LOGARITHMIC BREAKING TIMES IN DISCRETIZED CLASSICAL DYNAMICAL SYSTEMS

Valerio Cappellini *
Dipartimento di Fisica Teorica, Università di Trieste
Strada Costiera 11, 34014 Trieste, Italy
Fabio Benatti † Federico Zertuche ‡

Classical Chaos: exponential amplification of small errors

$$|\delta x| \xrightarrow{n} |\delta x(n)| = \lambda^n |\delta x| = e^{n \log \lambda} |\delta x|$$

 $\log \lambda$ is Lyapounov Exponent

 $|\delta x(n)|$ increase no longer in compact systems...

$$\lambda := \lim_{n \to +\infty} \lim_{\delta x \to 0} \frac{1}{n} \log \frac{|\delta x(n)|}{|\delta x|}$$

... and $|\delta x|$ can't decrease in discrete systems!

For a discrete system $|\delta x| > a$ (a = lattice spacing)

$$\forall a: \lambda(a) = 0$$

^{*}E-mail: valerio.cappellini@ts.infn.it

[†]Dipartimento di Fisica Teorica, Università di Trieste, Strada Costiera 11, 34014 Trieste, Italy and Istituto Nazionale di Fisica Nucleare, Sezione di Trieste. E-mail: fabio.benatti@ts.infn.it

[‡]Instituto de Matemáticas, UNAM, Unidad Cuernavaca, A.P. 273-3, Admon. 3, 62251 Cuernavaca, Morelos, México. E-mail: zertuche@matcuer.unam.mx

• Cfr. Quantum Chaos:

$$\forall \hbar : \lambda(\hbar) = 0$$
 but $\lim_{n \to \infty} \lim_{\hbar \to 0} \lambda(\hbar) > 0$

An indicator of chaos in classical continuous systems

- Entropy [S(n)]: information on the evolving system up to time n.
- Loosely speaking, the Kolmogorov-Sinai metric entropy is $h_{\mu}(T) := \lim_{n \to \infty} \frac{S(n)}{n}$ (entropy per unit time).

Theorem 1 (Pesin)

Ergodicity
$$\Longrightarrow h_{\mu}(T) = \sum$$
 positive Lyapounov exponent

Theorem 2 (Brudno)

Ergodicity $\Longrightarrow h_{\mu}(T) = \text{Algorithmic Complexity}$

Which indicator of Chaos can we use for discrete classical systems?

The Alicki Lindblad Fannes Dynamical Entropy

For Quantum Dynamical Systems $(\mathcal{M}, \omega, \Theta)$

 $\begin{cases} \mathcal{M}: a \text{ (not generally commutative) *algebra} \\ \Theta: a \text{*automorphism on } \mathcal{M} \text{ that implements the dynamic} \\ \omega: an expectation (state) on <math>\mathcal{M} \text{ that is } \Theta\text{-invariant} \end{cases}$

Let us Introduce:

- $\mathcal{Y} := \{y_{\ell}\}_{\ell=1}^{D}$; $\sum_{\ell=1}^{D} y_{\ell}^{*} y_{\ell} = \mathbb{1}_{\mathcal{M}_{0}}$ (Partition of unit) $y_{\ell} \in \mathcal{M}_{0} \subseteq \mathcal{M}$; \mathcal{M}_{0} (subalgebra) s.t. $\Theta(\mathcal{M}_{0}) = \mathcal{M}_{0}$
- the time-evolving partition of unit: $\Theta^k(\mathcal{Y}) := \{\Theta^k(y_i)\}_{i=1}^D$
- the refined partition:

$$\mathcal{Y}_{\Theta}^{[0,n-1]} = \left\{ \Theta^{n-1} \left(y_{i_{n-1}} \right) \, \Theta^{n-2} \left(y_{i_{n-2}} \right) \, \cdots \, \Theta(y_{i_1}) \, y_{i_0} \right\}$$

- the $D^n \times D^n$ density matrices $\rho \left[\mathcal{Y}_{\Theta}^{[0,n-1]} \right]$ with elements $\left[\rho\left[\mathcal{Y}_{\Theta}^{[0,n-1]}\right]\right]_{i,i} \coloneqq \omega\left(y_{j_0}^*\Theta\left(y_{j_1}^*\right)\cdots\Theta^{n-1}\left(y_{j_{n-1}}^*y_{i_{n-1}}\right)\cdots\Theta\left(y_{i_1}\right)y_{i_0}\right)\cdot$
- the Von Neumann Entropy $H_{\omega,\mathcal{M}_0} \left| \mathcal{Y}_{\Theta}^{[0,n-1]} \right|$

