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e Quantum Dynamical Entropies (QDE)
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e Relation between the QDE and the KS entropy
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e Classical (Continuous) limit and Temporal Evolution
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The problem of defining quantum chaos

Classical Chaos: exponential amplification of small errors

6| — |6x(n)] = N |6x| = e"'8*|x]

log A is | Lyapounov Exponent

|0x(n)| increase no longer in compact systems...

o 1 ox(n)|
logA:= lim = lim " —log 02|

...and |dx| cannot be let go to zero in quantum or discrete systems!

Indeed:

1
e for a discrete system |0x| > a (a = N lattice spacing);

e for a quantum system |dz| > — (|dp| bounded on compact).
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Vh:logA(h)=0 but lim lim logA(h) > 0

n—oo h—0

VN :logA\(N)=0 but lim lim logA(N) > 0

n—oo N—o00

An equivalent indicator of chaos in classical continuous systems
e Entropy [S(n)|: information on the evolving system up to time

n.

e Loosely speaking, the Kolmogorov-Sinai metric entropy is

h,(T)= lim St

n—oo

(entropy per unit time).

Theorem 1 (Pesin)

Ergodicity == h,(T") = ) positive Lyapounov exponent

CLASSICAL . Pesin
SYSTEMS ¢ AN hy(T)

Theorem

Correspondence
Principle Lﬁ — 0

QUANTUM TEMPORAL %
SYSTEMS * CHAOS (?) :

DISCRETE . TEMPORAL 9
SYSTEMS ° CHAOS (?) :



Classical Dynamical Systems (X ) s T)

(X : Measurable space (Torus T?:= R?/Z?)
o normalized measure (p (X) = 1) (Lebesgue p (da) = doydas)

T : an invertible measurable map T : X — X (described later)

| pinvariant (go T = pu)

Partition over X

.
E,CcX

E = {Eg}gzm’m’D such that X Ule E, =X

\EgﬂEk:(Z) ., VI#£Ek

Evolved partition at time j
(€)= {T7 (E)}, . 1
Definition

' is the set of strings 4= {ig, i1, , i1},
i; belonging to the alphabet {1,2,.-- D}



E = {EB]u67 EGI“&}M EMagentav EYeHOW}

All trajectories starting in
Eovvps= EgN...N T4 (EB)
are encoded by the same

string { GYMBB}
(up to time 4)

Their probability is:

peymss = p (EaymBs)



Refined partition (up to time n)

n—1

Elo,n—1] ={E; }zeQ” , EBi= ﬂ T (E@'j>

j=0

strings ¢ € ()}, encode trajectories {Tka:} , € € Iy

Richness in trajectories of E; € & ,—q is measured by the volume

pi= 1 (Es).

Kolmogorov metric entropy

With the probabilities p; we can compute the SHANNON ENTROPY

S/l [0,n— 1 Z i lOg Mo

'LEQ”

the entropy production per time step

hM<T7 g) hm S (5[0771_1})

n—oo M,

and the KS entropy

h,(T)=suph, (T, E)
3



Classical Dynamics [1]: Unimodular Group (UMG)

T°> z, — x, = Tx, (modl) ¢&T?

a b
T = (c d) , a,bye,de , det(T)=1

T is a toral automorphism and a generalization of the so called Arnold
Cat Map. Depending on Tr (T') we have two kind of dynamics:

2
o |Tr(T)| >2  Chaotic Systems  log A = log (Tr(T)+\/m>

2

o It (T)| <2  Regular Systems

y“

a)




An extension of UMG:

Classical Dynamics [2]: Sawtooth Maps (SM)

() =0 ) (5Y) wodn, aer

Sawtooth Maps are: -
. (\\Q . (%]
~o: Discontinuity © measure preserving %d\-v&\&
line for S ® ; . x// S
“ invertible S Se
.@CJO S&O&
® DISCONTINUOUS ¥

\
St
4—

Depending on the value of @ we have two kind of dynamics:

o a ¢ |[—4,0] Chaotic Systems log A = log (a+2+ 2a(a+4))
o o€ [—4,0] Regular Systems
By using SM we dispose of a continuum set of Lyapunov Exponent
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Chaos in Discrete Systems. . .

