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Why are Atmospheric Regimes important?
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Source: www.ldeo.columbia.edu/NAO

@ The structure of the low-frequency regime transitions agnoersistent teleconnection
patterns (e.g. NAO and PNA) is of central importance for botlg-range weather
prediction and climate change projection
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What are M etastable Atmospheric Regimes?

Possible Definitions of Metastable Atmospheric Regimes

Atmospheric regimes are slowly evolving or
guasi-steady flow fields

Atmospheric regimes are recurring flow patterns (This
does not necessarily mean a slow down of planetary
waves)

Atmospheric regimes are regions in phase space where
the trajectories slow down

Atmospheric regimes are regions in phase space with
different dynamics
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What are M etastable Atmospheric Regimes?

Previous Approaches
Fixed points of highly truncated models (Charney and De\I&#9, JAS)
Multiple Attractors (Itoh and Kimoto 1997, JAS)

Recurrent Patterns: Identified by Cluster analysis (Chewnlg/dgallace 1993, JAS;
Mo and Ghil 1988, JAS)

Multiple Extrema in PDF’s (Corti et al. 1999, Nature)
Gaussian Mixtures (Smyth et al. 1999, JAS)

Problem
Long integrations of GCM’s show nearly Gaussian statistics

Are there distinct atmospheric regimes despite nearly SJanstatistics?
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Metastable Atmospheric Regimes. A Paradigm M odel

Paradigm model.
Barotropic flow over topography
Low-frequency waves: Blocked and Zonal states
Nearly Gaussian behavior

Truncated low-order model is Charney-DeVore model
(1979; JAS)
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Metastable Atmospheric Regimes. A Paradigm M odel

The barotropic quasi-geostrophic equations with a largéesc
zonal mean flow/ on a2x x 27 periodic domain are given by

2+ V- Vg + USE + 58 =
q=Av+h

L = 5 [ hSdady

The model is truncated #t|* < 17 (57 degrees of freedom).
Majda, A. J., . Timofeyev and E. Vanden-Eijnden, 2003: 8ysdtic Strategies for Stochastic

Mode Reduction in Climate, J. Atmos. Sci.
Majda, A. J., C. L. Franzke, A. Fischer, and D. T. Crommeli®0@. Distinct Metastable Atmo-

spheric Regimes Despite Nearly Gaussian Statistics: AditaraModel, PNAS.
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Hidden Markov Model (HMM)

The conditional independence relations betw&eandY are defined by the factorization
P(X1,...., X, Y1,...,Yp) =

T
P(X1)P(Y1]X1) | | P(X¢e| Xe—1) P(Y2| Xt)
t=2
A HMM is defined by the following components:
N hidden State$ = s1,52,...,sN
the observation spadé C R¢
a (N x N) stochastic transition matriA = (a;;)
a stochastic vectat = (mw1,...,7N)
probability distributionsB,,,n =1,...,NonV

Parameter estimation by EM and Viterbi algorithms

References: Rabiner (1989), Ghahramani (2001), Fiscladr €2006)
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HMM Analysisfor Metastable Regimes
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By = N (—0.035,0.304), By = N'(—0.789, 0.119)
eigenvalues ofi%2: )\, (A%?) = 1, Ay (A"?) = 0.969

Invariant distribution ofA%2:(0.529,0.471) (2)

Autocorrelation time scale df: 5 time units

@™ Residence time: H1 20 time units; H2 15 time units
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HMM Analysisfor Metastable Regimes

Climatological marginal PDF ot/ (solid line) and weighted conditional PDF’s of hidden sthte

- (Blocked flow, dashed line) and hidden state 2 (Zonal flowhddsdotted line).
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a) Hidden State 1: Blocked Flow b) Hidden State 2: Zonal Flo

HMM Analysisfor Metastable Regimes
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HMM Analysisfor Metastable Regimes
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Time
U (upper panel) and Viterbi path (lower panel). Fémpath black crosses and red circles denote

states which correspond to hidden state 1 (Blocked flow) af@sb@al flow), respectively.
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Why only 2 hidden states?
Analysis with 4 hidden states

eigenvalues ofi%2: )\ (A"?) = 1, \y(A%?) = 0.972,

A3 (A%%) = 0.930, A\, (A”?) = 0.731

Invariant distribution ofA%2:(0.137,0.125, 0.345, 0.393)
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Empirical reduced equation for U

dU = B(U)dt + /AU)dW

B(U) is the drift coefficient

AlU)
2

A and B are estimated from observeéd

> (0 Is the diffusion coefficient

W 1s Brownian motion.