The Alicki Lindblad Fannes Entropy $h_{\omega,\mathcal{M}_0}^{ALF}(\Theta)$ of $(\mathcal{M},\omega,\Theta)$

$$h_{\omega,\mathcal{M}_0}^{ALF}(\Theta) := \sup_{\mathcal{Y} \subset \mathcal{M}_0} \limsup_n \frac{1}{n} H_{\omega,\mathcal{M}_0} \left[\mathcal{Y}_{\Theta}^{[0,n-1]} \right]$$

The ALF-entropy can also be used for Classical Dynamical System (\mathcal{X}, μ, T) . Let's take as a system $(\mathbb{T}^2, d\mathbf{x}, T_{\alpha})$ that is the torus $\mathbb{R}^2/\mathbb{Z}^2$ equipped with the Lebesgue measure $d\mathbf{x}$, on which the dynamic is implemented by

$$\boldsymbol{x}_n \mapsto \boldsymbol{x}_{n+1} \coloneqq \boldsymbol{T}_{\alpha} \, \boldsymbol{x}_n$$

$$T_{\alpha} \coloneqq \begin{pmatrix} 1 & 1 \\ \alpha & 1+\alpha \end{pmatrix} , \quad \alpha \in \mathbb{Z}$$

 T_{α} is a toral automorphism and a generalization of the so called Arnold Cat Map. Depending on α we have two kind of dynamics:

- $\alpha \in (-\infty, -4) \cup (0, +\infty)$ Chaotic System
- $\alpha \in [-4, 0]$ Regular System

Algebraically the system $(\mathbb{T}^2, d\boldsymbol{x}, T_{\alpha})$ can be described by $(\mathcal{A}_{\mathcal{X}}, \omega, \Theta_{\alpha})$ where

 $\begin{cases} \mathcal{A}_{\mathcal{X}} : \text{The *algebra of bounded function } f \text{ on } \mathbb{T}^2 \\ \omega : \text{the state defined by } \omega(f) \coloneqq \int_{\mathbb{T}^2} f(\boldsymbol{x}) \, \mathrm{d}\boldsymbol{x} \\ \Theta_{\alpha} : \text{ the *automorphism } \Theta_{\alpha}(f(\boldsymbol{x})) \eqqcolon f(T_{\alpha} \boldsymbol{x}) \end{cases}$

In order to get a partition of unit on $\mathcal{A}_{\mathcal{X}}$ we shall use a partition on \mathbb{T}^2 :

$$\mathcal{E} := \{E_{\ell}\}_{\ell=1,2,\cdots,D} : \text{ Partition } \left(\bigcup_{\ell=1}^{D} E_{\ell} = \mathbb{T}^{2} ; E_{\ell} \cap E_{k} = \emptyset \ \forall \ell \neq k\right)$$

$$\mathcal{Y} := \left\{\mathcal{X}_{E_{\ell}}\right\}_{\ell=1,2,\cdots,D} : \text{ Partition of unit } \left(\sum_{\ell=1}^{D} \mathcal{X}_{E_{\ell}}^{*} \mathcal{X}_{E_{\ell}} = \mathbb{1}_{\mathcal{A}_{\mathcal{X}}}\right)$$

Here $\mathcal{X}_{E_{\ell}} \in \mathcal{A}_0 \subseteq \mathcal{A}_{\mathcal{X}}$ where \mathcal{A}_0 is the subalgebra of simple function.

With our algebraic description $(\mathcal{A}_{\mathcal{X}}, \omega, \Theta_{\alpha})$, using the partition \mathcal{Y} , we can obtain the ALF-entropy $h_{\omega,\mathcal{A}_0}^{ALF}(\Theta_{\alpha})$. As a result:

Then a quantum entropy is useful in a classical system, in which is equivalent to our "chaos indicator" $h_{\mu}(T_{\alpha})$.

What about a discrete system?

- Finite number of states \Longrightarrow Periodicity
- \bullet No Chaoticity at all
- With a sufficient number of states, a Discrete System can represent a Continuous System (also Chaotic), but only in a definite time range . . .
- When do they lose chaoticity? Why?
- What does chaos means for a Discrete system?

