OUTLINE(1)

- CHAOS and its characterization (Lyapounov Exponents)
- Classical Dynamical Systems (CDS)
- An equivalent indicator of chaos for CDS:
 - the Kolmogorov-Sinai (metric) Entropy [Pesin Thm.]
- Algebraic description of CDS
- Systems with finite number of states:
 - Quantum Dynamical Systems (QDS)
 - Discrete Systems (DDS)

ABSENCE OF CHAOS FOR THESE SYSTEMS

CHAOS over times windows (entropy production analysis)

- $\bullet \ {\bf Quantization/Discretization} \ ({\bf Weyl \ and \ Anti-Wick}) \\$
- Classical/Continuous Limit (of phase–space Quant./Discret.)
 Coherent States/Lattice States on the torus

OUTLINE(2)

- Quantum Dynamical Entropies (QDE)
 - ALF Entropy
 - CS Entropy
- Relation between the QDE and the KS entropy
- QDE show absence of chaos for systems with finite number of states

• Classical (Continuous) limit and Temporal Evolution

""VIOLATION OF THE CORRESPONDENCE PRINCIPLE""

BREAKING TIME

- Analytical and Numerical estimation of the Breaking Time by means of QDE production analysis
- CONCLUSION

The problem of defining quantum chaos

Classical Chaos: exponential amplification of small errors

$$|\delta x| \xrightarrow[n]{} |\delta x(n)| = \lambda^n |\delta x| = e^{n \log \lambda} |\delta x|$$

 $\log \lambda$ is Lyapounov Exponent

 $|\delta x(n)|$ increase no longer in compact systems...

$$\log \lambda := \lim_{n \to +\infty} \lim_{\delta x \to 0} \frac{1}{n} \log \frac{|\delta x(n)|}{|\delta x|}$$

... and $|\delta x|$ cannot be let go to zero in quantum or discrete systems! Indeed:

- for a discrete system $|\delta x| > a$ $(a = \frac{1}{N} = \text{lattice spacing});$
- for a quantum system $|\delta x| > \frac{\hbar}{|\delta p|}$ ($|\delta p|$ bounded on compact).

$$\forall \hbar : \log \lambda(\hbar) = 0 \quad \text{but} \quad \lim_{n \to \infty} \lim_{\hbar \to 0} \log \lambda(\hbar) > 0$$

$$\forall N : \log \lambda(N) = 0 \quad \text{but} \quad \lim_{n \to \infty} \lim_{N \to \infty} \log \lambda(N) > 0$$

An equivalent indicator of chaos in classical continuous systems

- Entropy [S(n)]: information on the evolving system up to time n.
- Loosely speaking, the Kolmogorov-Sinai metric entropy is $h_{\mu}(T) := \lim_{n \to \infty} \frac{S(n)}{n}$ (entropy per unit time).

Theorem 1 (Pesin)

Ergodicity
$$\Longrightarrow h_{\mu}(T) = \sum$$
 positive Lyapounov exponent

$$\begin{array}{ccc} \text{CLASSICAL} & & & \frac{\text{Pesin}}{\text{Theorem}} & h_{\mu}(T) \\ \text{Correspondence} & & & \\ \text{Principle} & & \hbar \rightarrow 0 \\ \\ \text{QUANTUM} & & \frac{\text{TEMPORAL}}{\text{SYSTEMS}} & \frac{\text{CHAOS}}{\text{CHAOS}} & ? \\ \end{array}$$

Classical Dynamical Systems (\mathcal{X}, μ, T)

 $\begin{cases} \mathcal{X} : \text{Measurable space (Torus } \mathbb{T}^2 \coloneqq \mathbb{R}^2/\mathbb{Z}^2) \\ \mu : \text{normalized measure } (\mu\left(\mathcal{X}\right) = 1) \text{ (Lebesgue } \mu\left(\mathrm{d}\boldsymbol{x}\right) = \mathrm{d}x_1\mathrm{d}x_2) \\ T : \text{an invertible measurable map } T : \mathcal{X} \mapsto \mathcal{X} \text{ (described later)} \\ \mu\text{-invariant } (\mu \circ T = \mu) \end{cases}$

Partition over \mathcal{X}

$$\mathcal{E} := \{E_{\ell}\}_{\ell=1,2,\cdots,D} \qquad \text{such that} \qquad \begin{cases} E_{\ell} \subset \mathcal{X} \\ \bigcup_{\ell=1}^{D} E_{\ell} = \mathcal{X} \\ E_{\ell} \cap E_{k} = \emptyset \quad , \quad \forall \; \ell \neq k \end{cases}$$

Evolved partition at time j

$$T^{j}\left(\mathcal{E}\right)\coloneqq\left\{ T^{-j}\left(E_{\ell}\right)
ight\} _{\ell=1,2,\cdots,D}$$

Definition

 Ω_D^n is the set of strings $\mathbf{i} := \{i_0, i_1, \cdots, i_{n-1}\},\ i_j$ belonging to the alphabet $\{1, 2, \cdots, D\}$

$\mathcal{E} = \{E_{\text{Blue}}, E_{\text{Gray}}, E_{\text{Magenta}}, E_{\text{Yellow}}\}$

Refined partition (up to time n)

$$\mathcal{E}_{[0,n-1]} := \left\{ E_{\boldsymbol{i}} \right\}_{\boldsymbol{i} \in \Omega_D^n} \quad , \quad E_{\boldsymbol{i}} := \bigcap_{j=0}^{n-1} T^{-j} \left(E_{i_j} \right)$$

strings $\boldsymbol{i} \in \Omega_D^n$ encode trajectories $\{T^k \boldsymbol{x}\}, \ \boldsymbol{x} \in E_{\boldsymbol{i}}$

Richness in trajectories of $E_{i} \in \mathcal{E}_{[0,n-1]}$ is measured by the volume $\mu_{i} := \mu(E_{i})$.

