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e Classical Dynamical Systems (CDS)
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— the Kolmogorov-Sinai (metric) Entropy |Pesin Thm.|
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e Quantum Dynamical Entropies (QDE)
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e Relation between the QDE and the KS entropy

e QDE show absence of chaos for systems with finite number of
states

e Classical (Continuous) limit and Temporal Evolution
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BREAKING TIME

e Analytical and Numerical estimation of the Breaking Time by
means of QDE production analysis
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The problem of defining quantum chaos

Classical Chaos: exponential amplification of small errors

6| — |6x(n)] = N |6x| = e"'8*|x]

log A is | Lyapunov Exponent

|0x(n)| increase no longer in compact systems...

o 1 ox(n)|
logA:= lim = lim " —log 02|

...and |dx| cannot be let go to zero in quantum or discrete systems!

Indeed:

1
e for a discrete system |0x| > a (a = N lattice spacing);

e for a quantum system |dz| > — (|dp| bounded on compact).
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Vh:logA(h)=0 but lim lim logA(h) > 0

n—oo h—0

VN :logA\(N)=0 but lim lim logA(N) > 0

n—oo N—o00

An equivalent indicator of chaos in classical continuous systems
e Entropy [S(n)|: information on the evolving system up to time

n.

e Loosely speaking, the Kolmogorov-Sinai metric entropy is

h,(T)= lim St

n—oo

(entropy per unit time).

Theorem 1 (Pesin)

Ergodicity = h,(T") = ) positive Lyapunov exponent

CLASSICAL . Pesin
SYSTEMS ¢ AN hy(T)

Theorem

Correspondence
Principle Lﬁ — 0

QUANTUM TEMPORAL %
SYSTEMS * CHAOS (?) :

DISCRETE . TEMPORAL 9
SYSTEMS ° CHAOS (?) :



Classical Dynamical Systems (X ) s T)

(X : Measurable space (Torus T?:= R?/Z?)
o normalized measure (p (X) = 1) (Lebesgue p (da) = doydas)

T : an invertible measurable map T : X — X (described later)

| pinvariant (go T = pu)

Partition over X

.
E,CcX

E = {Eg}gzm’m’D such that X Ule E, =X

\EgﬂEk:(Z) ., VI#£Ek

Evolved partition at time j
(€)= {T7 (E)}, . 1
Definition

' is the set of strings 4= {ig, i1, , i1},
i; belonging to the alphabet {1,2,.-- D}



E = {EB]u67 EGI“&}M EMagentav EYeHOW}

All trajectories starting in
Eovvps= EgN...N T4 (EB)
are encoded by the same

string { GYMBB}
(up to time 4)

Their probability is:

peymss = p (EaymBs)



Refined partition (up to time n)

n—1

Elo,n—1] ={E; }zeQ” , EBi= ﬂ T (E@'j>

j=0

strings ¢ € ()}, encode trajectories {Tka:} , € € Iy

Richness in trajectories of E; € & ,—q is measured by the volume

pi= 1 (Es).

Kolmogorov metric entropy

With the probabilities p; we can compute the SHANNON ENTROPY

S/l [0,n— 1 Z i lOg Mo

'LEQ”

the entropy production per time step

hM<T7 g) hm S (5[0771_1})

n—oo M,

and the KS entropy

h,(T)=suph, (T, E)
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The classical Dynamics: the Unimodular Group

T°>z, — x, = Tx, (modl) & T?

a b
T = (c d) , a,bye,de , det(T)=1

T'is a toral automorphism and a generalization of the so called Arnold
Cat Map. Depending on Tr (T') we have two kind of dynamics:

2
o |Tr(7T)| >2  Chaotic Systems  log A = log <T1"(T)+\/m>

2

o |Tr(T)| <2  Regular Systems

y“

a)




Systems with finite number of states :: Chaos. . .

... but also Periodicity
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Algebraic description of Dynamical Systems

1) Classical Dynamical Systems (CDS (M, w,,©))

(

M, . Algebra of observables (CO (TQ) , LY (Tz))
wy, = State over M, (w,, (f) = [ [ (z) PPx)
© : Discrete group of wy,—preserving (0" (f (z)) = f (T "))

automorphisms of M,

\

2) Quantum Dynamical Systems (QDS (My,wy,Oy))

(M v : Finite dimensional algebra (N x N Full-matrix algebra)

q wy @ State over My (Oy-invariant) (wy (m) ==+ Tr (m))

\@N : Unitary dynamics on My (@N (m) =Um UT)

QUANTIZATION

To quantize a CDS (M, w,,, ©) means to find two linear maps Jn o
and J y such that:

INoso + My, — My ; INoo (f) = My
Jon @ My — M, ; TonN (My) = f

N—00

Classical limit is: Joo v © TN .00

T,
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WEYL GROUP

e On compact phase space, we cannot make a finite dimensional
quantization with CCR

[Q,P} =ihl

e We can find Uy and Vi that behave as e2mi P , respectively e=2miQ

N =

R

WEYL OPERATORS

Wy(n) = e 2mi(mP-mQ) _ ofniny VAU provide the so—called

WEYL QUANTIZATION:

flx) = Z fn g Zrio(n) [U(n, T) = niTy — '7')9.?171]

nez?

can be mapped in M, = Z fn Wy(n)

nez?

by means of the Weyl quantization operator
T+ My — My Ty (f) = My

DYNAMICAL EVOLUTION OF THE WEYL OPERATORS:
O (Wy(n)) =Wy (TV -n) -

Such a relation guarantees:
(040 ) (1) = (T¥ 0@ ) (1) -
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CLASSICAL LIMIT FOR THE DYNAMICS

Quantum  crassicar Classical

evolution LIMIT evolution

But this holds ONLY IF time—evolution does not cross a BREAKING
TIME, depending on N!