Crommelin, D. T., and E. Vanden-Eijnden (J. Comp. Phys.; @omdath. Sci. 2006)
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Drift and Diffusion

a) Drift b) Diffusion

0.08

< 0.06

0.041

0.02

-15 -1 -0.5 0 0.5 1 15

Reconstructed a) DrifB and b) DiffusionA from time series variabl&. The open circles are the
result of the reconstruction, carried out 10 times on 1(@difiit (non-overlapping) segments of the

time series.
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Metastable Regimes

0.990 0.010
0.016 0.934

A0'2

Bi = N(—0.748,0.086), B, = N (0.209, 0.200)

eigenvalues of1%2: )\, (A"?) = 0.9744
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Summary and Conclusions

HMM are utilized for objective atmospheric regime
identification

Two regimes are identified, which correspond to blocked
and zonal flow

Low-order stochastic models capture regime behavior

This offers potential for using reduced stochastic models
for long-range predictability
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Normal Formsfor Reduced
Stochastic Climate M odels

Christian Franzke
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Andrew J. Majda (Courant Institute) and Daan Crommelin (CWI)

Majda, Franzke and Crommelin, 2009: Normal forms for redustechastic climate
models. Proc. Natl. Acad. Sci. USA, 106, 3649-3653.
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Normal Form for Reduced Stochastic Climate M odels

The systematic development of reduced low-dimensionahsistic climate models from
observations or comprehensive high-dimensional climatdeis is an important topic for
low-frequency variability, climate sensitivity, and ingqwed extended range forecasting.

The use of a few Empirical Orthogonal Functions (EOF) dependn observational data
to span the low-frequency subspace requires the assesshaaid interactions besides
the more familiar triads in the interaction between the lawd high-frequency subspaces
of the dynamics.

For a single low-frequency variable the dyad interactiams$ @imatological linear
operator alone produce a normal form with Correlated Adeliéind Multiplicative
(CAM) stochastic noise from advection of the large-scalethe small scales and
simultaneously strong cubic damping. This normal form $thpuove useful for
developing systematic regression fitting strategies foslsstic models of climate data.

British
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CAM Noise

British

The systematic stochastic mode reduction strategy (Mdjdh €999, 2001, 2005, 2008) predicts
the functional form of the deterministic and stochastiotrIn particular, it predicts two types of
noises. One is a simple additive noise, which stems from dimémear driving of the resolved
scales by the unresolved scales, and the other is CAM nokl iise has the following
structural form

(5+ ) aw (1)
whereg denotes a constant vectﬂm) a function and¥V a multivariate Wiener process. As (1)
indicates, CAM noise acts both in a additive and multiplieasense. The multiplicative noise
stems from the nonlinear advection of the resolved scaléldynresolved scales while the

additive noise part stems from the linear operator. Thisdimoperator is derived by linearizing

the equations of motion around the climatological basitesta

Antarctic Survey
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Structural implications of energy conservation for the

normal form

The dynamical core of comprehensive large-scale modelhéoclimate has the form

d
d_{::F_FLuq_B(u,u), u- B(u,u) =0 (2)

whereF is a constant forcing, a linear andB a quadratically nonlinear operator and= R

denotes the state vector with # 1.

British
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Structural implications of energy conservation for the

normal form

The state vecton can be expanded into an orthonormal basis in the energyanetri
u = Z,ﬁ‘il u; (t)e;. Then the conservation of energy constraint in (2) impdsesymmetries

e; - Bles, ;) =0 (3a)

el-B(ej,ek)—i—ej-B(ek,el)+ek-B(el,ej):O (3b)

for all indicesl, 5, k with 1 < [, 5, kK < M. In a general basis, e.g. of EOF'’s arising from
low-frequency data analysi&(e;, e;) # 0, and there are nontrivial dyad interactions which
satisfy (3)fork = 1,5 =1

e; - (B(eg,e;) + B(ei,er)) +e; - Blej,er) =0 (4)

for1 <1< M,i#1,1<i< M.
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Normal Form of 1D stochastic climate mode

Repeating the explicit mode elimination proceduresfeg 1 (Majda et al. 1999, 2001, 2005,
2008) and coarse graining time#as- g which amounts to setting = 1 yields thenormal form
for scalar stochastic climate modelsin Stratonovich form

dx

E = {L11£U—|—F1} (6a)
M2 >
p 3 p M :
+Z{— . T +%(L1p—llpx)owp} (6b)
p
I IMEp
TSI NDR = SR k[ (6¢)
p Tp Yp
L. L My,
_|_Z ( 1pLpl 33‘) + MQZ‘Q (6d)
p Tp Tp
+Lax + JAWA (6e)
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British

