
 
Hybrid Stochastic – Statistical 
Strategies in Climate Science 

 

 
Andrew J. Majda 

Morse Professor of Arts and Sciences 
Department of Mathematics and 

Climate, Atmosphere, Ocean Science (CAOS) 
Courant Institute of Mathematical Sciences 

New York University 
 
 

 



Distinct Metastable Atmospheric
Regimes Despite Nearly Gaussian

Statistics: A Paradigm Model
Christian Franzke

Andrew J. Majda, Alexander Fischer and Daan Crommelin

Courant Institute of Mathematical Sciences

New York University

franzke@cims.nyu.edu – p.1



Outline

• What are Metastable Atmospheric Regimes?

• Paradigm model: Barotropic flow over topography

• Objective regime identification through Hidden Markov

Models (HMM)
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Why are Atmospheric Regimes important?

Source: www.ldeo.columbia.edu/NAO

• The structure of the low-frequency regime transitions among persistent teleconnection

patterns (e.g. NAO and PNA) is of central importance for bothlong-range weather

prediction and climate change projection
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What are Metastable Atmospheric Regimes?

• Possible Definitions of Metastable Atmospheric Regimes

• Atmospheric regimes are slowly evolving or

quasi-steady flow fields

• Atmospheric regimes are recurring flow patterns (This

does not necessarily mean a slow down of planetary

waves)

• Atmospheric regimes are regions in phase space where

the trajectories slow down

• Atmospheric regimes are regions in phase space with

different dynamics
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What are Metastable Atmospheric Regimes?

• Previous Approaches
• Fixed points of highly truncated models (Charney and DeVore1979, JAS)
• Multiple Attractors (Itoh and Kimoto 1997, JAS)
• Recurrent Patterns: Identified by Cluster analysis (Cheng and Wallace 1993, JAS;

Mo and Ghil 1988, JAS)
• Multiple Extrema in PDF’s (Corti et al. 1999, Nature)
• Gaussian Mixtures (Smyth et al. 1999, JAS)

• Problem
• Long integrations of GCM’s show nearly Gaussian statistics

• Are there distinct atmospheric regimes despite nearly Gaussian statistics?
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Metastable Atmospheric Regimes: A Paradigm Model

• Paradigm model:

• Barotropic flow over topography

• Low-frequency waves: Blocked and Zonal states

• Nearly Gaussian behavior

• Truncated low-order model is Charney-DeVore model

(1979; JAS)
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Metastable Atmospheric Regimes: A Paradigm Model

The barotropic quasi-geostrophic equations with a large scale

zonal mean flowU on a2π × 2π periodic domain are given by

∂q

∂t
+ ∇⊥ψ · ∇q + U ∂q

∂x
+ β ∂ψ

∂x
= 0

q = ∆ψ + h

dU
dt

= 1
4π2

∫

h∂ψ
∂x
dxdy

The model is truncated at|k|2 ≤ 17 (57 degrees of freedom).
Majda, A. J., I. Timofeyev and E. Vanden-Eijnden, 2003: Systematic Strategies for Stochastic

Mode Reduction in Climate, J. Atmos. Sci.

Majda, A. J., C. L. Franzke, A. Fischer, and D. T. Crommelin, 2006: Distinct Metastable Atmo-

spheric Regimes Despite Nearly Gaussian Statistics: A Paradigm Model, PNAS.
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Hidden Markov Model (HMM)

The conditional independence relations betweenX andY are defined by the factorization

P (X1, . . . , XT , Y1, . . . , YT ) =

P (X1)P (Y1|X1)
T

Y

t=2

P (Xt|Xt−1)P (Yt|Xt)

A HMM is defined by the following components:

• N hidden StatesS = s1, s2, . . . , sN

• the observation spaceV ⊂ R
d

• a (N ×N) stochastic transition matrixA = (aij)

• a stochastic vectorπ = (π1, . . . , πN )