In particular, depending on the Dynamical System considered, it
exists an a such that for any given f € LF (T2) it holds true

=0
2

Jim (6 = T w0 O 0 Tiao) ()
k<alog N

where || - || is the L2 (T?) norm ||g|| == \//2 lg° 1 (da)
T

ANTI-WICK QUANTIZATION
Using a “well defined” set of Coherent States (CS):

Tl f N/ (dz) f(z) |Cx(@)) (Cx(@)
Toon(X) () z), X Cy(a))

Our CS family {|Cy(x)) | x € X'}
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Properties of {|Cy(x)) | x € X'}

1. Measurability: @ +— |Cy(x)) is measurable on X’
2. Normalization: ||Cy(2)||> =1, ¢ € X;
3. Completeness: N [, p(dex) |Cy(x))(Cn(x)| = 1;

4’. Localization: given € > 0 and dy > 0, there exists Ny(e, dy) such
that for N > Ny and d(x,y) > dy one has

N|(Cw(x), Cx(y)* < e.

4" Dynamical localization:
There exists an a > 0 such that for all choices of ¢ > 0 and
dy > 0 there exists an Ny € IN with the following property: if
N > Ny and k < alogN, then N|(Cy(z),U% Cx(y))|* < ¢
whenever d(T"z,y) > do.

(U% is the single step unitary evolution operator).

PROPERTIES: 1 2 3 4 — (Classical limit

1 2 3 4 4" = Classical limit
of the dynamic

[RESULTS]
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The Alicki Lindblad Fannes Dynamical Entropy

Given a Quantum Dynamical System (M y,wy, ©On) we introduce:

o Vi={y}, : S uyly, =1y, — PARTITION OF UNIT
y € Mo C My ; M, (subalgebra) s.t. Ox (Mp) = My
e NXAMPLE: Partition of 2 elements (D = 2)

My o N x N Full-matrix algebra

wy o wy (m) = %Tr (m)

Oy On(m) = UmU!
Y {MO, Ml} (fulfilling M{ M, + MM, = 1)

D

e the time-evolving partition of unit: % ()= {@ﬁfv(yi)}izl

e EXAMPLE: with the partition {MO, Ml}
ok () - {@N(MO),@N(Ml)} - {U MUt UM U }
e the refined partition:

Vou = {@?v‘l (y) i (@/) - On(y;,) %O}iem

D
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o [ XAMPLE: with the partition {MO, Ml} and n =3

yg)i] - {M(OOO)a M o01), M(010), M(011),

M100), M101y, M110), M(m)}
Mg0y = % (My) Oy(My) My = UMyUT UMy Ut My = UM, Ut M, UT M,
Mgory = ©3%(My) Oy (My) My = UM, U UMy Ut My = UM, Ut M, Ut M,
Mg10) = OV (My) Oy (M) My =U 2]\*f() Ut UM W UT My =U 2]\[() UTM, UM,
Mg11):= % (My) Oy(My) My = UM, U UM, Ut My = UM, UM, UM,
Mooy = O% (M) On5(My) My =U My U UMy Ut M, = UMy Ut My UTM,
My1y:= 0% (My) Oy(My) My = UM, UY UMy Ut My = UM, UT My UTM,
Moy= 03%(My) ©5(My) My = UMyUT UM, U M, = UM, UM, Ut M,
My = O%(M,) Oy5(M,) My, = UM, U™ UM, UT My = UM, UM, Ut M,

e the D" x D" density matrices [yg) i

1], =en(Bt ]

[ [y(g)Nn 1]

y()N

On 1

o EXAMPLE: with the partition y@]’V]

]} with elements

1)

and so

()02 _ i
[p _y@N H i = WN (M(J'OJLJ'Q)M(Z'OJLQ))
[072]_ . T
[p [y On ] = WN (Z\”[(1()())]\”[(01(»)
= 1(010),(100)

- (arlU UMMy U U )

e the Von Neumann Entropy:
[0,n—1]
v [,
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Then, the ALF—entropy of (My,wy,On) is given by:
Moy (On) = sup 370 (O, ),

w 7M w ,M
N 0 yCMO N 0

1
where RALF (On,Y) = limsup EHWN [y[O,n—l]] )

wn, My
PROPOSITION 1

Let (A;g,wu, @) represent a classical dynamical system. Then,

hpia(©) = hy(T)

w/ivAX

PROPOSITION 2

If (Mpy,wn,BOn) be a quantum dynamical system with My finite
dimensional, then
By (Ox) = 0