... but also Periodicity
11



Algebraic description of Dynamical Systems

1) Classical Dynamical Systems (CDS (M, w,,©))

(

M, . Algebra of observables (C“ (Tz) , LY (Tz))
wy, : State over M, (w,, (f) = [ [ (x) d*x)
© : Discrete group of w,—preserving (@k (f(x))=f (Tk a:))

automorphisms of M,

\

2) Quantum Dynamical Systems (QDS (My,wy,Oy))

(/\/l v : Finite dimensional algebra (N x N Full-matrix algebra)
{ wy : State over My (On—invariant) (wy (m) = + Tr (m))
\@N . Unitary dynamics on My (@N (m) =Um UT)

3) Discrete Dynamical Systems (DDS (Dy,wy,©On))

They differ from QDS (M y,wn,Oy) only in

e Dy: Finite dimensional algebra (N? x N? Diagonal-matrix algebra)
QUANTIZATION

To quantize a CDS (M, w,, ©) means to find two linear maps Jn
and Jo y such that:

INoo + M, — My : INoo (f) = My
joo,N . MN — Mu ; joo,N <MN):f
N—00

Classical limit is: Joo v © TN .00 Ty,
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DISCRETIZATION

Analogously, in order to discretize the CDS (M,,w,, ©), we must
find two linear maps Jy ~ and Juo v such that:

INoo : M, —— Dy : INoo (f) = Dn
Jon : Dy +— M, : JonN (Dn)=f
N—00

satistying the continuous limit: Jo v © IN . Ty,

CLASSICAL (CONTINUOUS) LIMIT FOR THE
DYNAMICS

. CLASSICAL . .
Quantum (Discrete)  (contmvovs)  Classical (Continuous)

evolution LIMIT evolution

In general it holds true ONLY IF time-evolution does not cross a

BREAKING TIME, depending on N!

In particular, depending on the Dynamical System considered, it
exists an a such that for any given f € L7 (T2) it holds true

=0
2

P ——
k%al;;oﬁf

where || - || is the L2 (T?) norm ||g|| == \//2 g1 (de)
T
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Continuous limit for the SM family : a 48 x 48 lattice

Yo: Discontinuity

line for 53 /9

V-1 = 53/2 (A‘/O):

Discontinuity line

for SJ_/IQ and S;/QQ

AN e = 92 (A
/=2 — 53/2 ( 70)-
Discontinuity lines

for S72

3/2

yd
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ANTI-WICK QUANTIZATION
(DISCRETIZATION)

Using a “well defined” set of Coherent States {|Cn(x)) | x € X'}:

T (f)= N / u(de) f(@)|C (@) (Cx(@)|

Toen(X) (@)= (Cn(z), X Cn(2))

Properties of {|Cy(x)) | x € X'}

1. Measurability: @ — |Cy(x)) is measurable on X’
2. Normalization: ||Cy(2)||> =1, ¢ € X;

3. Overcompleteness: N7 [, p(dz) |Cn(x))(Cy(z)| = 1;

4’. Localization: given £ > 0 and dy > 0, there exists Ny(e, dy) such

that for N > Ny and d(x,y) > dy one has
N2[(Cw(), Cr () <.

4" Dynamical localization:

There exists an a > 0 such that for all choices of ¢ > 0 and
dy > 0 there exists an Ny € IN with the following property: if
N > Ny and k < alogN, then N|(Cy(z),U% Cn(y))|* < ¢

whenever d(T*z,y) > dy.
(U% is the single step unitary evolution operator).
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Our “Lattice States” family (LS) {|Cn(x)) | x € X'}

52— |CN(£C)> _ ( [Nzt + 1], [ Nag + 1] > e Hy =V’