Kolmogorov metric entropy

With the probabilities μ_i we can compute the SHANNON ENTROPY

$$S_{\mu}(\mathcal{E}_{[0,n-1]}) := -\sum_{i \in \Omega_D^n} \mu_i \log \mu_i$$

the entropy production per time step

$$h_{\mu}(T, \mathcal{E}) \coloneqq \lim_{n \to \infty} \frac{1}{n} S_{\mu}(\mathcal{E}_{[0, n-1]})$$

and the KS entropy

$$h_{\mu}(T) := \sup_{\mathcal{E}} h_{\mu}(T, \mathcal{E})$$

Classical Dynamics [1]: Unimodular Group (UMG)

$$\mathbb{T}^2 \ni \boldsymbol{x}_n \mapsto \boldsymbol{x}_{n+1} \coloneqq \boldsymbol{T} \, \boldsymbol{x}_n \pmod{1} \in \mathbb{T}^2$$

$$T \coloneqq \begin{pmatrix} a & b \\ c & d \end{pmatrix} \quad , \quad a, b, c, d \in \mathbb{Z} \quad , \quad \det(T) = 1$$

T is a toral automorphism and a generalization of the so called Arnold Cat Map. Depending on Tr(T) we have two kind of dynamics:

•
$$|\operatorname{Tr}(T)| > 2$$
 Chaotic Systems $\log \lambda = \log \left(\frac{\operatorname{Tr}(T) + \sqrt{\operatorname{Tr}(T)^2 - 4}}{2} \right)$

• $|\text{Tr}(T)| \leq 2$ Regular Systems

An extension of UMG:

Classical Dynamics [2]: Sawtooth Maps (SM)

$$S_{\alpha} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 1 + \alpha & 1 \\ \alpha & 1 \end{pmatrix} \begin{pmatrix} \langle x_1 \rangle \\ x_2 \end{pmatrix} \pmod{1}, \quad \alpha \in \mathbb{R}$$

Depending on the value of α we have two kind of dynamics:

•
$$\alpha \notin [-4, 0]$$
 Chaotic Systems $\log \lambda = \log \left(\frac{\alpha + 2 + \sqrt{\alpha(\alpha + 4)}}{2} \right)$

• $\alpha \in [-4, 0]$ Regular Systems

By using SM we dispose of a continuum set of Lyapunov Exponent

Chaos in Discrete Systems...

... but also Periodicity

Algebraic description of Dynamical Systems

1) Classical Dynamical Systems (CDS $(\mathcal{M}_{\mu}, \omega_{\mu}, \Theta)$)

```
\begin{cases} \mathcal{M}_{\mu} : \text{Algebra of observables} & \left(\mathcal{C}^{0}\left(\mathbb{T}^{2}\right), L_{\mu}^{\infty}\left(\mathbb{T}^{2}\right)\right) \\ \omega_{\mu} : \text{State over } \mathcal{M}_{\mu} & \left(\omega_{\mu}\left(f\right) \coloneqq \int_{\mathbb{T}^{2}} f\left(\boldsymbol{x}\right) \mathrm{d}^{2}\boldsymbol{x}\right) \\ \Theta : \text{Discrete group of } \omega_{\mu}\text{-preserving} & \left(\Theta^{k}\left(f\left(\boldsymbol{x}\right)\right) \coloneqq f\left(T^{k}\boldsymbol{x}\right)\right) \\ \text{automorphisms of } \mathcal{M}_{\mu} \end{cases}
```

2) Quantum Dynamical Systems (QDS $(\mathcal{M}_N, \omega_N, \Theta_N)$)

```
\begin{cases} \mathcal{M}_{N} : \text{Finite dimensional algebra} & (N \times N \text{ Full-matrix algebra}) \\ \omega_{N} : \text{State over } \mathcal{M}_{N} & (\Theta_{N}\text{-invariant}) & (\omega_{N}\left(m\right) \coloneqq \frac{1}{N}\operatorname{Tr}\left(m\right)) \\ \Theta_{N} : \text{Unitary dynamics on } \mathcal{M}_{N} & \left(\Theta_{N}\left(m\right) \coloneqq U \, m \, U^{\dagger}\right) \end{cases}
```

3) Discrete Dynamical Systems (DDS $(\mathcal{D}_N, \omega_N, \Theta_N)$)

They differ from QDS $(\mathcal{M}_N, \omega_N, \Theta_N)$ only in

• \mathcal{D}_N : Finite dimensional algebra $(N^2 \times N^2 \text{ Diagonal-matrix algebra})$

QUANTIZATION

To quantize a CDS $(\mathcal{M}_{\mu}, \omega_{\mu}, \Theta)$ means to find two linear maps $\mathcal{J}_{N,\infty}$ and $\mathcal{J}_{\infty,N}$ such that:

$$\mathcal{J}_{N,\infty} : \mathcal{M}_{\mu} \longmapsto \mathcal{M}_{N} ; \qquad \mathcal{J}_{N,\infty}(f) = M_{N}
\mathcal{J}_{\infty,N} : \mathcal{M}_{N} \longmapsto \mathcal{M}_{\mu} ; \qquad \mathcal{J}_{\infty,N}(M_{N}) = f$$

$$\underline{\text{Classical limit}} \text{ is: } \mathcal{J}_{\infty,N} \circ \mathcal{J}_{N,\infty} \xrightarrow{N \longrightarrow \infty} \mathbb{1}_{\mathcal{M}_{\mu}}$$

