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...and |dz| can’t decrease in discrete systems!

For a discrete system |dx| > a (a = lattice spacing)
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e Cfr. Quantum Chaos:

Vh:A(R) =0 but lim lim A(h) > 0

n—oo h—0

An indicator of chaos in classical continuous systems

e Entropy |S(n)]: information on the evolving system up
to time n.

e Loosely speaking, the Kolmogorov-Sinai metric entropy
S
is h,(T) = lim ()

n—oo n

(entropy per unit time).

Theorem 1 (Pesin)

Ergodicity == h,(T") = ) positive Lyapounov exponent

Theorem 2 (Brudno)

Ergodicity = h,(T") = Algorithmic Complexity

Classical
Sistems

l

Algorithmic ~ Thm. Kolmogorov—Sinai Thm. Lyapunouv

Complexity p.,1n,  metric Entropy  p.,” Exponent



Which indicator of Chaos can we use
for discrete classical systems?

A Quantum concept is of help

The Alicki Lindblad Fannes Dynamical Entropy

For Quantum Dynamical Systems (M, w, O)

)
M :a (not generally commutative) *algebra

§ O :a *automorphism on M that implements the dynamic

| w : an expectation (state) on M that is O-invariant

Let us Introduce:

° ) = {yg}le ; Zle vy, = La, (Partition of unit)
Yy € My C M ; M, (subalgebra) s.t. © (M) = M,

e the time-evolving partition of unit: ©"(Y):= {©"(y;) }il

e the refined partition:
Vol = {@” : (y ) o" (y@-n_Q) @(yil)yio}
e the D" x D" density matrices p[yg) ’n_lq with elements

] =50 650 ) )

.3

e the Von Neumann Entropy H, a, [y(;)” 1]



The Alicki Lindblad Fannes Entropy hﬁﬁ\fig(@) of (M, w,O)

1 .
hﬁﬁo(@) = sup limsup —H, u, [yg), 1]}
’ Y My n n

The ALF-entropy can also be used for Classical Dynamical
System (X, p,T). Let’s take as a system (T?, dz,T,,) that
is the torus R?/7Z? equipped with the Lebesgue measure de,
on which the dynamic is implemented by

Ly = Lpipl = 1, x,

Tai—(l 1) , ael
a 1+«

T, is a toral automorphism and a generalization of the so
called Arnold Cat Map. Depending on o we have two kind
of dynamics:

o o € (—00,—4)U(0,400) Chaotic System
o o € [—4,0] Regular System

Algebraically the system (T2 da,T,) can be described by
(Ax,w, ©,) where

(AX : The *algebra of bounded function f on T?
w : the state defined by w (f) == [ f (@) dx
| Oa © the *automorphism O, (f (z)) = f (T, x)

N\




In order to get a partition of unit on Ay we shall use a
partition on T?:

D
E={Ei},_,. . p: Partition (UEE—TQ; ENE,=10 w7ék;>

(=1

D
Y = {XEg}gzl ... p - Partition of unit <Z XEEXEE = ]IAX‘>
/=1

Here X5, € Ay C Ay where Ay is the subalgebra of simple
function.

With our algebraic description (Ay,w,©,), using the
partition ), we can obtain the ALF-entropy hﬁff(; (Oq).
As a result:

Then a quantum entropy is useful in a classical system, in
which is equivalent to our “chaos indicator” h,(T%).

What about a discrete system?

e Finite number of states = Periodicity
° —> No Chaoticity at all

e With a sufficient number of states, a Discrete System
can represent a Continuous System (also Chaotic), but
only in a definite time range . ..

e When do they lose chaoticity ? Why ?

e What does chaos means for a Discrete system ?



