algebraic description (AX , ω, Θα), using the
partition Y , we can obtain the ALF-entropy hALF

ω,A0
(Θα).

As a result:
hALF

ω,AX (Θα) = hµ(Tα)

Then a quantum entropy is useful in a classical system, in
which is equivalent to our “chaos indicator” hµ(Tα).

What about a discrete system?

• Finite number of states =⇒ Periodicity

• =⇒ No Chaoticity at all

• With a sufficient number of states, a Discrete System
can represent a Continuous System (also Chaotic), but
only in a definite time range . . .

• When do they lose chaoticity ? Why ?
• What does chaos means for a Discrete system ?
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We use hALF
ω,M0

(Θα) in order to study the evolution of
chaoticity in time, for discrete classical systems

From (T2, dx, Tα) we get a discrete dynamical system by
replacing the torus with a periodic grid with lattice spacing
a = 1

N . Algebraically, we define a *morphism
JN,∞ : (AX , ω, Θα) 7→ (DN2, ωN2, Θα) where




DN2 : The abelian C* algebra of diagonal N 2 ×N 2 matrices
ωN2 : the tracial state (Θα-invariant) ωN2 (D) := 1

N2 Tr (D)

Θα : the *automorphism Θα (f (n)) := f (Tα n)

n : the coordinates on the lattice
(
n =

(
`1
N , `2

N

)
; 0 6 `i < N

)

JN,∞ (f ) is the diagonal matrix that has as (N 2) diagonal
elements the N 2 values that the function f assumes on the

finite grid on the torus

Discretization
(

1
N

) ⇐⇒ Weyl Quantization (~)

Partition: In order to get a partition of unit on DN2 we
use a subset Λ (D-dimensional) of the toral coordinates:

Λ = {n1, n2, · · · , nD} : collection of coordinates

Yα := {y`}D
`=1 : Partition of unit y` :=

1√
D
JN,∞

(
e 2πi n` x

)

With i we indicate the string i = {i0, i1, · · · , in−1} each of
i` ∈ {1, 2, · · · , D}. — Def.: {i} =: Ω

(n)
D .
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In order to compute the evolving density matrix, we define
a function

Ξ
(n),N
Λ,α : Ω

(n)
D 7→ (Z/NZ)2 =

{
points of
the lattice

}

Ξ
(n),N
Λ,α ({i0, i1, · · · , in−1}) :=

n−1∑

`=0

T `
α ni` (mod N)

The Density matrix is given by
[
ρ
[
Y [0,n−1]

α

]]

i,j

=
1

Dn
δ

(N)

Ξ
(n),N
Λ,α (i) , Ξ

(n),N
Λ,α (j)

where δ(N) is the periodic Kronecker delta (mod N)

Let us define two more functions:

m
(n),N
Λ,α (n) := #

{
i ∈ Ω

(n)
D

∣∣∣ Ξ
(n),N
Λ,α (i) ≡ n (mod N)

}

ν
(n),N
Λ,α (n) := m

(n),N
Λ,α (n)

/
Dn

The set of ν
(n),N
Λ,α different from zero coincide with the set

of non null eigenvalues of ρ
[
Y [0,n−1]

α

]
.

With this set we can compute the Von Neumann Entropy
Hω,D

N2

[
Y [0,n−1]

α

]
.

Note that #
{

ν
(n),N
Λ,α 6= 0

}
6 N 2.

Then Hω,D
N2

[
Y [0,n−1]

α

]
cannot grow indefinitely. . .

=⇒ hALF
ω,D

N2
(Θα) −−−→

n→∞
0 (No chaos)
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• For an Hyperbolic System, Ξ(n),N
Λ,α tends to the maximum

spreading over (Z/NZ)2, until we get a saturation.
(see Figs. 1, 3)

• Hω,D
N2 grows linearly whence hALF

ω,D
N2

(Θα) is constant.
(see Figs. 4, 5, 6)

Thus the System shows chaoticity

• Beyond this time scale, frequencies ν
(n),N
Λ,α tends to equipar-

tite, and Hω,D
N2 tends to a constant; hALF

ω,D
N2

(Θα) starts
to decrease. (see Figs. 4, 5, 6)

Thus the System remembers to be Discrete

• The Breaking Time, that is the time n̄ at which we have
the change of behaviour, scales with N as (see Fig. 4):

n̄ ' 2 log N = log (# {states of the system})

• Breaking Time is order of the time at which minimal
errors permitted by the discrete structure of the phase
space become of the order of the (compact) phase space
bound.

• Elliptic System doesn’t exhibit a satisfactory spreading
of Ran

(
Ξ

(n),N
Λ,α

)
and Hω,D

N2 is just monotonically in-
creasing and bounded (no linear increase).
We cannot split the time evolution in two different ranges.
(see Figs. 1, 3, 4, 5, 6)
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The five ni in Λ

n = 1

α = 1 α = −2

n = 3

n = 5

n = 8

n = 10

n = 12

n = 14

Figure 1: A density plot that shows the distribution of ν
(n),N
Λ,α values in the hyper-

bolic (α = 1) and elliptic (α = −2) case, for five very near ni in Λ (N = 200).
Blue, in the plot, correspond to null value of ν

(n),N
Λ,α .
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n = 1

α = 1 α = −2

n = 3

n = 5

n = 8

n = 10

n = 12

n = 14

Figure 2: A density plot that shows the distribution of ν
(n),N
Λ,α values in the hyper-

bolic (α = 1) and elliptic (α = −2) case, for five randomly distributed ni in Λ

(N = 200). Blue, in the plot, correspond to null value of ν
(n),N
Λ,α .
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n = 1

a) b)

n = 3

n = 5

n = 8

n = 10

n = 12

n = 14

Figure 3: A density plot that shows the distribution of ν
(n),N
Λ,α values in an hyper-

bolic case (α = 17), with (N = 200) for:
a) five very close ni in Λ; b) five randomly distributed ni in Λ.
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N Breaking Time = log N 2

N = 200 10.60
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1

a
; a = lattice spacing

Figure 4: Hω,DN2 for four different values of N on an hyperbolic system (α = 1)
and on an elliptic one (α = −2); D = 3
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Figure 5: Hω,DN2 for four different values of D (2, 3, 4, 5) on hyperbolic systems
(α = 1, black lines) and elliptic systems (α = −2, red lines); N = 200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Time evolution [n]

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Al
ic

ki
−F

an
ne

s 
En

tro
py

 [h
(n

)]

Figure 6: hALF
ω,DN2

(Θα) for four different values of D (2, 3, 4, 5) on hyperbolic systems
(α = 1, black lines) and elliptic systems (α = −2, red lines); N = 200
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