DISCRETIZATION

Analogously, in order to discretize the CDS $(\mathcal{M}_{\mu}, \omega_{\mu}, \Theta)$, we must find two linear maps $\mathcal{J}_{N,\infty}$ and $\mathcal{J}_{\infty,N}$ such that:

$$\mathcal{J}_{N,\infty}: \mathcal{M}_{\mu} \longmapsto \mathcal{D}_{N}$$
 ; $\mathcal{J}_{N,\infty}(f) = D_{N}$

$$\mathcal{J}_{\infty,N}: \mathcal{D}_N \longmapsto \mathcal{M}_{\mu} \quad ; \quad \mathcal{J}_{\infty,N}(D_N) = f$$

satisfying the <u>continuous limit</u>: $\mathcal{J}_{\infty,N} \circ \mathcal{J}_{N,\infty} \xrightarrow{N \longrightarrow \infty} \mathbb{1}_{\mathcal{M}_{\mu}}$

CLASSICAL (CONTINUOUS) LIMIT FOR THE DYNAMICS

$$\begin{array}{c} \text{Quantum (Discrete)} & \xrightarrow{\text{CLASSICAL} \\ \text{evolution}} & \xrightarrow{\text{LIMIT}} & \text{Classical (Continuous)} \\ \end{array}$$

In general it holds true ONLY IF time—evolution does not cross a BREAKING TIME, depending on N!

In particular, depending on the Dynamical System considered, it exists an α such that for any given $f \in L^{\infty}_{\mu}(\mathbb{T}^2)$ it holds true

$$\lim_{\substack{k, N \to \infty \\ k < \alpha \log N}} \left\| \left(\Theta^k - \mathcal{J}_{\infty,N} \circ \Theta_N^k \circ \mathcal{J}_{N,\infty} \right) (f) \right\|_2 = 0$$

where
$$\|\cdot\|_2$$
 is the $L^2_{\mu}\left(\mathbb{T}^2\right)$ norm $\|g\|_2:=\sqrt{\int_{\mathbb{T}^2}|g|^2\mu\left(\mathrm{d}\boldsymbol{x}\right)}$

Continuous limit for the UMG: a 16×16 and a 48×48 lattices

Continuous limit for the SM family : a 48×48 lattice

ANTI-WICK QUANTIZATION (DISCRETIZATION)

Using a "well defined" set of Coherent States $\{|C_N(\boldsymbol{x})\rangle \mid \boldsymbol{x} \in \mathcal{X}\}$:

$$\mathcal{J}_{N\infty}^{\mathsf{AW}}(f) \coloneqq N^2 \int_{\mathcal{X}} \mu(\mathrm{d}\boldsymbol{x}) f(\boldsymbol{x}) |C_N(\boldsymbol{x})\rangle \langle C_N(\boldsymbol{x})|$$
$$\mathcal{J}_{\infty N}^{\mathsf{AW}}(X)(\boldsymbol{x}) \coloneqq \langle C_N(\boldsymbol{x}), X C_N(\boldsymbol{x})\rangle$$

Properties of $\{|C_N(\boldsymbol{x})\rangle \mid \boldsymbol{x} \in \mathcal{X}\}$

- 1. Measurability: $\boldsymbol{x} \mapsto |C_N(\boldsymbol{x})\rangle$ is measurable on \mathcal{X} ;
- 2. Normalization: $||C_N(\boldsymbol{x})||^2 = 1, \boldsymbol{x} \in \mathcal{X};$
- 3. Overcompleteness: $N^2 \int_{\mathcal{X}} \mu(\mathrm{d}\boldsymbol{x}) |C_N(\boldsymbol{x})\rangle \langle C_N(\boldsymbol{x})| = 1;$
- 4'. Localization: given $\varepsilon > 0$ and $d_0 > 0$, there exists $N_0(\epsilon, d_0)$ such that for $N \geq N_0$ and $d(\boldsymbol{x}, \boldsymbol{y}) \geq d_0$ one has

$$N^2 |\langle C_N(\boldsymbol{x}), C_N(\boldsymbol{y}) \rangle|^2 \leq \varepsilon.$$

4". Dynamical localization:

There exists an $\alpha > 0$ such that for all choices of $\varepsilon > 0$ and $d_0 > 0$ there exists an $N_0 \in \mathbb{N}$ with the following property: if $N > N_0$ and $k \leq \alpha \log N$, then $N|\langle C_N(\boldsymbol{x}), U_N^k C_N(\boldsymbol{y})\rangle|^2 \leq \varepsilon$ whenever $d(T^k \boldsymbol{x}, \boldsymbol{y}) \geq d_0$.

 (U_N^k) is the single step unitary evolution operator).

Our "Lattice States" family (LS) $\{|C_N(\boldsymbol{x})\rangle \mid \boldsymbol{x} \in \mathcal{X}\}$

$$\mathbb{T}^2 \ni \boldsymbol{x} \longmapsto \left| C_N(\boldsymbol{x}) \right\rangle = \left| \lfloor Nx_1 + \frac{1}{2} \rfloor, \lfloor Nx_2 + \frac{1}{2} \rfloor \right\rangle \in \mathcal{H}_N = \mathbb{C}^{N^2}$$

Figure 1: The above picture represents a square lattice (L_5) of spacing $\frac{1}{5}$ by circles and connecting lines. All points in the blue square $I_{\left(\frac{3}{5},\frac{3}{5}\right)} := \left[\frac{5}{10},\frac{7}{10}\right) \times \left[\frac{5}{10},\frac{7}{10}\right) \subset \mathbb{T}^2$ are associated with the grid point $\left(\frac{3}{5},\frac{3}{5}\right)$ (black dot). Thus, for all $\boldsymbol{x} \in I_{\left(\frac{3}{5},\frac{3}{5}\right)}$, it turns out that $|C_{\mathcal{N}}(\boldsymbol{x})\rangle = |(3,3)\rangle \in \mathcal{H}_{\mathcal{N}}$.