—_

U= (S]] [S23[GN] (SIS

o

1 2 3 4
0 5 5 5 5 1

Figure 1: The above picture represents a square lattice (Ls) of spacing % by circles and

connecting lines. All points in the blue square ](§ 5y 1= [1%, 1—70) X [1%, 1—70) C T? are asso-
575

ciated with the grid point (%,%) (black dot). Thus, for all & € [ (2.2): it turns out that
5’5
[Cn(®)) = (3,3)) € Hy-

PROPERTIES: 1 2 3 4 — (Classical limit

1 2 3 4 4" = Classical limit
of the dynamic

(RESULTS)
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WEYL GROUP

e On compact phase space, we cannot make a finite dimensional
quantization with CCR

[Q,P} =ihl

e We can find Uy and Vi that behave as e2mi P , respectively e=2miQ

N =

R

WEYL OPERATORS

Wy(n) = e 2mi(mP-mQ) _ ofniny VAU provide the so—called

WEYL QUANTIZATION:

flx) = Z fn g Zrio(n) [U(n, T) = niTy — '7')9.?171]

nez?

can be mapped in M, = Z fn Wy(n)

nez?

by means of the Weyl quantization operator
T+ My — My Ty (f) = My
DYNAMICAL EVOLUTION OF THE WEYL OPERATORS:
O (Wy(n)) =Wy (TV -n) -

Such a relation guarantees:
(0% 0 ) (F) = (70 0k) (1) -
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WEYL DISCRETIZATION

WEYL OPERATORS

Dy 2 Wy(n)= Z e%"ﬂwﬂﬁl : = (lq,05)-
0e(ZINZ)?

provide a WEYL DISCRETIZATION:

M,u 5 f(.’B) _ Z fn 627?2’71:1;

nez?

can be mapped in Dy 2 Dy = Z fn Wy(n)

nez?

by means of the Weyl Discretization Operator
TNt My — Dy 1 TN (f)=Dy

Moreover, for f € C° ('IFQ), we have

Fee T (=S Wil = 3 f(e) 2 (¢

N
nez?2 £e(Z/NZ)?

DYNAMICAL EVOLUTION OF THE WEYL OPERATORS:
O (Wy(n) =Wy ((17) - n) -
Such a relation guarantees:

(6%0‘7]\\/7\,/00) (f) - (*7]\\/7\,/000@‘3\0 (f) _
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The Alicki Lindblad Fannes Dynamical Entropy

Given a Quantum (or Discrete) Dynamical System (My,wy, On)
(with My denoting both a full-matrix and a diagonal-matrix alge-
bra), we introduce:

o Vi={y}, : S uyly, =1y, — PARTITION OF UNIT
y € Mo C My ; My (subalgebra) s.t. Ox (My) = My
o EXAMPLE: Partition of 2 elements (D = 2)

My = N? x N? diagonal matrix algebra

wy o wy (m) = %Tx‘ (m)

Oy Ox(m)=UmU'
Y {MO, Ml} (fulfilling M{ M, + M{ M, = 1)

D

o the time-evolving partition of unit: ©%(Y):= {O%(v:)}._,

e EXAMPLE: with the partition {MO, Ml}
ok (V) - {@N(MO),@N(Ml)} - {U MUt UM U }
e the refined partition:

Y = {en () 8% () - Oxlu) us )

> n
zEQD

20



e EXAMPLE: with the partition {M(), Ml} and n =3

Mioo0) = OF(My) ©
M) = O (M1) ©
Mio10):= O (My) €
M(Oll) = @?\I(Ml)
M100):= O%(Mp) €
Moy = O3(M)
M110) = O3 (M)
My = O3(M)

e the D" x D" density matrices p[ygj’?_l]

(

(
n(M
@N(Ml)
w
(

(

(

) M
M) M
) M

M) M

{M(ooo), Mioo1), M(010), M(o11),
M100), M1o1), M110), M(111)}

= UMy U UMy U My =
= UM, U™ UMy U My =
= UMy UM, UM,

=U QM() Ut UM, U M,

= UM, U UM, U My =
1, = UM, U™ UM, Ut M, =
— UM, UT UM U M, =
— UM, U UM, Ut M, =
— UM, U UM, Ut M, =

o] () ],
3¥)