We use hfﬁﬁo(@a) in order to study the evolution of
chaoticity in time, for discrete classical systems

From (T2, dx,T,) we get a discrete dynamical system by
replacing the torus with a periodic grid with lattice spacing
a = . Algebraically, we define a *morphism
INoo : (Ax,w,0,) = (Dy2,wy2, O,) where

i

D2 : The abelian C* algebra of diagonal N? x N? matrices
wyz : the tracial state (O-invariant) wyz (D) == 53 Tr (D)

O, : the *automorphism O, (f (n)) = f (T, n)

n : the coordinates on the lattice (n = <%, %) 0< Y < N)

\

JIn  (f) is the diagonal matrix that has as (N?) diagonal
elements the N? values that the function f assumes on the
finite grid on the torus

Discretization (i) <= Weyl Quantization (h)

N

Partition: In order to get a partition of unit on D,2 we
use a subset A (D-dimensional) of the toral coordinates:

AN ={ny,ny, -+ ,np} : collection of coordinates

L jNoo (6 27ring;v)

VD
With 4 we indicate the string ¢ = {ig, 41, , 7,1} each of
i€ {1,2,---,D}. - Def.: {i} = Q.

Vo= {yg}le . Partition of unit y,:=



In order to compute the evolving density matrix, we define
a function

=N ) 7 INTY: — points of
Ao 77D — (Z/NZ) the lattice

=N Lo,y i }) = Z T'n,;, (mod N)

?

The Density matrix is given by

1
[o,n_u] 0
['0 [yo‘ ] . Dn NGy =G

)
1,] A

where 6V) is the periodic Kronecker delta (mod N)
Let us define two more functions:

mg\n()lN (n)=# {z € Q%ﬁ Eg\n()xN (¢) =m (mod N)}

n),N ) n),N n
N ()= ml(0Y (n) /D

The set of 1/\ : dlﬁ(l(nt from zero coincide with the set

of non null eigenvalues of p {y}f“”q .

With this set we can compute the Von Neumann Entropy
0n—1
Hw,DNQ |:y([1 " ]]

Note that # {VAa = O}

Then H, p 2 [y[()n 1]] cannot grow indefinitely. . .
hALF ,(04) —— 0 (No chaos)

n—:oo



(n)

e [For an Hyperbolic System, = N tends to the maximum

«
spreading over (Z/NZ)?, until we get a saturation.

(see Figs. 1, 3)

e H,p,, grows linearly whence hf%jv ,(0,) is constant.

(see Figs. 4, 5, 6)

Thus the System shows chaoticity

e Beyond this time scale, frequencies V/(Xng;N tends to equipar-

tite, and H,, p , tends to a constant; hﬁﬁfﬂ(@a) starts

to decrease. (see Figs. 4, 5, 6)

Thus the System remembers to be Discrete

e The Breaking Time, that is the time n at which we have
the change of behaviour, scales with N as (see Fig. 4):

n ~ 2log N = log (# {states of the system})

e Breaking Time is order of the time at which minimal
errors permitted by the discrete structure of the phase
space become of the order of the (compact) phase space

bound.
e Elliptic System doesn’t exhibit a satisfactory spreading

of Ran (EXLLN) and Hy,p,, is just monotonically in-
creasing and bounded (no linear increase).

We cannot split the time evolution in two different ranges.
(see Figs. 1,3, 4,5, 6)
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Figure 1: A density plot that shows the distribution of v,

200).

—2) case, for five very near n; in A (N
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Blue, in the plot, correspond to null value of vy
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Figure 2: A density plot that shows the distribution of y/(\"()yN values in the hyper-

bolic (a = 1) and elliptic (o = —2) case, for five randomly distributed m; in A
(N = 200). Blue, in the plot, correspond to null value of VXL()I’N.
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Figure 3: A density plot that shows the distribution of V/(\TTC)X’N values in an hyper-

bolic case (o = 17), with (N = 200) for:

a) five very close n; in A; b) five randomly distributed n; in A.
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N Breaking Time = log N
N =200 10.60
N =300 11.41
N =400 11.98
N =500 12.43
N = . ;. a = lattice spacing

Figure 4: H, p , for four different values of N on an hyperbolic system (a = 1)
and on an elliptic one (o = —2); D =3
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Alicki-Fannes Entropy [H(n)]

Alicki-Fannes Entropy [h(n)]
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Figure 5: H, p,, for four different values of D (2,3,4, 5) on hyperbolic systems
(v = 1, black lines) and elliptic systems (o = —2, red lines); N = 200
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Figure 6: h'5" (@) for four different values of D (2,3, 4,5) on hyperbolic systems

w,D 2
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(av = 1, black lines) and elliptic systems (o = —2, red lines); N = 200
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