Atmospheric Physics Exam

Instructions

Do your best to answer all questions in the time allowed. ALWAYS remember to check the UNITS in the question and state the UNITS in your answer!!! Formulae

Most formulae required are given here:
Thermodynamics Ideal gas law:

$$
\begin{equation*}
p V=N k T=\nu R^{*} T \tag{1}
\end{equation*}
$$

N is the number of molecules.

$$
\begin{equation*}
p=\rho R_{m} T \tag{2}
\end{equation*}
$$

First Law:

$$
\begin{equation*}
d q=c_{p} d T-v d p \tag{3}
\end{equation*}
$$

Potential temperature Lapse Rate:

$$
\begin{equation*}
\frac{d \theta}{d z}=\frac{\theta}{T}\left(\frac{d T}{d z}+\frac{g}{c_{p}}\right) \tag{4}
\end{equation*}
$$

Hydrostatic balance:

$$
\begin{equation*}
\frac{d p}{d z}=-\rho g \tag{5}
\end{equation*}
$$

Clausius Clapeyron Equation for saturation vapour pressure over a planar water surface assuming L_{v} is constant:

$$
\begin{equation*}
e_{s}=e_{s 0} \exp \left[\frac{L_{v}}{R_{v}}\left(\frac{1}{T_{0}}-\frac{1}{T}\right)\right] \tag{6}
\end{equation*}
$$

Rate of change of e_{s} as a function of T :

$$
\begin{equation*}
\frac{d e_{s}}{d T}=\frac{L_{v} e_{s}}{R_{v} T^{2}} \tag{7}
\end{equation*}
$$

Potential temperature:

$$
\begin{equation*}
\theta=T\left(\frac{p_{0}}{p}\right)^{\frac{R_{d}}{c_{p}}} \tag{8}
\end{equation*}
$$

Equivalent Potential temperature:

$$
\begin{equation*}
\theta_{e}=\theta \exp \left(\frac{L_{v} r_{v}}{c_{p} T}\right) \tag{9}
\end{equation*}
$$

Vertical momentum equation relating the vertical acceleration to the buoyancy force:

$$
\begin{equation*}
\frac{d w}{d t}=F_{B}=g\left(\frac{\theta-\theta_{e n v}}{\theta_{e n v}}\right) \tag{10}
\end{equation*}
$$

where θ is potential temperature and env refers to the environment of the parcel.
Teton's formula for the saturation mixing ratio $r_{s}\left(\mathrm{~kg} \mathrm{~kg}^{-1}\right)$ as a function of pressure p (in Pa)and temperature T (measured in Kelvin):

$$
\begin{equation*}
r_{s}(T)=\frac{380}{p} \exp \left(17.5 \frac{(T-273.16)}{(T-32.19)}\right) \tag{11}
\end{equation*}
$$

which can be differentiated to give:

$$
\begin{equation*}
\frac{d r_{s}(T)}{d T}=r_{s} \frac{4217}{(T-32.19)^{2}} \tag{12}
\end{equation*}
$$

Relative humidity

$$
\begin{equation*}
R H=\frac{e}{e_{s}} \approx \frac{r_{v}}{r_{s}} \tag{13}
\end{equation*}
$$

Microphysics

Approximate diffusion equation for radius $r>1 \mu m$ droplets neglecting
the aerosol and curvature effects:

$$
\begin{equation*}
\frac{d r}{d t} \simeq \frac{D e_{s}(\infty)}{\rho_{L} r R_{v} T}(S-1) \tag{14}
\end{equation*}
$$

Saturation vapour pressure over a solute droplet of radius r :

$$
\begin{gather*}
e_{s}^{r}(\text { sol })=e_{s}(\infty)\left(1-\frac{b}{r^{3}}\right) \exp \left(\frac{a}{r T}\right) \tag{15}\\
\left(a=3.3 \times 10^{-7} \mathrm{~m} \mathrm{~K} \text { and } b=1.47 \times 10^{-23} \mathrm{~m}^{3}\right) \\
\text { Radiation }
\end{gather*}
$$