Normal Form of 1D stochastic climate mode

For ease of notation we rewrite (6) in Ito form as

dx

il F + ax + bz? — cz® (7a)

+Zz—i (L1p = ) Wy + caWoa (7b)
Yy

0_2
whereF = F1 + Y, (—L{prp - #Llle)
p

I IpFe _ op 12\ L1 p IpLet i 1% Herel
a = 11+Zp Y _2,712) 1p + Ly, —ZPT,an C—Zp v ereL 5

IS a linear damping coefficient ard, the variance of the white noise and both terms arise from

additive dyad or triad interactions. The white noi$&s andW, are mutually independent.

Antarctic Survey
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Normal Form of 1D stochastic climate mode

British

We call the terms

> ’p (L1p -~ I{‘ga:) Wy (8)

p’Yp

Correlated Additive and Multiplicative (CAM) noise. They point is that when these terms are
non-zero they simultaneously produce a cubic damping terfm)i

M2

c=3 2 >0<—>CAM:§:@(L1P—I{‘]§x>W'p¢0 (9)
v v
p p p P

Thus, CAM noise requires the presence of the cubic term siotteare associated with the same
dyad interactions and thus arise from the same physicaépsod his property has important

implications for the form of the PDF and especially for thealeof its tails.

Antarctic Survey
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Quasi-geostrophic model

Global spectral model (Marshall and Molteni,
JAS, 1993)

T21 resolution £ 5.6° x 5.6°)
3 Levels

Forcing determined from ECMWF reanalysis
data
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Probability Density Function
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Solid line PC1 and dashed line PC2.
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Drift and Diffusion

drift A(X)

drift A(x)

drift A(x)

. . . . . . . 0 . . . . . . .
-11 -10 -9 -8 -7 -6 -5 -1 -10 -9 -8 -7 -6 -5

" Drift and diffusion estimated from time series (Crommelnda/anden-Eijnden 2006) for PC 1
0 Antarctic sytep), PC 2 (middle) and NAO (bottom). Thick solid curvessults using all data. Dashed
curves: results from data divided into 5 non-overlappirmckE.  chani@bas ac uk — o 13



Thenormal form in general case of N-climate variables

It is straightforward to generalize the normal formXedimensions by using the above
discussion together with that in including triad interan8. The result is given by

dx; :
CZ = (Bare truncatioh; + A;Z (10a)
+F; + Bi(2,8) + > _oiy Wi (10b)
p
IM 2 MM
B Z ip _|_ Z T 2 (10c)
JF#,D
> 2 (Lz'p — 1} wz-) o W, (100)
p Ip

British
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Constraints on the N-dimensional normal forms

2
ER— — — - 1o — T~ €T
= z(z -3t

( JF#,p

7 JF£1

(11a)

(11b)

(12)

- MM ~ M2 o
with E = |Z]?, A;; = 2o % andl; = > fyp . EQ. (11) can be written in matrix
p p
notation as
1dE - L

whereE denotes the identity matrix. Eq. (12) is a quadratic formhwit = (x2,

Stability of the original system now requires t@% < 0. This is fulfilled if the quadratic form

Q is negative-definite on the positive coneRr .

British
Antarctic Survey
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Conclusions

By using systematic principles new normal forms for redusted¢hastic climate models
for low-frequency teleconnection patterns have been deeel here. Even for a scalar
variable these normal forms predict a cubic nonlinear dnfif a multiplicative correction
to constant diffusion through CAM noise.

The normal forms were applied in a parameter estimationegfyao fit the
low-frequency patterns such as the NAO of a prototype ckmnabdel and the
confirmation of the predicted nonlinear cubic drift was evitlin these results.

The normal forms also provide parameter constraints whidlhbesuseful for systematic
parameter estimation procedures.

Majda, Franzke and Crommelin, 2009: Normal forms for redustechastic climate models.

Proc. Natl. Acad. Sci. USA, 106, 3649-3653.
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Systematic Identification of
Metastable Atmospheric Regimes

Christian Franzke

British Antarctic Survey
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Franzke, Horenko, Majda and Klein, 2009: Systematic MatdstAtmospheric
0 R Survey Regime Identification in an AGCM. J. Atmos. Sci., in press.
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Why are Atmospheric Regimes important?