¢ EXAMPLE: with the partition Vg~

/|

[p [yg);f] ]
2 1 (010),(100)

yé?;j]} ]

1,J

= WN (MT

M(’io,’il,’iQ))

(J0,J1.J2)

— il
= o (M M)

21

UM, Ut M, Ut M,
UM, Ut M, UT M,

UM, UM, UM,
>\ o UTM, UM,
UM, Ut M, UTM,
U2M0 UtM, UM,
UM, UTM, UM,

} with elements

and so

1 T T T 1 1
= Tr ( MU j\,j(g [ ]\,{(i M, UM, U JWU)



e the Von Neumann Entropy:
o DT (vl )

Then, the ALF—entropy of (My,wy,Oy) is given by:
WA (@)= sup BAF L (On, D)

wy,M w,M
N-Mo Ve, N>Mo

1
where AALF (©n,Y) = limsup EHWN [y[(),n—l]] .

wn,My

PROPOSITION 1

Let (Ax,wﬂ, @) represent a classical dynamical system. Then,
HALE, (O) = hy(T) -

wuaAX

PROPOSITION 2

If (My,wy,On) be a quantum (discrete) dynamical system with
My finite dimensional, then

hcAu!_/\F/lN(@N) =0-

1, ALF
- behave as h,(T) for CDS
(so) - test CHAOS as h,(T) do
- reveal NO CHAOS on finite dimensional systems

e All these quantities are computed in the n — oo limit. ..

e What about the running Von Neumann entropies?

22



RESULT (For the ALF entropy)

Finding a correspondence (actually the more natural) between

e a classical partition & KS

e a partition of unit )/ ALF

and using the dynamical localization condition, we get

1

: 0,k—1 _
im o Hoy Yoy = 8,604 =0
k;g’alog]\f
— Remember —
L i sup

Su(E10nH) — h(T, €) — hy(T)

, 1

lim —---
k.N—o00 ]{
k<alog N

Hoto V8] ——— W0 (08, < WO

— lim sup Y
N n—soo
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Y: partition of D elements that maximize the entropy rate

o
Time n 1 2 3 m o m/
Size (p[O’n_1]> DxD|D?x D2 D*x D3 D™ x D™ E D™ % D™
Max. number of D D? D3 D™ - N?
eigenvalues of - N
0,n—1
o " O
different from 0 e
p—{

_ 1 1 1 1 1
<E1genva1ues> ) P 3 Dm ﬁ e
Hey ot [yg)’”‘”} logD | 2 1logD | 3 log D m log D E 2 log N

2 log N
WAL 12,0] | logD | logD | logD gp | Tongf
___J
0,n—1

Hoy M, {y([a q n log D
)
2 log N — |
]
=
-

n
2 log N @)
—
e
=
log D "%
M
N_—,

24




13

114

104

Hay (3071 ()

1 2 3 a 5 6 7 8 9 10 11 12 13 14 15

Number of iterations n

Figure 2: Von Neumann entropy H,, (n) in four hyperbolic (o« = 1 for ¢, A, o, o) and four
elliptic (o = —2 for ») cases, for three randomly distributed r; in A. Values for N are: ¢ = 500,
A =400, o = 300 and o = 200, whereas the curve labeled by > represents four elliptic systems
with NV € {200, 300, 400, 500}.
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Hay [ 3071 ()

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of iterations n

Figure 3: Von Neumann entropy H,, (n) in four hyperbolic (v = 1) cases, for D randomly
distributed r; in A, with N = 200. Value for D are: ¢ =5, A =4, o = 3 and o = 2. The dotted
line represents H,, (n) = log A - n where log A = 0.962. .. is the Lyapounov exponent atar = 1.