CENOLIN

PROPERTIES: 1 2 3 4' \Longrightarrow Classical limit

1 2 3 4' $4'' \Longrightarrow$ Classical limit of the dynamic

WEYL GROUP

• On compact phase space, we cannot make a finite dimensional quantization with CCR

$$\left[\hat{Q},\hat{P}\right] = i\,\hbar\,\mathbb{1} \; ;$$

• We can find U_N and V_N that behave as $e^{2\pi i \hat{P}}$, respectively $e^{-2\pi i \hat{Q}}$

$$\left(N = \frac{1}{\hbar}\right)$$

WEYL OPERATORS

 $W_N(\boldsymbol{n}) = e^{2\pi i \left(n_1 \hat{P} - n_2 \hat{Q}\right)} = e^{i\pi N n_1 n_2} V_N^{n_2} U_N^{n_1}$ provide the so-called

WEYL QUANTIZATION:

$$f(\boldsymbol{x}) = \sum_{\boldsymbol{n} \in \mathbb{Z}^2} \hat{f}_{\boldsymbol{n}} e^{2\pi i \, \sigma(\boldsymbol{n}, \boldsymbol{x})} \quad \boxed{\sigma(\boldsymbol{n}, \boldsymbol{x}) = n_1 x_2 - n_2 x_1}$$

can be mapped in $M_f = \sum_{\boldsymbol{n} \in \mathbb{Z}^2} \hat{f}_{\boldsymbol{n}} W_N(\boldsymbol{n})$

by means of the Weyl quantization operator

$$\mathcal{J}_{N,\infty}^{\mathsf{W}}: \mathcal{M}_{\mu} \longmapsto \mathcal{M}_{N} \quad ; \quad \mathcal{J}_{N,\infty}^{\mathsf{W}}(f) = M_{f}$$

DYNAMICAL EVOLUTION OF THE WEYL OPERATORS:

$$\Theta_N^j(W_N(\boldsymbol{n})) = W_N(T^j \cdot \boldsymbol{n}) \cdot$$

Such a relation guarantees:

$$\left(\Theta_N^j \circ \mathcal{J}_{N,\infty}^{\mathsf{W}}\right)(f) = \left(\mathcal{J}_{N,\infty}^{\mathsf{W}} \circ \Theta_N^j\right)(f) .$$

WEYL DISCRETIZATION

WEYL OPERATORS

$$\mathcal{D}_N \ni W_N(\boldsymbol{n}) := \sum_{\boldsymbol{\ell} \in (\mathbb{Z}/N\mathbb{Z})^2} e^{\frac{2\pi i}{N} \boldsymbol{n} \boldsymbol{\ell}} |\boldsymbol{\ell}\rangle \langle \boldsymbol{\ell}| , \qquad \boldsymbol{\ell} = (\ell_1, \ell_2) \cdot$$

provide a WEYL DISCRETIZATION:

$$\mathcal{M}_{\mu} \ni f(\boldsymbol{x}) = \sum_{\boldsymbol{n} \in \mathbb{Z}^2} \hat{f}_{\boldsymbol{n}} e^{2\pi i \, \boldsymbol{n} \boldsymbol{x}}$$

can be mapped in
$$\mathcal{D}_N \ni D_f = \sum_{\boldsymbol{n} \in \mathbb{Z}^2} \hat{f}_{\boldsymbol{n}} W_N(\boldsymbol{n})$$

by means of the Weyl Discretization Operator

$$\mathcal{J}_{N,\infty}^{\mathsf{W}}: \mathcal{M}_{\mu} \longmapsto \mathcal{D}_{N} \quad ; \quad \mathcal{J}_{N,\infty}^{\mathsf{W}}(f) = D_{f}$$

Moreover, for $f \in \mathcal{C}^0(\mathbb{T}^2)$, we have

$$f \longmapsto \mathcal{J}_{N,\infty}^{\mathsf{W}}(f) := \sum_{\boldsymbol{n} \in \mathbb{Z}^2} \hat{f}_{\boldsymbol{n}} W_N(\boldsymbol{n}) = \sum_{\boldsymbol{\ell} \in (\mathbb{Z}/N\mathbb{Z})^2} f\left(\frac{\boldsymbol{\ell}}{N}\right) |\boldsymbol{\ell}\rangle \langle \boldsymbol{\ell}| .$$

DYNAMICAL EVOLUTION OF THE WEYL OPERATORS:

$$\Theta_N^j\left(W_N(oldsymbol{n})
ight) = W_N\left(\left(T^\dagger\right)^j\cdotoldsymbol{n}
ight) \; \cdot$$

Such a relation guarantees:

$$\left(\Theta_N^j \circ \mathcal{J}_{N,\infty}^{\mathsf{W}}\right)(f) = \left(\mathcal{J}_{N,\infty}^{\mathsf{W}} \circ \Theta_N^j\right)(f) \ \cdot$$

The Alicki Lindblad Fannes Dynamical Entropy

Given a Quantum (or Discrete) Dynamical System $(\mathcal{M}_N, \omega_N, \Theta_N)$ (with \mathcal{M}_N denoting both a full–matrix and a diagonal–matrix algebra), we introduce:

- $\mathcal{Y} := \{y_{\ell}\}_{\ell=1}^{D}$; $\sum_{\ell=1}^{D} y_{\ell}^{\dagger} y_{\ell} = \mathbb{1}_{\mathcal{M}_{0}}$ PARTITION OF UNIT $y_{\ell} \in \mathcal{M}_{0} \subseteq \mathcal{M}_{N}$; \mathcal{M}_{0} (subalgebra) s.t. $\Theta_{N}(\mathcal{M}_{0}) = \mathcal{M}_{0}$
- EXAMPLE: Partition of 2 elements (D=2)

$$\mathcal{M}_N :: N^2 \times N^2$$
 diagonal-matrix algebra $\omega_N :: \omega_N(m) \coloneqq \frac{1}{N^2} \operatorname{Tr}(m)$ $\Theta_N :: \Theta_N(m) \coloneqq U m U^{\dagger}$ $\mathcal{Y} :: \left\{ M_0, M_1 \right\} \quad \text{(fulfilling } M_0^{\dagger} M_0 + M_1^{\dagger} M_1 = \mathbb{1}_N \text{)}$