• probability distributionsBn, n = 1, . . . , N onV

Parameter estimation by EM and Viterbi algorithms

References: Rabiner (1989), Ghahramani (2001), Fischer etal. (2006)
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HMM Analysis for Metastable Regimes

A0.2 =





0.985 0.015

0.016 0.984



 ,

B1 = N (−0.035, 0.304), B2 = N (−0.789, 0.119)

eigenvalues ofA0.2:λ1(A
0.2) = 1, λ2(A

0.2) = 0.969

Invariant distribution ofA0.2:(0.529, 0.471) (2)

Autocorrelation time scale ofU : 5 time units

Residence time: H1 20 time units; H2 15 time units
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HMM Analysis for Metastable Regimes
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Climatological marginal PDF ofU (solid line) and weighted conditional PDF’s of hidden state1

(Blocked flow, dashed line) and hidden state 2 (Zonal flow, dashed-dotted line).
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HMM Analysis for Metastable Regimes

a) Hidden State 1: Blocked Flow b) Hidden State 2: Zonal Flow
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Velocity field conditioned on the Viterbi path of a HMM analysis in the subspaceU for a) hidden

state 1 (Blocked flow), and b) hidden state 2 (Zonal flow).
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HMM Analysis for Metastable Regimes
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U (upper panel) and Viterbi path (lower panel). ForU path black crosses and red circles denote

states which correspond to hidden state 1 (Blocked flow) and 2(Zonal flow), respectively.
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Why only 2 hidden states?

Analysis with 4 hidden states

eigenvalues ofA0.2:λ1(A
0.2) = 1, λ2(A

0.2) = 0.972,

λ3(A
0.2) = 0.930, λ4(A

0.2) = 0.731

Invariant distribution ofA0.2:(0.137, 0.125, 0.345, 0.393)
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Empirical reduced equation for U

dU = B(U)dt+
√

A(U)dW

• B(U) is the drift coefficient

• A(U)
2

> 0 is the diffusion coefficient

• A andB are estimated from observedU

• W is Brownian motion.

Crommelin, D. T., and E. Vanden-Eijnden (J. Comp. Phys.; Comm. Math. Sci. 2006)
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Drift and Diffusion

a) Drift b) Diffusion
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result of the reconstruction, carried out 10 times on 10 different (non-overlapping) segments of the

time series.
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Metastable Regimes

A0.2 =





0.990 0.010

0.016 0.984



 ,

B1 = N (−0.748, 0.086), B2 = N (0.209, 0.200)

eigenvalues ofA0.2:λ2(A
0.2) = 0.9744
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Summary and Conclusions

• HMM are utilized for objective atmospheric regime

identification

• Two regimes are identified, which correspond to blocked

and zonal flow

• Low-order stochastic models capture regime behavior

• This offers potential for using reduced stochastic models

for long-range predictability
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Normal Forms for Reduced
Stochastic Climate Models

Christian Franzke

British Antarctic Survey

Andrew J. Majda (Courant Institute) and Daan Crommelin (CWI)

Majda, Franzke and Crommelin, 2009: Normal forms for reduced stochastic climate

models. Proc. Natl. Acad. Sci. USA, 106, 3649-3653.
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Normal Form for Reduced Stochastic Climate Models
• The systematic development of reduced low-dimensional stochastic climate models from

observations or comprehensive high-dimensional climate models is an important topic for

low-frequency variability, climate sensitivity, and improved extended range forecasting.

• The use of a few Empirical Orthogonal Functions (EOF) depending on observational data

to span the low-frequency subspace requires the assessmentof dyad interactions besides

the more familiar triads in the interaction between the low-and high-frequency subspaces

of the dynamics.