17
1.69
15
143
—~
S 137
~ 1.2
3
~—r
g 11
> 1
<
0.9 {
0.8
0.7 m - - - - - - - - - D\D_\_D\D\{
n
0.6

Number of iterations n

Figure 4: Entropy production A, . (a, A, n) in four hyperbolic (a = 1) cases, for D randomly
distributed r; in A, with N = 200. Values for D are: ¢ =5, A =4, o = 3 and o = 2. The
dotted line corresponds to the Lyapounov exponent log A = 0.962... at a = 1.
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1.7 . . . . .

1.60
151
14]
131

1.2+

11¢g
l M

=

9 10 11 12 13 14

Py o (@, Ay )

0.9 1

0.8 1

/

(=

0.6
1 2 3 4 5 6 7 8

Number of iterations n

Figure 5: Entropy production h, . (a, A,n) in five hyperbolic (o = 1) cases, for D nearest
neighboring points r; in A. Values for (N, D) are: > = (200,5), o = (500,3), A = (400, 3),
o = (300, 3) and o = (200, 3). The dotted line corresponds to the Lyapounov exponent log A =
0.962... at @« = 1 and represents the natural asymptote for all these curves in absence of
breaking-time.

10

Hay (3071 (n)

1 2 3 a 5 6 7 8 9 10 11 12 13 14 15

Number of iterations n

Figure 6: Von Neumann entropy H,, (n) in four elliptic (&« = —2) cases, for D randomly
distributed 7; in A, with N = 200. Value for D are: ¢ =5, A =4, 0 =3 and o = 2.



1.6

154

1.4+

1.3+

1.2+

1.1+

Py wo (, Ay )

RYAvaLvav)

0.9 1

0.8 T T T
1 2 3 4 5

Number of iterations n

Figure 7: Entropy production h,, . (a,A,n) for 21 hyperbolic Sawtooth maps, relative to
a for a cluster of 5 nearest neighborings points r; in A, with N = 38. The parameter «
decreases from o = 1.00 (corresponding to the upper curve) to a = 0.00 (lower curve) through
21 equispaced steps.

Pory W (a, A, st (t))

0.2

[0} 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

“Compactified time” ¢

Figure 8: The solid lines correspond to (s, , hryw. (o, A,n)), with n € {1,2,3,4,5}, for the
values of a considered in figure 7. Every a—curve is continued as a dotted line up to (1,12),
where [2 is the Lyapounov exponent extracted from the curve by fitting all the five points via
a Lagrange polynomial P™ ().
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£y 121 .
E 1.1 S — F
g \’% b
Ve L
o 1 i r
o 3 ;
O 09 = i 4
X o
z < 3
& o8] o S %
= > 2
1S < b
a, 0.7 4 X < v
= X <>
>} X < L
q 0.6 + > >3
= < >
8 0.5 1 > b
s S
g o04] F
© 03] 5
& P
< 0z 2 3 4 5

Degree of accuracy m

Figure 9: Four estimated Lyapounov exponents ' plotted vs. their degree of accuracy m for
the values of o considered in figures 7 and 8.

12

m
«

N T

0.91 e ST O

>
1\ 0

. . O
ol O

04y

Approximated Lyapounov exponent [

[0} 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Hyperbolicity parameter o

Figure 10: Plots of the four estimated of Lyapounov exponents [[* of figure 9 vs. the considered
values of a. The polynomial degree m is as follows: ¢ =2, A = 3, 0 =4 and o = 5. The solid line
corresponds to the theoretical Lyapounov exponent log A, = log (o + 2+ v/a (a +4) ) —log2.
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n o= 1 a=—2 oa=17

10

Q
| =
| SN—
[\V)
Q
|3
[t

: ~

Figure 11: Temperature-like plots showing the frequencies I//(CC)Y’N in two hyperbolic regimes

(columns a and c¢) and an elliptic one (col. b), for five randomly distributed 7; in A with
N = 200. Pale blue corresponds to qui’N = 0. In the hyperbolic cases, 1//(\72’]\] tends to
equidistribute on (Z/N Z)2 with increasing n and becomes constant when the breaking—time is

reached.
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200). Pale-blue corresponds

the frequencies tend to equidistribute on (Z/NZ)?

in two hyperbolic (columns d and f) and one

(n),N
A«

col. e) regime, for five nearest neighboring r; in A (NN
0. When the system is chaotic,

()N _

Figure 12: Temperature-like plots showing v
to vy o

elliptic (

1
NZ-

Col. (f) shows how the dynamics can be confined on a sublattice by a particular combination

(,

with increasing n and to approach, when the breaking-time is reached, the constant value

) with a corresponding entropy decrease.