- the time-evolving partition of unit: $\Theta_N^k(\mathcal{Y}) := \{\Theta_N^k(y_i)\}_{i=1}^D$
- EXAMPLE: with the partition $\left\{M_0, M_1\right\}$ $\Theta_N^k(\mathcal{Y}) :: \left\{\Theta_N^k(M_0), \Theta_N^k(M_1)\right\} = \left\{U^k M_0 U^{\dagger k}, U^k M_1 U^{\dagger k}\right\}$
- the refined partition:

$$\mathcal{Y}_{\Theta_{N}}^{\left[0,n-1\right]}=\left\{\Theta_{N}^{n-1}\left(y_{i_{n-1}}\right)\right.\\ \left.\Theta_{N}^{n-2}\left(y_{i_{n-2}}\right)\right.\\ \left.\cdots\right.\\ \left.\Theta_{N}(y_{i_{1}})\right.\\ y_{i_{0}}\right\}_{\boldsymbol{i}\in\Omega_{D}^{n}}$$

• EXAMPLE: with the partition
$$\{M_0, M_1\}$$
 and $n = 3$
$$\mathcal{Y}_{\Theta_N}^{[0,2]} :: \quad \{M_{(000)}, M_{(001)}, M_{(010)}, M_{(011)}, M_{(011)}, M_{(110)}, M_{(110)}, M_{(111)}\}$$

$$\begin{cases} M_{(000)} \coloneqq \Theta_N^2(M_0) \ \Theta_N(M_0) \ M_0 = U^2 M_0 \, U^{\dagger 2} \ U M_0 \, U^{\dagger} \ M_0 = U^2 M_0 \, U^{\dagger} M_0 \, U^{\dagger} M_0 \\ M_{(001)} \coloneqq \Theta_N^2(M_1) \ \Theta_N(M_0) \ M_0 = U^2 M_1 \, U^{\dagger 2} \ U M_0 \, U^{\dagger} \ M_0 = U^2 M_1 \, U^{\dagger} M_0 \, U^{\dagger} M_0 \\ M_{(010)} \coloneqq \Theta_N^2(M_0) \ \Theta_N(M_1) \ M_0 = U^2 M_0 \, U^{\dagger 2} \ U M_1 \, U^{\dagger} \ M_0 = U^2 M_0 \, U^{\dagger} M_1 \, U^{\dagger} M_0 \\ M_{(011)} \coloneqq \Theta_N^2(M_1) \ \Theta_N(M_1) \ M_0 = U^2 M_1 \, U^{\dagger 2} \ U M_1 \, U^{\dagger} \ M_0 = U^2 M_1 \, U^{\dagger} M_1 \, U^{\dagger} M_0 \\ M_{(100)} \coloneqq \Theta_N^2(M_0) \ \Theta_N(M_0) \ M_1 = U^2 M_0 \, U^{\dagger 2} \ U M_0 \, U^{\dagger} \ M_1 = U^2 M_0 \, U^{\dagger} M_0 \, U^{\dagger} M_1 \\ M_{(101)} \coloneqq \Theta_N^2(M_1) \ \Theta_N(M_0) \ M_1 = U^2 M_1 \, U^{\dagger 2} \ U M_0 \, U^{\dagger} \ M_1 = U^2 M_1 \, U^{\dagger} M_0 \, U^{\dagger} M_1 \\ M_{(110)} \coloneqq \Theta_N^2(M_0) \ \Theta_N(M_1) \ M_1 = U^2 M_0 \, U^{\dagger 2} \ U M_1 \, U^{\dagger} \ M_1 = U^2 M_0 \, U^{\dagger} M_1 \, U^{\dagger} M_1 \\ M_{(111)} \coloneqq \Theta_N^2(M_1) \ \Theta_N(M_1) \ M_1 = U^2 M_1 \, U^{\dagger 2} \ U M_1 \, U^{\dagger} \ M_1 = U^2 M_1 \, U^{\dagger} M_1 \, U^{\dagger} M_1 \end{cases}$$

- the $D^n \times D^n$ density matrices $\rho \left[\mathcal{Y}_{\Theta_N}^{[0,n-1]} \right]$ with elements $\left[\rho \left[\mathcal{Y}_{\Theta_N}^{[0,n-1]} \right] \right]_{i,i} \coloneqq \omega_N \left(\left[\mathcal{Y}_{\Theta_N}^{[0,n-1]} \right]_{j}^{\dagger} \left[\mathcal{Y}_{\Theta_N}^{[0,n-1]} \right]_{i} \right) .$
- ullet EXAMPLE: with the partition $\mathcal{Y}_{\Theta_N}^{[0,2]}$

$$\begin{bmatrix} \rho \left[\mathcal{Y}_{\Theta_N}^{[0,2]} \right] \right]_{i,j} \coloneqq \omega_N \left(M_{(j_0,j_1,j_2)}^{\dagger} M_{(i_0,i_1,i_2)} \right) \quad \text{and so} \\
\left[\rho \left[\mathcal{Y}_{\Theta_N}^{[0,2]} \right] \right]_{(010),(100)} \coloneqq \omega_N \left(M_{(100)}^{\dagger} M_{(010)} \right) \\
\coloneqq \frac{1}{N} \operatorname{Tr} \left(M_1^{\dagger} U M_0^{\dagger} U M_0^{\dagger} M_0 U^{\dagger} M_1 U^{\dagger} M_0 \right)$$