• For a single low-frequency variable the dyad interactions and climatological linear

operator alone produce a normal form with Correlated Additive and Multiplicative

(CAM) stochastic noise from advection of the large-scales by the small scales and

simultaneously strong cubic damping. This normal form should prove useful for

developing systematic regression fitting strategies for stochastic models of climate data.
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CAM Noise
The systematic stochastic mode reduction strategy (Majda et al. 1999, 2001, 2005, 2008) predicts

the functional form of the deterministic and stochastic terms. In particular, it predicts two types of

noises. One is a simple additive noise, which stems from the nonlinear driving of the resolved

scales by the unresolved scales, and the other is CAM noise. CAM noise has the following

structural form
“

~g + ~f(x)
”

d ~W (1)

where~g denotes a constant vector,~f(x) a function and~W a multivariate Wiener process. As (1)

indicates, CAM noise acts both in a additive and multiplicative sense. The multiplicative noise

stems from the nonlinear advection of the resolved scales bythe unresolved scales while the

additive noise part stems from the linear operator. This linear operator is derived by linearizing

the equations of motion around the climatological basic state.
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Structural implications of energy conservation for the

normal form
The dynamical core of comprehensive large-scale models forthe climate has the form

du

dt
= F + Lu + B(u, u), u · B(u, u) = 0 (2)

whereF is a constant forcing,L a linear andB a quadratically nonlinear operator andu ∈ R
M

denotes the state vector with M≫ 1.
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Structural implications of energy conservation for the

normal form
The state vectoru can be expanded into an orthonormal basis in the energy metric,

u =
PM

i=1
ui(t)ei. Then the conservation of energy constraint in (2) imposes the symmetries

ei · B(ei, ei) = 0 (3a)

el · B(ej , ek) + ej · B(ek, el) + ek · B(el, ej) = 0 (3b)

for all indicesl, j, k with 1 ≤ l, j, k ≤ M . In a general basis, e.g. of EOF’s arising from

low-frequency data analysis,B(ei, ei) 6= 0, and there are nontrivial dyad interactions which

satisfy (3) fork = l, j = i

el · (B(el, ei) + B(ei, el)) + ei · B(el, el) = 0 (4)

for 1 ≤ l ≤ M, i 6= l, 1 ≤ i ≤ M .
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Normal Form of 1D stochastic climate model
Repeating the explicit mode elimination procedure forε ≪ 1 (Majda et al. 1999, 2001, 2005,

2008) and coarse graining time ast → t
ε

, which amounts to settingε = 1 yields thenormal form

for scalar stochastic climate models in Stratonovich form

dx

dt
= {L11x + F1} (6a)

+
X

p

(

−
IM
1p

2

γp

x3 +
σp

γp

“

L1p − IM
1p x

”

◦ Ẇp

)

(6b)

+
X

p

(

L1p

γp

Fp +

 

IM
1p Fp

γp

!

x

)

(6c)

+
X

p

(

„

L1pLp1

γp

x

«

+
IM
1p Lp1

γp

x2

)

(6d)

+LAx + σAẆA (6e)
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Normal Form of 1D stochastic climate model
For ease of notation we rewrite (6) in Ito form as

dx

dt
= F + ax + bx2 − cx3 (7a)

+
X

p

σp

γp

“

L1p − IM
1p x

”

Ẇp + σAẆA (7b)

whereF = F1 +
P

p

„

L1pFp

γp
−

σ2

p

2γ2
p

L1pIM
1p

«

,

a = L11 +
P

p

„

IM
1pFp

γp
−

σ2

p

2γ2
p

IM
1p

2

«

+ LA, b =
P

p

IM
1pLp1

γp
, andc =

P

p

IM
1p

2

γp
. HereLA

is a linear damping coefficient andσA the variance of the white noise and both terms arise from

additive dyad or triad interactions. The white noisesWA andWp are mutually independent.
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Normal Form of 1D stochastic climate model
We call the terms

X

p

σp

γp

“

L1p − IM
1p x

”

Ẇp (8)

Correlated Additive and Multiplicative (CAM) noise. Thekey point is that when these terms are

non-zero they simultaneously produce a cubic damping term in (7):

c =
X

p

IM
1p

2

γp

> 0 ↔ CAM =
X

p

σp

γp

“

L1p − IM
1p x

”