Stephan-Boltzmann Law for black body emission :

$$
\begin{equation*}
E=\sigma T^{4} \tag{16}
\end{equation*}
$$

Optical Thickness/Depth:

$$
\begin{equation*}
\delta_{\lambda}=\int_{z_{1}}^{z_{2}} k_{\lambda}^{e} \rho \sec \theta d z \tag{17}
\end{equation*}
$$

Transmittance τ is related to optical depth by

$$
\begin{equation*}
\tau_{\lambda}=e^{-\delta_{\lambda}} \tag{18}
\end{equation*}
$$

solid angle

$$
\begin{equation*}
\Omega=\frac{A}{r^{2}} \tag{19}
\end{equation*}
$$

Tables

Table 1: Table of thermodynamical constants

Avogadro's constant	N_{A}	6.02×10^{23}	$\mathrm{~mol}^{-1}$
Specific heat capacity at con-	c_{p}	1005	$\mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$
stant pressure for dry air			
Specific heat capacity at con-	c_{v}	718	$\mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$
stant volume for dry air			
Ratio of gas constants	$\epsilon=\frac{R_{d}}{R_{v}}$	0.622	
Latent heat of vaporization	L_{v}	2.5×10^{6}	$\mathrm{~J} \mathrm{~kg}^{-1}$
Latent heat of sublimation	L_{s}	2.83×10^{6}	$\mathrm{~J} \mathrm{~kg}^{-1}$
Latent heat of sublimation	L_{s}	2.83×10^{6}	$\mathrm{~J} \mathrm{~kg}^{-1}$
Gas constant for dry air	R_{d}	287.06	$\mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$
Gas constant for vapour	R_{v}	461.5	$\mathrm{~J} \mathrm{~kg} \mathrm{~K}^{-1}$
Density of liquid water	ρ_{l}	1000	$\mathrm{~kg} \mathrm{~m}^{-3}$
Molar mass of water	m_{v}	18.02	$\mathrm{~g} \mathrm{~mol}^{-1}$
Universal Gas Constant	R	8.314	$\mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
Saturation vapour pressure at	$e_{s 0}$	611.2	$\mathrm{~Pa}^{T_{0}=0^{\circ} \mathrm{C}}$
Vapour diffusion coefficient	D		
Surface tension of liquid water	$\sigma_{l, v}$	$\approx 2.2 \times 10^{-5}$	$\mathrm{~m}^{2} s^{-1}$

Table 2: Table of radiation constants

Planetary albedo of Earth	α_{p}	0.3	
Planetary albedo of Mercury	α_{p}	0.07	
Speed of light	c	3×10^{8}	$\mathrm{~m} \mathrm{~s}^{-1}$
Planck Constant	h	6.625×10^{-34}	$\mathrm{~J} \mathrm{~s}^{-1}$
Boltzmann constant	k	1.3806×10^{-23}	$\mathrm{~J} \mathrm{~K}^{-1}$
Stefan Boltzmann constant	σ	5.67×10^{-8}	$\mathrm{Wm}^{-2} \mathrm{~K}^{-4}$
radius of the earth	r_{e}	6340	km
radius of the sun	r_{s}	0.7×10^{6}	km
distance between Earth and	r_{d}	149.6×10^{6}	km
the Sun Mercury	r_{d}	58×10^{6}	km
distance between			
and the Sun	S_{0}	1370	W m
Solar Constant			