We use $h_{\omega,\mathcal{M}_0}^{ALF}(\Theta_{\alpha})$ in order to study the evolution of chaoticity in time, for discrete classical systems

From $(\mathbb{T}^2, \mathrm{d}\boldsymbol{x}, T_{\alpha})$ we get a discrete dynamical system by replacing the torus with a periodic grid with lattice spacing $\boldsymbol{a} = \frac{1}{N}$. Algebraically, we define a *morphism $\mathcal{J}_{N,\infty} : (\mathcal{A}_{\mathcal{X}}, \omega, \Theta_{\alpha}) \mapsto (D_{N^2}, \omega_{N^2}, \Theta_{\alpha})$ where

 $\begin{cases} D_{N^2}: \text{The abelian C* algebra of diagonal } N^2 \times N^2 \text{ matrices} \\ \omega_{N^2}: \text{the } tracial \ state \ (\Theta_{\alpha}\text{-invariant}) \ \omega_{N^2} \ (D) \coloneqq \frac{1}{N^2} \ \text{Tr} \ (D) \\ \Theta_{\alpha}: \text{ the *automorphism } \Theta_{\alpha} \ (f \ (\boldsymbol{n})) \coloneqq f \ (T_{\alpha} \ \boldsymbol{n}) \\ \boldsymbol{n}: \text{ the coordinates on the lattice } \left(\boldsymbol{n} = \left(\frac{\ell_1}{N}, \frac{\ell_2}{N}\right); 0 \leqslant \ell_i < N\right) \end{cases}$

 $\mathcal{J}_{N,\infty}(f)$ is the diagonal matrix that has as (N^2) diagonal elements the N^2 values that the function f assumes on the finite grid on the torus

Discretization $\left(\frac{1}{N}\right) \iff$ Weyl Quantization $\left(\hbar\right)$

Partition: In order to get a partition of unit on D_{N^2} we use a subset Λ (*D*-dimensional) of the toral coordinates:

$$\Lambda = \{ \boldsymbol{n}_1, \boldsymbol{n}_2, \cdots, \boldsymbol{n}_D \} : \text{ collection of coordinates}$$

$$\boldsymbol{\mathcal{Y}_{\alpha}} \coloneqq \{ y_{\ell} \}_{\ell=1}^{D} : \text{ Partition of unit } \boldsymbol{y}_{\ell} \coloneqq \frac{1}{\sqrt{D}} \, \boldsymbol{\mathcal{J}_{N,\infty}} \left(e^{\, 2\pi i \, \boldsymbol{n}_{\ell} \, \boldsymbol{x}} \right)$$

With \boldsymbol{i} we indicate the string $\boldsymbol{i} = \{i_0, i_1, \cdots, i_{n-1}\}$ each of $i_{\ell} \in \{1, 2, \cdots, D\}$. $\qquad \qquad \qquad \mathbf{Def.:} \ \{\boldsymbol{i}\} \eqqcolon \Omega_D^{(n)}.$

In order to compute the evolving density matrix, we define a function

$$\Xi_{\Lambda,\alpha}^{(n),N}:\Omega_D^{(n)}\mapsto (\mathbb{Z}/N\mathbb{Z})^2=\left\{\begin{array}{l}\text{points of}\\\text{the lattice}\end{array}\right\}$$

$$\Xi_{\Lambda,\alpha}^{(n),N}\left(\left\{i_0,i_1,\cdots,i_{n-1}\right\}\right)\coloneqq\sum_{\ell=0}^{n-1}\,T_\alpha^\ell\,\boldsymbol{n}_{i_\ell}\pmod{N}$$

The Density matrix is given by

$$\left[\rho\left[\mathcal{Y}_{\alpha}^{[0,n-1]}\right]\right]_{\boldsymbol{i},\boldsymbol{j}} = \frac{1}{D^n} \,\delta_{\Xi_{\Lambda,\alpha}^{(n),N}(\boldsymbol{i})\,,\,\Xi_{\Lambda,\alpha}^{(n),N}(\boldsymbol{j})}^{(N)}$$

where $\delta^{(N)}$ is the periodic Kronecker delta (mod N) Let us define two more functions:

$$m_{\Lambda,\alpha}^{(n),N}(\boldsymbol{n}) \coloneqq \# \left\{ \boldsymbol{i} \in \Omega_D^{(n)} \mid \Xi_{\Lambda,\alpha}^{(n),N}(\boldsymbol{i}) \equiv \boldsymbol{n} \pmod{N} \right\}$$

$$\nu_{\Lambda,\alpha}^{(n),N}(\boldsymbol{n}) \coloneqq m_{\Lambda,\alpha}^{(n),N}(\boldsymbol{n}) \middle/ D^n$$

The set of $\nu_{\Lambda,\alpha}^{(n),N}$ different from zero coincide with the set of non null eigenvalues of $\rho \left[\mathcal{Y}_{\alpha}^{[0,n-1]} \right]$.