Ẇp 6= 0 (9)

Thus, CAM noise requires the presence of the cubic term sinceboth are associated with the same

dyad interactions and thus arise from the same physical process. This property has important

implications for the form of the PDF and especially for the decay of its tails.
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Quasi-geostrophic model

• Global spectral model (Marshall and Molteni,
JAS, 1993)

• T21 resolution (∼ 5.6◦ × 5.6◦)
• 3 Levels
• Forcing determined from ECMWF reanalysis

data
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Probability Density Function
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Drift and Diffusion
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The normal form in general case of N-climate variables

It is straightforward to generalize the normal form toN -dimensions by using the above

discussion together with that in including triad interactions. The result is given by

dxi

dt
= (Bare truncation)i + Ai~x (10a)

+Fi + B̃i(~x, ~x) +
X

p

σA
ipẆ A

ip (10b)

−
X

p

IM
ip

2

γp

x3

i +
X

j 6=i,p

IM
ip IM

pj

γp

xix
2

j (10c)

X

p

σp

γp

“

Lip − IM
ip xi

”

◦ Ẇp (10d)
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Constraints on the N-dimensional normal forms

1

2

dE

dt
=

X

i

0

@

X

j 6=i,p

IM
ip IM

pj

γp

x2

j −
X

p

IM
ip

2

γp

x2

i

1

A x2

i (11a)

=
X

i

0

@

X

j 6=i

Ãijx2

j − Ĩix
2

i

1

A x2

i (11b)

with E = |~x|2, Ãij =
P

p

IM
ip IM

pj

γp
andĨi =

P

p

IM
ip

2

γp
. Eq. (11) can be written in matrix

notation as
1

2

dE

dt
= (~x2)T

“

Ã − ĨE

”

~x2 = (~x2)T Q~x2 (12)

whereE denotes the identity matrix. Eq. (12) is a quadratic form with ~x2 = (x2

1
, . . . , x2

N
).

Stability of the original system now requires that1

2

dE
dt

< 0. This is fulfilled if the quadratic form

Q is negative-definite on the positive cone inR
N .
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Conclusions
• By using systematic principles new normal forms for reducedstochastic climate models

for low-frequency teleconnection patterns have been developed here. Even for a scalar

variable these normal forms predict a cubic nonlinear driftand a multiplicative correction

to constant diffusion through CAM noise.

• The normal forms were applied in a parameter estimation strategy to fit the

low-frequency patterns such as the NAO of a prototype climate model and the

confirmation of the predicted nonlinear cubic drift was evident in these results.

• The normal forms also provide parameter constraints which will be useful for systematic

parameter estimation procedures.

Majda, Franzke and Crommelin, 2009: Normal forms for reduced stochastic climate models.

Proc. Natl. Acad. Sci. USA, 106, 3649-3653.
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Systematic Identification of
Metastable Atmospheric Regimes

Christian Franzke

British Antarctic Survey

Illia Horenko (FU Berlin), Andrew J. Majda (Courant Institute)

and Rupert Klein (FU Berlin)

Franzke, Horenko, Majda and Klein, 2009: Systematic Metastable Atmospheric

Regime Identification in an AGCM. J. Atmos. Sci., in press.
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Why are Atmospheric Regimes important?

A pronounced characteristic of the atmospheric circulation is its
irregularity with the daily change of the weather. Despite this
chaotic behavior it is well known by synopticians that certain
flow structures tend to occur over and over again. Synoptic
meteorologists were the first to recognize the existence of
persistent or recurrent weather patterns (Baur 1951), with
blockings as one of the most pronounced examples (Rex 1950;
Dole and Gordon 1983). An understanding of these weather
patterns will be essential in sucessful extended range weather
predictions.
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Hidden State Estimation

3

Phase Space Hidden State Clusters

Hidden State Sequence

32 2 1 1 1 ...