?

N, A
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Given a Quantum Dynamical System (M y,wn, ©n) we introduce:

Vi={ut i SPiviy, =1, — PARTITION OF UNIT (PU)

MEAS
WAVE PACKET REDUCTION POSTULATE = p ——— Ty(p):= Y _y; py;
J

e The map Zy is called an instrument;
e it describe the change in the state p caused by the measure;

o w [yj pyﬂ is the probability that the measure select the ™" value.

The CS Instrument

D U?:l By =X
E={E},_;; —  CLASSICAL PARTITION (CP)
ENE,. =0

With the family of CS {|Cn(x)) | x € X'} and [Pm = (\(:U)}(('\(x)] ;

e the map Z (E)) (p) =N | Pyp Py p(de) is called a CS-instrument;
E,

e it describe the change in the state p caused by the Ey—dependent measure-
ment process;

e w[Z(Ey) (p)] is the probability that the measure gives values in Ej, when
the pre-measurement state is p.

— Time—stroboscopic CS measurement —

PS=PS . =w[I(B, )oOoI(E;, )oOo0---0T(E;)000T(E,)(p)]

205015 5tn—1 "

is the probability that several measure, taken stroboscopically at times
to=0,t1=1, ..., th-1 =n—1, give values in E; , E; E

PRI a7
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CS Quantum Entropies

With the probabilities p; we can compute the SHANNON ENTROPY

SWU,Z,E,p,n) = — Z PSlog PSS

1€}

its production per time step, is defined as CS quantum entropy

1
HWU,Z,&,p)= lim — S(U,Z,E, p,n)

n—oo 1,

and it is decomposable in two part: the Measurement CS Quantum Entropy
Hmeas(z—7gap) = H(1N71787p) 3
and the remaining part, which is supposed to incorporate the dynamics

den(Ua -’Z’-a 57 p) = H(U7 Za ga p) o HIHG&S<1-7 87 p)

PROPOSITION 1

Consider the Classical Dynamical System (X s T) endowed with a classical par-
tition £. Then it is possible to define the automorphism U and the classical
instrument Z in such a way that

H(U,I,g,p) - hM(T75)

holds true.

PROPOSITION 2
For finite dimensional systems

HWU,Z,E,p)=0
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RESULT (For the CS Quantum Entropy)

If we assume that dynamical localization condition holds, and we take for p the
tracial state /iv 1, we find an « such that it holds true

lim — =0
n,N—oo N
n<alog N

S(U7I7 57 P, TL) o SM(S[Oa”_l])

Moreover, this effect is purely related to the dynamic component of the entropy;,
indeed it exists an o such that

1
lim — S(1p,Z,&,p,n)=0

n,N—oo NN
n<ca' log N
— Remember —
L im sup
S (glon-1y  nr g ey S h,(T)
"
ENboo K
k<alog N
Hmeas I, 57
S(U71—787p>n) - H(U,I,E,p) - ( p)
1 . den(U7Z75710>
— lim sup

n n—owo
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CONCLUSION

e We used QDE to find footprint of CHAOS in quantum (or dis-
crete) systems, obtained from classical continuous one.

e We found that the correspondence between Classical and Quan-
tum Dynamics lasts much less than the Heisenberg time Breaking

Time BT.

e The BT scales logarithmically in the dimension of the Hilbert
space, moreover it is inversely proportional to the Lyapounov
exponent.

1log N

e For the Quantum Cat Maps we exactly determined BT= 3 Tog X

e We showed how Quantum Dynamical Entropies can be profitably
used in a Classical Discretized context.
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