• the Von Neumann Entropy:

$$H_{\omega_N,\mathcal{M}_0}\left[\mathcal{Y}_{\Theta_N}^{[0,n-1]}\right] = -\operatorname{Tr}\left(\rho\left[\mathcal{Y}_{\Theta_N}^{[0,n-1]}\right]\log\rho\left[\mathcal{Y}_{\Theta_N}^{[0,n-1]}\right]\right) \cdot$$

Then, the ALF-entropy of $(\mathcal{M}_N, \omega_N, \Theta_N)$ is given by:

$$h_{\omega_N,\mathcal{M}_0}^{\mathsf{ALF}}(\Theta_N) \coloneqq \sup_{\mathcal{Y} \subset \mathcal{M}_0} h_{\omega_N,\mathcal{M}_0}^{\mathsf{ALF}}(\Theta_N, \mathcal{Y}) ,$$

$$1 \text{ ALF} \quad (O \longrightarrow \mathcal{Y}) \qquad 1 \text{ In } [2\sqrt{[0,n-1]}]$$

where
$$h_{\omega_N,\mathcal{M}_0}^{\mathsf{ALF}}(\Theta_N,\mathcal{Y}) \coloneqq \limsup_n \frac{1}{n} H_{\omega_N} \left[\mathcal{Y}^{[0,n-1]} \right]$$
.

PROPOSITION 1

Let $(\mathcal{A}_{\mathcal{X}}, \omega_{\mu}, \Theta)$ represent a classical dynamical system. Then,

$$h_{\omega_{\mu},\mathcal{A}_{\mathcal{X}}}^{\mathsf{ALF}}(\Theta) = h_{\mu}(T)$$
 .

PROPOSITION 2

If $(\mathcal{M}_N, \omega_N, \Theta_N)$ be a quantum (discrete) dynamical system with \mathcal{M}_N finite dimensional, then

$$h_{\omega,\mathcal{M}_N}^{\mathsf{ALF}}(\Theta_N) = 0$$
.

h^{ALF}

- behave as $h_{\mu}(T)$ for CDS
- (so) test CHAOS as $h_{\mu}(T)$ do
 - reveal NO CHAOS on finite dimensional systems
- All these quantities are computed in the $n \longrightarrow \infty$ limit...
- What about the running Von Neumann entropies?

RESULT (For the ALF entropy)

Finding a correspondence (actually the more natural) between

- ullet a classical partition ${\cal E}$ KS
- \bullet a partition of unit \mathcal{Y} ALF

and using the dynamical localization condition, we get

$$\lim_{\substack{k,N\to\infty\\k\leq\alpha\log N}}\frac{1}{k}\left|H_{\omega_N}[\mathcal{Y}_{\Theta_N}^{[0,k-1]}]-S_{\mu}(\mathcal{E}^{[0,k-1]})\right|=0.$$

– Remember –

$$S_{\mu}(\mathcal{E}^{[0,n-1]}) \xrightarrow{\frac{1}{n} \lim_{n \to \infty}} h_{\mu}(T, \mathcal{E}) \xrightarrow{\mathcal{E}} h_{\mu}(T)$$

$$\uparrow \lim_{\substack{k,N \to \infty \\ k \le \alpha \log N}} \frac{1}{k} \cdots$$

$$H_{\omega_{N},\mathcal{M}_{0}} \left[\mathcal{Y}_{\Theta_{N}}^{[0,n-1]} \right] \xrightarrow{\frac{1}{n} \lim \sup_{n \to \infty}} h_{\omega_{N},\mathcal{M}_{0}}^{\mathsf{ALF}}(\Theta_{N}, \mathcal{Y}) \xrightarrow{\sup_{\mathcal{Y}}} h_{\omega_{N},\mathcal{M}_{0}}^{\mathsf{ALF}}(\Theta_{N})$$

\mathcal{Y} : partition of D elements that maximize the entropy rate

						ſ `	
Time n	1	2	3		m		m'
$\operatorname{Size}\left(\rho_{\Theta}^{[0,n-1]}\right)$	$D \times D$	$D^2 \times D^2$	$D^3 \times D^3$		$D^m \times D^m$	TIME	$D^{m'} \times D^{m'}$
Max. number of eigenvalues of $\rho_{\Theta}^{[0,n-1]}$ different from 0	D	D^2	D^3		D^m	U	N^2
\langle Eigenvalues \rangle	$\frac{1}{D}$	$\frac{1}{D^2}$	$\frac{1}{D^3}$		$\frac{1}{D^m}$	BREAKIN	$rac{1}{N^2}$
$oxedge H_{ au_N,\mathcal{M}_0}\left[\mathcal{Y}_{\Theta}^{[0,n-1]} ight]$	$\log D$	$2 \log D$	$3 \log D$	• • •	$m \log D$	RE	$2 \log N$
$h_{ au_N,\mathcal{M}_0}^{ALF}\left[\mathcal{Y},\Theta ight]$	$\log D$	$\log D$	$\log D$		$\log D$	P	$\frac{2 \log N}{m'}$

Figure 2: Von Neumann entropy $H_{\tau_N}(n)$ in four hyperbolic ($\alpha = 1$ for \diamond , \triangle , \circ , \square) and four elliptic ($\alpha = -2$ for \triangleright) cases, for three randomly distributed \boldsymbol{r}_i in Λ . Values for N are: $\diamond = 500$, $\triangle = 400$, $\circ = 300$ and $\square = 200$, whereas the curve labeled by \triangleright represents four elliptic systems with $N \in \{200, 300, 400, 500\}$.