1

2

Wesimultaneouslyestimate the locations of the clusters and the
most likely hidden state sequence. In previous studiesHidden
Markov Models have been used (Majda et al. 2006 PNAS,
Franzke et al. 2008 J. Climate). The new approach allows the
relaxation of the Markov assumption, conditional independence
relation, Gaussianity and low-dimensionality of the observed
data.
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Multivariate Hidden State Estimation

• We are using a new approach to clustering of time series

based on the minimization of the averaged clustering

functional (Horenko 2009; SIAM J. Sci. Comp.)

K
∑

i=1

γi(t)g(xt, θi) → min
Γ(t),Θ

(1)

subject to the constraints onΓ(t):

K
∑

i=1

γi(t) = 1, ∀t ∈ [0, T ] (2)

γi(t) ≥ 0, ∀t ∈ [0, T ], i = 1, . . . , K. (3)
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Multivariate Hidden State Estimation

We use a geometrical clustering approach (PCA algorithm)

which is based on the iterative minimization of the distancefrom

the data points to a set of K cluster centers which are

recalculated in each iteration step:

g(xt, θi) = |xt − Ti
T
Tixt|

2 (4)

whereTi is ann × m dimensional orthogonal projection matrix.
The regularized minimization problem is solved by afinite
elementframework and the resulting hidden state sequence can
be interpreted in Markovian sense (Horenko 2009; SIAM J. Sci.
Comp.).
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Atmospheric GCM

• Global spectral model NCAR CCM0
• R15 resolution
• 9 Vertical Layers
• Perpetual January Boundary Conditions
• Even though the physical parameterizations of

this model can no longer be regarded as
state-of-the-art, its extra-tropical low-frequency
variability is quite realistic.

chan1@bas.ac.uk – p. 6



Eigenvalue Spectra
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Hidden State Sequence

100 200 300 400 500

H1

H2

H3

H4

H5

H6

H7

Time in Days

H
id

de
n 

S
ta

te

Hidden state state sequence for representative 500 day sequence.

chan1@bas.ac.uk – p. 8



Transition Matrix

A =

































0 0.11 0.52 0.13 0 0 0.23

0.04 0 0.23 0.12 0.16 0.33 0.12

0.23 0.19 0 0.22 0 0.17 0.18

0.13 0.19 0.09 0 0.26 0.07 0.24

0 0.20 0 0.24 0 0.33 0.21

0 0.18 0.18 0.13 0.35 0 0.13

0.06 0.11 0.24 0.23 0.13 0.21 0

































All matrix elements in bold are significant and describe preferred
transitions.
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Conditional Mean States
Hidden State 1 Hidden State 2 Hidden State 3 Hidden State 4

Hidden State 5 Hidden State 6 Hidden State 7

Conditional mean states of 500 hPa geopotential height composites.
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Conditional Transient Eddy Forcing

Hidden State 1 Hidden State 2 Hidden State 3 Hidden State 4

Hidden State 5 Hidden State 6 Hidden State 7

Conditional transient eddy forcing composites.
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a) Projection
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b) Correlation
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Predictability of Regime States
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Conclusions
• In this study we applied the recently developed Finite Element Clustering method

(Horenko 2009) in order to objectively identify metastableregimes in a high-dimensional

data set produced by a comprehensive atmospheric GCM.

• The FEC method is able to identify in a 100 dimensional phase space of 500 hPa

geopotential height seven dynamically significant metastable regimes. Some of the

regimes correspond to the positive and negative phase of theNorthern Annular Mode,

respectively.

• Our predictability study shows that a simple Markov model for the evolution of the

hidden states has predictive skill for about 6 days in successfully predicting the hidden

state. This is about the same skill as the ECMWF Ensemble Prediction System in T255

resolution has in predicting the onset and decay of blockingsituations (Pelly and Hoskins

2003) but with a much lower computational cost.

Franzke, Horenko, Majda and Klein, 2009: Systematic Metastable Atmospheric Regime

Identification in an AGCM. J. Atmos. Sci., in press.
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