B ALF
- behave as h,(T) for CDS
(so) - test CHAOS as h,(T) do
- reveal NO CHAOS on finite dimensional systems

e All these quantities are computed in the n — oo limit. ..

e What about the running Von Neumann entropies?
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RESULT (For the ALF entropy)

Finding a correspondence (actually the more natural) between

e a classical partition & KS

e a partition of unit )/ ALF

and using the dynamical localization condition, we get

1

. 0,k—1 _
Jim o H Vel = 8,04 = 0
kéalogN
— Remember —
L i sup

Su(E10nH) — h(T, €) — hy(T)

, 1

lim —---
k.N—o00 ]{
k<alog N

Hoto V8] ——— W0 (08, < WO

— lim sup Y
N n—soo
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Y: partition of D elements that maximize the entropy rate

o
Time n 1 2 3 m o m/
Size (p[O’n_1]> DxD|D?x D2 D*x D3 D™ x D™ E D™ % D™
Max. number of D D? D3 D™ - N?
eigenvalues of - N
0,n—1
o " O
different from 0 e
p—{

_ 1 1 1 1 1
<E1genva1ues> ) P 3 Dm ﬁ e
Hey ot [yg)’”‘”} logD | 2 1logD | 3 log D m log D E 2 log N

2 log N
WAL 12,0] | logD | logD | logD gp | Tongf
___J
0,n—1

Hoy M, {y([a q n log D
)
2 log N — |
]
=
-

n
2 log N @)
—
e
=
log D "%
M
N_—,
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Given a Quantum Dynamical System (M y,wn, ©n) we introduce:

Vi={ut i SPiviy, =1, — PARTITION OF UNIT (PU)

MEAS
WAVE PACKET REDUCTION POSTULATE = p ——— Ty(p):= Y _y; py;
J

e The map Zy is called an instrument;
e it describe the change in the state p caused by the measure;

o w [yj pyﬂ is the probability that the measure select the ™" value.

The CS Instrument

D U?:l By =X
E={E},_;; —  CLASSICAL PARTITION (CP)
ENE,. =0

With the family of CS {|Cn(x)) | x € X'} and [Pm = (\(:U)}(('\(x)] ;

e the map Z (E)) (p) =N | Pyp Py p(de) is called a CS-instrument;
E,

e it describe the change in the state p caused by the Ey—dependent measure-
ment process;

e w[Z(Ey) (p)] is the probability that the measure gives values in Ej, when
the pre-measurement state is p.

— Time—stroboscopic CS measurement —

PS=PS . =w[I(B, )oOoI(E;, )oOo0---0T(E;)000T(E,)(p)]

205015 5tn—1 "

is the probability that several measure, taken stroboscopically at times
to=0,t1=1, ..., th-1 =n—1, give values in E; , E; E

PRI a7
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CS Quantum Entropies

With the probabilities p; we can compute the SHANNON ENTROPY

SWU,Z,E,p,n) = — Z PSlog PSS

1€}

its production per time step, is defined as CS quantum entropy

1
HWU,Z,&,p)= lim — S(U,Z,E, p,n)

n—oo 1,

and it is decomposable in two part: the Measurement CS Quantum Entropy
Hmeas(z—7gap) = H(1N71787p) 3
and the remaining part, which is supposed to incorporate the dynamics

den(Ua -’Z’-a 57 p) = H(U7 Za ga p) o HIHG&S<1-7 87 p)

PROPOSITION 1

Consider the Classical Dynamical System (X s T) endowed with a classical par-
tition £. Then it is possible to define the automorphism U and the classical
instrument Z in such a way that

H(U,I,g,p) - hM(T75)

holds true.

PROPOSITION 2
For finite dimensional systems

HWU,Z,E,p)=0
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RESULT (For the CS Quantum Entropy)

If we assume that dynamical localization condition holds, and we take for p the
tracial state /iv 1, we find an « such that it holds true

. 1

lim —

n,N—oo M
n<alog N

S(U,I, g, £, TL) — Su(g[()m—l}) =0

Moreover, this effect is purely related to the dynamic component of the entropy;,
indeed it exists an o such that

1
lim — S(Ap,Z,&,p,n)=0

n,N—oo N
n<ca' log N
— Remember —
L im sup
S (glon-1y  nr g ey S h,(T)
"
ENboo K
k<alog N
Hmeas I, 57
S(U71—787p>n) - H(U,I,E,p) - ( p)
1 . den(U7Z75710>
— lim sup

n n—owo
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CONCLUSION

e We used QDE to find footprint of CHAOS in quantum (or dis-
crete) systems, obtained from classical continuous one.

e We found that the correspondence between Classical and Quan-
tum Dynamics (Breaking Time BT) lasts much less than the
Heisemberg time.

e The BT scales logarithmically in the dimension of the Hilbert
space, moreover it is inversely proportional to the Lyapunov ex-
ponent.

1log N
2 log A

e For the Quantum Cat Maps we exactly determined BT=

e We showed how Quantum Dynamical Entropies can be profitably
used in a Classical Discretized context.
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