A pronounced characteristic of the atmospheric circubaisats
irregularity with the daily change of the weather. Desphis t
chaotic behavior it is well known by synopticians that certa
flow structures tend to occur over and over again. Synoptic
meteorologists were the first to recognize the existence of
persistent or recurrent weather patterns (Baur 1951), with
blockings as one of the most pronounced examples (Rex 1950;
Dole and Gordon 1983). An understanding of these weather

patterns will be essential in sucessful extended rangehseat
predictions.
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Hidden State Estimation

Phase Space Hidden State Clusters

Hidden State Sequence

OO~~~ O—~0—.

We simultaneouslyestimate the locations of the clusters and the
most likely hidden state sequence. In previous studiesien
Markov Models have been used (Majda et al. 2006 PNAS,
Franzke et al. 2008 J. Climate). The new approach allows the
relaxation of the Markov assumption, conditional inde pemak

relation, Gaussianity and low-dimensionality of the olsdr
data.

British
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Multivariate Hidden State Estimation

We are using a new approach to clustering of time series
based on the minimization of the averaged clustering

functional (Horenko 2009; SIAM J. Sci. Comp.)

vi(t)g(xy, 0;) — min
Z ' ’ T'(t),0

subject to the constraints a@iit):

K
Z%‘(t) =1, Vtel0,T]
i1

vi(t) >0, Vtel[0,T],i=1,...

British
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Multivariate Hidden State Estimation

We use a geometrical clustering approach (PCA algorithm)
which is based on the iterative minimization of the distainom
the data points to a set of K cluster centers which are
recalculated in each iteration step:

g(xe,0;) = |z, — Ty Tizy|? (4)

whereT; Is ann x m dimensional orthogonal projection matrix.
The regularized minimization problem is solved bfyrate
elementframework and the resulting hidden state sequence can

be interpreted in Markovian sense (Horenko 2009; SIAM J. Sci
Comp.).

British
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Atmospheric GCM

Global spectral model NCAR CCMO
R15 resolution

9 Vertical Layers

Perpetual January Boundary Conditions

Even though the physical parameterizations of
this model can no longer be regarded as
state-of-the-art, its extra-tropical low-frequency
variabllity Is quite realistic.
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Eigenvalue Spectra

:::::

IIIIII
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2 7 : 8 10 12
Eigenvalue spectrum artd% significance intervals of Markov
Transition matrix fitted to hidden state sequence.
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Hidden State Sequence

) L “
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Time in Days

Hidden state state sequence for representative 500 dagrsszju
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Transition Matrix

[0 0.11 0.52 0.13 0 0 0.23 )
004 0 023 0.12 0.16 0.33 0.12
0.23 0.19 0 0.22 0 0.17 0.18
A= 013 019 009 0 0.26 0.07 0.24
0 0.20 0 0.24 0 0.33 0.21
0 0.18 0.18 0.13 0.35 0 0.13
\ 0.06 0.11 0.24 0.23 0.13 021 0 )

All matrix elements in bold are significant and describe @nefd
transitions.

British
Antarctic Survey
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

chani@bas.ac.uk -=p. 9



Conditional Mean States

Hidden State 1 Hidden State 2 Hidden State 3 Hidden State 4

Conditional mean states of 500 hPa geopotential height ositgs.

British
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Conditional Transient Eddy Forcing

Hidden State 1 Hidden State 2 Hidden State 3 Hidden State 4

Conditional transient eddy forcing composites.
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a) Projection
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Predictability of Regime States
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Conclusions

In this study we applied the recently developed Finite Elein@ustering method
(Horenko 2009) in order to objectively identify metastatdgimes in a high-dimensional
data set produced by a comprehensive atmospheric GCM.

The FEC method is able to identify in a 100 dimensional phpaeeof 500 hPa
geopotential height seven dynamically significant metdsteegimes. Some of the
regimes correspond to the positive and negative phase dfditeern Annular Mode,
respectively.

Our predictability study shows that a simple Markov modeltfe evolution of the
hidden states has predictive skill for about 6 days in swefa#dg predicting the hidden
state. This is about the same skill as the ECMWF Ensemblad@@dSystem in T255
resolution has in predicting the onset and decay of blocgituations (Pelly and Hoskins
2003) but with a much lower computational cost.

Franzke, Horenko, Majda and Klein, 2009: Systematic MatdstAtmospheric Regime

Identification in an AGCM. J. Atmos. Sci., in press.
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