Figure 3: Von Neumann entropy $H_{\tau_N}(n)$ in four hyperbolic $(\alpha = 1)$ cases, for D randomly distributed \mathbf{r}_i in Λ , with N = 200. Value for D are: $\diamond = 5$, $\triangle = 4$, $\circ = 3$ and $\square = 2$. The dotted line represents $H_{\tau_N}(n) = \log \lambda \cdot n$ where $\log \lambda = 0.962...$ is the Lyapounov exponent at $\alpha = 1$.

Figure 4: Entropy production $h_{\tau_N, \mathcal{W}_{\infty}}(\alpha, \Lambda, n)$ in four hyperbolic $(\alpha = 1)$ cases, for D randomly distributed \boldsymbol{r}_i in Λ , with N = 200. Values for D are: $\diamond = 5$, $\triangle = 4$, $\circ = 3$ and $\square = 2$. The dotted line corresponds to the Lyapounov exponent $\log \lambda = 0.962\ldots$ at $\alpha = 1$.

Figure 5: Entropy production $h_{\tau_N,\mathcal{W}_{\infty}}(\alpha,\Lambda,n)$ in five hyperbolic $(\alpha=1)$ cases, for D nearest neighboring points \boldsymbol{r}_i in Λ . Values for (N,D) are: $\triangleright=(200,5), \, \diamond=(500,3), \, \triangle=(400,3), \, \diamond=(300,3)$ and $\square=(200,3)$. The dotted line corresponds to the Lyapounov exponent $\log \lambda=0.962\ldots$ at $\alpha=1$ and represents the natural asymptote for all these curves in absence of breaking—time.

Figure 6: Von Neumann entropy $H_{\tau_N}(n)$ in four elliptic $(\alpha = -2)$ cases, for D randomly distributed \mathbf{r}_i in Λ , with N = 200. Value for D are: $\diamond = 5$, $\triangle = 4$, $\circ = 3$ and $\square = 2$.

Figure 7: Entropy production $h_{\tau_N, \mathcal{W}_{\infty}}(\alpha, \Lambda, n)$ for 21 hyperbolic Sawtooth maps, relative to a for a cluster of 5 nearest neighborings points \mathbf{r}_i in Λ , with N=38. The parameter α decreases from $\alpha=1.00$ (corresponding to the upper curve) to $\alpha=0.00$ (lower curve) through 21 equispaced steps.

Figure 8: The solid lines correspond to $(s_n, h_{\tau_N, \mathcal{W}_{\infty}}(\alpha, \Lambda, n))$, with $n \in \{1, 2, 3, 4, 5\}$, for the values of α considered in figure 7. Every α -curve is continued as a dotted line up to $(1, l_{\alpha}^5)$, where l_{α}^5 is the Lyapounov exponent extracted from the curve by fitting all the five points via a Lagrange polynomial $\mathcal{P}^m(t)$.

Figure 9: Four estimated Lyapounov exponents l_{α}^{m} plotted vs. their degree of accuracy m for the values of α considered in figures 7 and 8.

Figure 10: Plots of the four estimated of Lyapounov exponents l_{α}^{m} of figure 9 vs. the considered values of α . The polynomial degree m is as follows: $\diamond = 2$, $\triangle = 3$, $\circ = 4$ and $\square = 5$. The solid line corresponds to the theoretical Lyapounov exponent $\log \lambda_{\alpha} = \log (\alpha + 2 + \sqrt{\alpha (\alpha + 4)}) - \log 2$.

Figure 11: Temperature–like plots showing the frequencies $\nu_{\Lambda,\alpha}^{(n),N}$ in two hyperbolic regimes (columns a and c) and an elliptic one (col. b), for five randomly distributed \boldsymbol{r}_i in Λ with N=200. Pale–blue corresponds to $\nu_{\Lambda,\alpha}^{(n),N}=0$. In the hyperbolic cases, $\nu_{\Lambda,\alpha}^{(n),N}$ tends to equidistribute on $(\mathbb{Z}/N\mathbb{Z})^2$ with increasing n and becomes constant when the breaking–time is reached.

Figure 12: Temperature–like plots showing $\nu_{\Lambda,\alpha}^{(n),N}$ in two hyperbolic (columns d and f) and one elliptic (col. e) regime, for five nearest neighboring \boldsymbol{r}_i in Λ (N=200). Pale–blue corresponds to $\nu_{\Lambda,\alpha}^{(n),N}=0$. When the system is chaotic, the frequencies tend to equidistribute on $(\mathbb{Z}/N\mathbb{Z})^2$ with increasing n and to approach, when the breaking–time is reached, the constant value $\frac{1}{N^2}$. Col. (f) shows how the dynamics can be confined on a sublattice by a particular combination (α, N, Λ) with a corresponding entropy decrease.

Given a Quantum Dynamical System $(\mathcal{M}_N, \omega_N, \Theta_N)$ we introduce:

$$\mathcal{Y} \coloneqq \{y_\ell\}_{\ell=1}^D$$
; $\sum_{\ell=1}^D y_\ell^* y_\ell = \mathbb{1}_{\mathcal{M}_0}$ - Partition of Unit (PU)

WAVE PACKET REDUCTION POSTULATE
$$\Longrightarrow$$
 $\rho \xrightarrow{\text{Measure}} \mathcal{I}_{\mathcal{Y}}(\rho) \coloneqq \sum_{j} y_{j} \rho y_{j}^{*}$

- The map $\mathcal{I}_{\mathcal{V}}$ is called an instrument;
- it describe the change in the state ρ caused by the measure;
- $\omega \left[y_j \rho y_j^* \right]$ is the probability that the measure select the i^{th} value.