With this set we can compute the Von Neumann Entropy $H_{\omega,D_{N^2}}\Big[\mathcal{Y}_{\alpha}^{[0,n-1]}\Big]$.

Note that
$$\#\left\{\nu_{\Lambda,\alpha}^{(n),N}\neq 0\right\}\leqslant N^2.$$

Then
$$H_{\omega,D_{N^2}} \left[\mathcal{Y}_{\alpha}^{[0,n-1]} \right]$$
 cannot grow indefinitely...
 $\Longrightarrow h_{\omega,D_{N^2}}^{ALF}(\Theta_{\alpha}) \xrightarrow[n \to \infty]{} 0$ (No chaos)

- For an Hyperbolic System, $\Xi_{\Lambda,\alpha}^{(n),N}$ tends to the maximum spreading over $(\mathbb{Z}/N\mathbb{Z})^2$, until we get a saturation. (see Figs. 1, 3)
- $H_{\omega,D_{N^2}}$ grows linearly whence $h_{\omega,D_{N^2}}^{ALF}(\Theta_{\alpha})$ is constant. (see Figs. 4, 5, 6)

Thus the System shows chaoticity

• Beyond this time scale, frequencies $\nu_{\Lambda,\alpha}^{(n),N}$ tends to equipartite, and $H_{\omega,D_{N^2}}$ tends to a constant; $h_{\omega,D_{N^2}}^{ALF}(\Theta_{\alpha})$ starts to decrease. (see Figs. 4, 5, 6)

Thus the System remembers to be Discrete

• The Breaking Time, that is the time \bar{n} at which we have the change of behaviour, scales with N as (see Fig. 4):

$\bar{n} \simeq 2 \log N = \log (\# \{ \text{states of the system} \})$

- Breaking Time is order of the time at which minimal errors permitted by the discrete structure of the phase space become of the order of the (compact) phase space bound.
- Elliptic System doesn't exhibit a satisfactory spreading of Ran $\left(\Xi_{\Lambda,\alpha}^{(n),N}\right)$ and $H_{\omega,D_{N^2}}$ is just monotonically increasing and bounded (no linear increase). We cannot split the time evolution in two different ranges. (see Figs. 1, 3, 4, 5, 6)

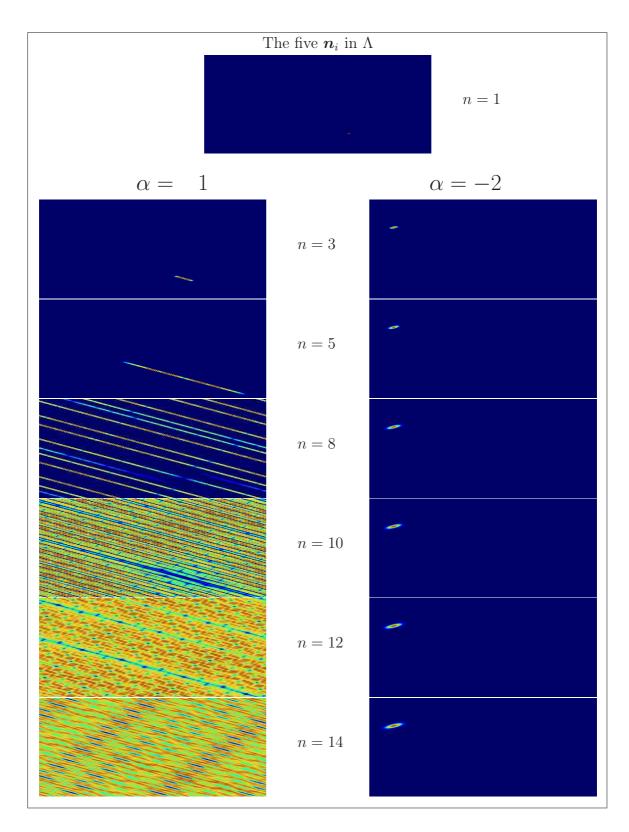


Figure 1: A density plot that shows the distribution of $\nu_{\Lambda,\alpha}^{(n),N}$ values in the hyperbolic $(\alpha=1)$ and elliptic $(\alpha=-2)$ case, for five very near \boldsymbol{n}_i in Λ (N=200). Blue, in the plot, correspond to null value of $\nu_{\Lambda,\alpha}^{(n),N}$.