Questions

1. i (2pt) The simple model of the greenhouse effect considers the atmosphere as a single slab that emits as a grey body in the infra-red with temperature T_{a} and fractional emittance $\epsilon_{I R}=0.6$. We now instead divide the atmosphere into THREE layers with equal emissivity $\epsilon_{I R 1}=\epsilon_{I R 2}=\epsilon_{I R 3}$. What is the value of $\epsilon_{I R 1}$?
ii (4pts) Assuming that the atmosphere is transparent to solar radiation, and that the average incoming solar radation at the TOA is $\frac{S_{0}}{4}\left(1-\alpha_{p}\right)$, where S_{0} is the solar constanst and α_{p} is the albedo, and that equilibrium exists with the temperature in the three layers noted as T_{1}, T_{2}, T_{3}, derive the energy balance equation for the interface at top of the atmosphere and at the earth's surface. (DO NOT ATTEMPT TO SOLVE THESE EQUATIONS).
iii (2pts) If the full set of balance equations were solved (DO NOT ATTEMPT THIS) to derive T_{1}, T_{2}, T_{3}, would the resulting temperature profile be convectively unstable, neutral or stable? Why is the derivation of T_{1}, T_{2}, T_{3} using the assumption of radiative equilibrium a poor model of the atmosphere?
2. (4pts) A cloud droplet takes 10 minutes to grow from a size of $2 \mu \mathrm{~m}$ to $20 \mu \mathrm{~m}$ at a temperature of $\mathrm{T}=0^{\circ} \mathrm{C}$. Ignoring the aerosol and curvature effects, and assuming droplet growth does not impact the ambient humidity, what is the ambient supersaturation in percent?
3. i (2pts) Briefly describe the processes that lead to the formation of convective cold pools.
ii (2pts) Briefly state reasons why convective cold pools are important to understand
4. For the following question, assume the normal solar irradiance above the atmosphere is equal to the solar constant.
i (2pt) In a certain clear sky the zenith transmissivity for solar radiation is 0.75 . What is the transmissivity of the atmosphere when the sun is 25° above the horizon?
ii (2pt) What is the irradiance at sea level of a surface normal to the direction of the sun?
iii (2pt) What is the irradiance at sea level of a horizontal surface?
5. i (4pt) briefly describe the TWO main mechanisms by which ice crystals can form in the atmosphere
ii (2 pt) which of these results in the highest ice crystal number concentration and why?
iii $(2 \mathrm{pt})$ Assuming the ambient conditions allow both nucleation processes to occur, state at least TWO FACTORS that will determine which process will dominate.
6. i (2pt) The equation for the Gibbs free energy for a cluster formation is:

$$
\begin{equation*}
\Delta G=4 \pi r^{2} \sigma_{l, v}-\frac{4 R_{v} T}{3 v_{l}} \pi r^{3} \ln (S) \tag{20}
\end{equation*}
$$

Briefly explain what the two terms on the right hand side represent in terms of the physics (i.e. don't just name them).
ii $(2 \mathrm{pt})$ Starting from this equation, derive an expression (show your working) for the critical droplet radius above which pure liquid water droplets will grow by diffusion, for a given saturation value $S=\frac{e}{e_{s}}$
iii $(2 \mathrm{pt})$ A cloud is formed by heterogeneous nucleation on wettable, insoluble aerosols in an environment where $S=1.01$. What is the approximate aerosol radius
7. Take a look at the photo of stratocumulus cloud in the boundary layer. This photo was taken near Genova, a coastal town in west Italy during the Christmas break at around 8am local time. There was a situation of high pressure at the time. Each morning I would wake to find the sky overcast with this stratocumulus layer that had formed during the night (hence the name nocturnal stratocumulus). The cloud layer would become thinner and would dissipate around 11am local time each day and the rest of the day would be bright and sunny. The next morning I would wake to find the stratocumulus there again. Please answer the following questions BRIEFLY!

i (2pt) Explain why you think the cloud layer forms at night.
ii (2pts) Explain what drives the vertical instability.
iii (2pts) Explain why these clouds never formed precipitation (luckily, as I was out jogging when I took the photograph!)
8. The graph shows calculations of collection efficiency (using two different methods, the "present method" derived in the paper, and the classical Stokesian method) when a droplet of radius a_{1} falls through a cloud consisting of drops of radius a_{2}.

i (2pt) Explain why (use a sketch if helpful) when the largest droplet a_{1} has a radius of $10 \mu \mathrm{~m}$, the efficiency calculated is considerably below 1
ii (2pt) Explain how it is possible to have collection efficiencies that exceed unity (upper right of plot!)
iii (1pt) For the case of $a_{1}=30 \mu m$, and using the Stokesian theory derived curves, what value does E have when $a_{2} / a_{1}=1$?