The CS Instrument

$$\mathcal{E} := \{E_{\ell}\}_{\ell=1}^{D} ; \quad \begin{cases} \bigcup_{\ell=1}^{D} E_{\ell} = \mathcal{X} \\ E_{\ell} \cap E_{k} = \emptyset \end{cases} - \text{CLASSICAL PARTITION (CP)}$$

With the family of CS $\{|C_N(\boldsymbol{x})\rangle \mid \boldsymbol{x} \in \mathcal{X}\}$ and $P_{\boldsymbol{x}} := |C_N(\boldsymbol{x})\rangle\langle C_N(\boldsymbol{x})|$:

- the map $\mathcal{I}(E_{\ell})(\rho) := \mathcal{N} \int_{E_{\ell}} P_{x} \rho P_{x} \mu(\mathrm{d}x)$ is called a CS-instrument;
- it describe the change in the state ρ caused by the E_{ℓ} -dependent measurement process;
- $\omega \left[\mathcal{I} \left(E_{\ell} \right) \left(\rho \right) \right]$ is the probability that the measure gives values in E_{ℓ} , when the pre-measurement state is ρ .

— Time-stroboscopic CS measurement —

$$\mathbf{\mathcal{P}_{i}^{CS}} = \mathcal{P}_{i_{0},i_{1},\ldots,i_{n-1}}^{CS} \coloneqq \omega \left[\mathcal{I} \left(E_{i_{n-1}} \right) \circ \Theta \circ \mathcal{I} \left(E_{i_{n-2}} \right) \circ \Theta \circ \cdots \circ \mathcal{I} \left(E_{i_{1}} \right) \circ \Theta \circ \mathcal{I} \left(E_{i_{0}} \right) \left(\rho \right) \right]$$

is the probability that several measure, taken stroboscopically at times $t_0 = 0$, $t_1 = 1$, ..., $t_{n-1} = n - 1$, give values in $E_{i_0}, E_{i_1}, \ldots, E_{i_{n-1}}$.

CS Quantum Entropies

With the probabilities μ_i we can compute the SHANNON ENTROPY

$$S(U, \mathcal{I}, \mathcal{E}, \rho, n) := -\sum_{i \in \Omega_D^n} \mathcal{P}_i^{\mathsf{CS}} \log \mathcal{P}_i^{\mathsf{CS}}$$
;

its production per time step, is defined as CS quantum entropy

$$H(U, \mathcal{I}, \mathcal{E}, \rho) := \lim_{n \to \infty} \frac{1}{n} S(U, \mathcal{I}, \mathcal{E}, \rho, n)$$

and it is decomposable in two part: the Measurement CS Quantum Entropy

$$H_{\text{meas}}(\mathcal{I}, \mathcal{E}, \rho) := H(\mathbb{1}_{\mathcal{N}}, \mathcal{I}, \mathcal{E}, \rho)$$
,

and the remaining part, which is supposed to incorporate the dynamics

$$H_{\text{dyn}}(U, \mathcal{I}, \mathcal{E}, \rho) := H(U, \mathcal{I}, \mathcal{E}, \rho) - H_{\text{meas}}(\mathcal{I}, \mathcal{E}, \rho)$$

PROPOSITION 1

Consider the Classical Dynamical System (\mathcal{X}, μ, T) endowed with a classical partition \mathcal{E} . Then it is possible to define the automorphism U and the classical instrument \mathcal{I} in such a way that

$$H(U, \mathcal{I}, \mathcal{E}, \rho) = h_{\mu}(T, \mathcal{E})$$

holds true.

PROPOSITION 2

For finite dimensional systems

$$H(U, \mathcal{I}, \mathcal{E}, \rho) = 0$$

RESULT (For the CS Quantum Entropy)

If we assume that dynamical localization condition holds, and we take for ρ the tracial state $\frac{1}{N} \mathbb{1}_N$, we find an α such that it holds true

$$\lim_{\substack{n,N\to\infty\\n<\alpha\log N}}\frac{1}{n}\bigg|S(U,\mathcal{I},\mathcal{E},\rho,n)-S_{\mu}(\mathcal{E}_{[0,n-1]})\bigg|=0\quad\cdot$$

Moreover, this effect is purely related to the dynamic component of the entropy, indeed it exists an α' such that

$$\lim_{\substack{n,N\to\infty\\n<\alpha'\log N}}\frac{1}{n}\,S(\mathbb{1}_{\mathcal{N}},\mathcal{I},\mathcal{E},\rho,n)=0\quad\cdot$$

– Remember –

$$S_{\mu}(\mathcal{E}^{[0,n-1]}) \xrightarrow{\frac{1}{n} \lim_{n \to \infty}} h_{\mu}(T, \mathcal{E}) \xrightarrow{\mathcal{E}} h_{\mu}(T)$$

$$\uparrow \lim_{\substack{k,N \to \infty \\ k \le \alpha \log N}} \frac{1}{k} \cdots$$

$$S(U, \mathcal{I}, \mathcal{E}, \rho, n) \xrightarrow{\frac{1}{n} \lim \sup_{n \to \infty}} H(U, \mathcal{I}, \mathcal{E}, \rho) \longrightarrow \begin{cases} H_{\text{meas}}(\mathcal{I}, \mathcal{E}, \rho) \\ H_{\text{dyn}}(U, \mathcal{I}, \mathcal{E}, \rho) \end{cases}$$

CONCLUSION

- We used QDE to find footprint of CHAOS in quantum (or discrete) systems, obtained from classical continuous one.
- We found that the correspondence between Classical and Quantum Dynamics lasts much less than the Heisenberg time Breaking Time BT.
- The BT scales logarithmically in the dimension of the Hilbert space, moreover it is inversely proportional to the Lyapounov exponent.
- For the Quantum Cat Maps we exactly determined $\mathsf{BT} = \frac{1}{2} \frac{\log N}{\log \lambda}$
- We showed how Quantum Dynamical Entropies can be profitably used in a Classical Discretized context.