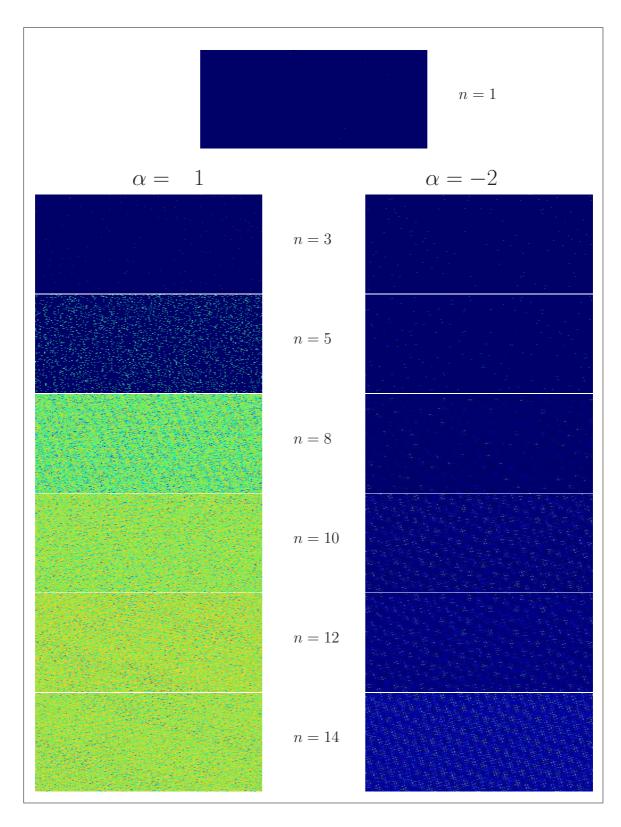


Figure 2: A density plot that shows the distribution of $\nu_{\Lambda,\alpha}^{(n),N}$ values in the hyperbolic $(\alpha=1)$ and elliptic $(\alpha=-2)$ case, for five randomly distributed \boldsymbol{n}_i in Λ (N=200). Blue, in the plot, correspond to null value of $\nu_{\Lambda,\alpha}^{(n),N}$.

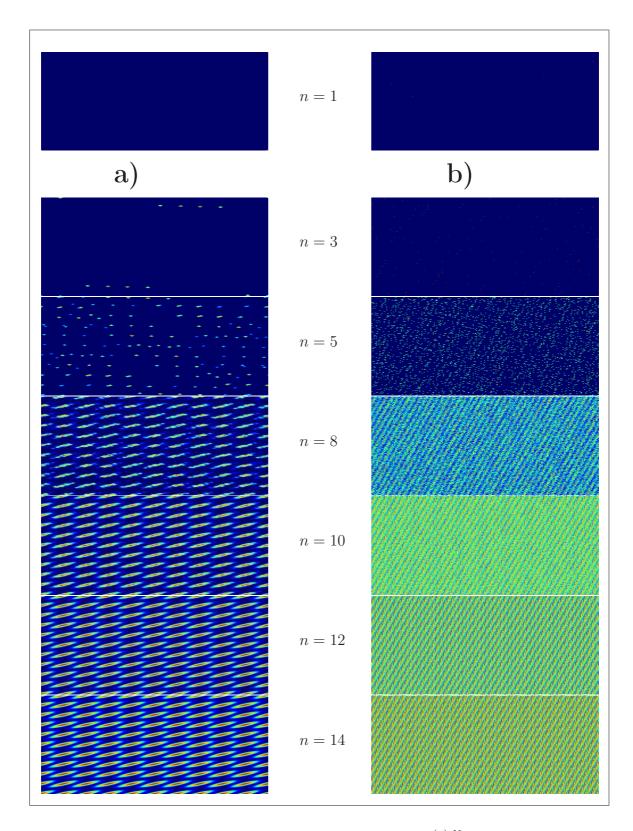
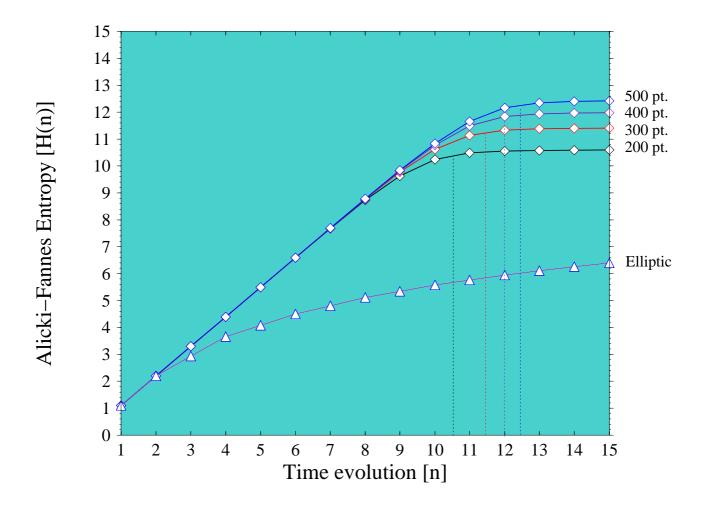



