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Consider motion in a random flow in R
n. Study long time

behavior.
dxt = vω(xt, t)dt or

dxt = vω(xt, t)dt + σ(xt)dWt.

For now, not specific about the right hand side.
1. One point motion. Typical result:

xt√
t
→ N(0, D) as t → ∞.

Indeed,

xNT = (xT − x0) + (x2T − xT ) + (...) + ...

(almost independent terms).
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Examples: dxt = v(xt)dt + dWt, v-periodic (Kozlov).

dxt = vω(xt)dt + dWt,

vω - stationary, ergodic, incompressible. (Kozlov,
Papanicolaou-Varadhan, Zhikov,...)

result: diffusive behavior for almost all ω. (Often formulated
in terms of PDE’s with rapidly occilating coefficients.)

dxt = vω(t, xt)dt,

vω - incompressible, Markovian in time, Gaussian.
(Koralov, Fannjiang-Komorowski).
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2. Follow the evolution of sets (measures) carried by the
flow.

Example: Linear growth of the diameter of a connected
(non-trivial) set.
(Lisei, Scheutzow, Cranston, Steinsaltz)

Results: For various flows, upper and lower bounds on the
linear growth of the diameter.
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Our results (Dolgopyat, Kaloshin, Koralov ):
Motion:

dxt =

d∑
k=1

Xk(xt) ◦ dWk(t) + X0(xt) dt,

where, xt ∈ T
n, can be viewed as motion on R

n,
Xk− measure preserving (for simplicity) vector fields;
non-degeneracy assumptions.
1. CLT for multi-point motion:

(x1
t , · · · , xm

t )√
t

−→ Gaussian
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2. CLT for measures (for almost all realizations of the
randomness). .

µ is a measure on Ω
(e.g. Legesgue meassure)

∫
µ(x)µ(y)

|x − y|p < ∞, p > 0

(i.e. Hausdorff dimension (Ω) > 0).
µt is a scaled image of µ.
µt(A) = µ(x0 : xt ∈

√
tA).

Theorem. µt → N(0, D) for almost every realization of
randomness.
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3. Limit shape theorem (in R
2)

x ∈ Wt if x ∈ Ωs for some s ≤ t. .

Theorem. ∃ B− convex non-random set, such that

tB(1 − ǫ) ⊆ Wt ⊆ tB(1 + ǫ)

almost surely for sufficiently large t. .
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Non-degeneracy assumptions:
(a) Strong Hormander condition (hypoellipticity)

Lie(X1, · · · , Xd)(x) = TxT
n

(b) The same for 2-point motion on T
n × T

n\∆.
(c) The same for the induced flow on the unit tangent
bundle.
Notice: (a) ⇒ Lyapunov exponents exist, are non-random

λ1 = lim
t→∞

1

t
log ||Dxt(x)||

(d) positive Lyapunov exponent λ1 > 0.
(d) follows from (a)-(c) for measure preserving flows
(Baxendale)
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Markovian flows:

ẋt = v(xt, t),

divv = 0; v−stationary, Markovian in time, Gaussian.

Example:

v(x, t) =
k∑

i=1

yi(t)vi(x), vi − periodic; yi − OU processes,

thus
dxt =

∑
i

vi(xt)y
i
t dt

dyi
t = αi dW i

t − βiyi
t dt

on T
2 × R

n.
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CLT + transition from finite to infinite number of modes
(Koralov)

λ1 > 0 (Carmona, Xu, Molchanov)
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