Figure 3: A density plot that shows the distribution of $\nu_{\Lambda,\alpha}^{(n),N}$ values in an hyperbolic case $(\alpha=17)$, with (N=200) for: **a)** five very close \boldsymbol{n}_i in Λ ; **b)** five randomly distributed \boldsymbol{n}_i in Λ .



N	Breaking Time = $\log N^2$
N = 200	10.60
N = 300	11.41
N = 400	11.98
N = 500	12.43

$$N = \frac{1}{a}$$
 ; $a =$ lattice spacing

Figure 4: $H_{\omega,D_{N^2}}$ for four different values of N on an hyperbolic system ($\alpha=1$) and on an elliptic one ($\alpha=-2$); D=3

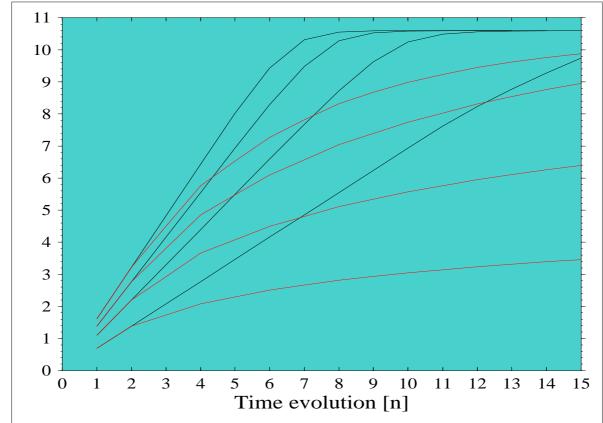


Figure 5: $H_{\omega,D_{N^2}}$ for four different values of D (2, 3, 4, 5) on hyperbolic systems ($\alpha = 1$, black lines) and elliptic systems ($\alpha = -2$, red lines); N = 200

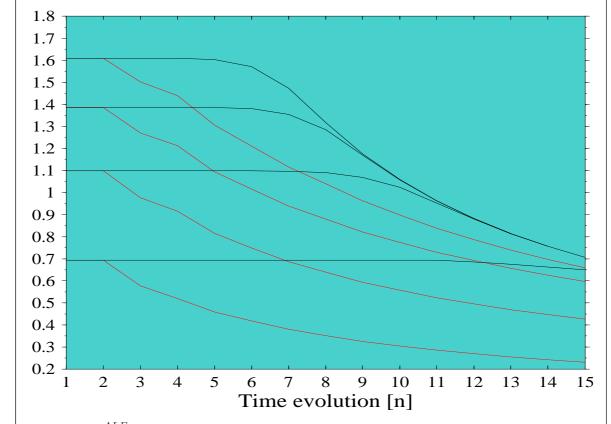


Figure 6: $h_{\omega,D_{N^2}}^{ALF}(\Theta_{\alpha})$ for four different values of D (2, 3, 4, 5) on hyperbolic systems ($\alpha=1$, black lines) and elliptic systems ($\alpha=-2$, red lines); N=200