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Images for turbulent motion characterization

@ Inverse models for motion estimation

o direct physical-based observation model, prior regularity model on motion
@ inversion by bayesian approach

P. Héas & al. (INRIA) Evidence of power laws from images 2/23



Images for turbulent motion characterization

@ Inverse models for motion estimation

o direct physical-based observation model, prior regularity model on motion
@ inversion by bayesian approach

@ Turbulence statistical models

o velocity increment distribution moments follow power laws [Kolmogorov, 41]
o family of self-similar models

P. Héas & al. (INRIA) Evidence of power laws from images 2/23



Images for turbulent motion characterization

@ Inverse models for motion estimation

o direct physical-based observation model, prior regularity model on motion
@ inversion by bayesian approach

@ Turbulence statistical models

o velocity increment distribution moments follow power laws [Kolmogorov, 41]
o family of self-similar models

» Power law priors in motion estimation
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@ Motion estimation with power law priors

9 Evidence of power law priors

© Experimental evaluation
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Motion estimation with power law priors
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- Standard optic-flow methods

Motion v estimation by minimization of a global energy on the image :

flv, 1) = fa(v, 1) +a  f(v)
N——r N~
direct observation model  prior regularity
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- Standard optic-flow methods

Motion v estimation by minimization of a global energy on the image :

flv, 1) = fa(v, 1) +a  f(v)
N——r N~
direct observation model  prior regularity

@ Direct physical image observation model : scalar transport [Liu&al, 08]

mass conservation [Heas&al, 07]

1 2
£y(v, 1) = 5/ﬂ (9e1 + V1 -v) s

— —————
scalar transport observation model [Liu&al, 08]
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- Standard optic-flow methods

Motion v estimation by minimization of a global energy on the image :

f(v, 1) = fy(v, 1) +a fr(v)
—— N~
direct observation model prior regularity

@ Direct physical image observation model : scalar transport [Liu&al, 08]

mass conservation [Heas&al, 07]

1 2
falv, 1) = 54(w+vw0$
20 7

scalar transport observation model [Liu&al, 08]

@ Prior regularity : locally constant [Horn&Schunck, 81]
or coherence of vorticity-divergence [Corpetti&al, 02] :

_ 1 2 2
fr(v) = = [ NIVull"+[IVv||%ds
2.Jq

gradient penalization regularization [Horn&Schunck, 81]
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- Standard optic-flow methods

Motion v estimation by minimization of a global energy on the image :

f(v, 1) = fy(v, 1) +a fr(v)
—— N~
direct observation model prior regularity

@ Direct physical image observation model : scalar transport [Liu&al, 08]

mass conservation [Heas&al, 07]

1 2
falv, 1) = 54(w+vw0$
20 7

scalar transport observation model [Liu&al, 08]

@ Prior regularity : locally constant [Horn&Schunck, 81]
or coherence of vorticity-divergence [Corpetti&al, 02] :

1 2 2
fr(v) = = [ IVullT+[[Vv[ds
2 Ja
gradient penalization regularization [Horn&Schunck, 81]

but depends on weight o and disconnected from physics !
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- Turbulence power laws

Probability Distribution Function (PDF) of velocity increments :
@ velocity increments :

dv)(€,s,n) = (v(s + £n) — v(s)) - n
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- Turbulence power laws

Probability Distribution Function (PDF) of velocity increments :

@ velocity increments :
dv)(€,s,n) = (v(s + £n) — v(s)) - n

@ self-similarity of the PDF (homogeneous and isotropic) at scale £ : p(sv;(¢)
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- Turbulence power laws

Probability Distribution Function (PDF) of velocity increments :
@ velocity increments :

dv)(€,s,n) = (v(s + £n) — v(s)) - n

@ self-similarity of the PDF (homogeneous and isotropic) at scale £ : p(sv;(¢)
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@ Third order structure function (3-rd order moment) follows a power law :
Eo (0] = [ 60 pe(dvy )by (0

- 63Z<3

where (33 et (3 are the scaling law parameters
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- Turbulence power laws

In particular,
» K4llaw of Kolmogorov41 for 3D Navier-Stokes :

4
Ef[sv (2)3] = - geé, in the inertial zone
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- Turbulence power laws

In particular,
» K4llaw of Kolmogorov41 for 3D Navier-Stokes :

Ef[sv (2)3] = —geé, in the inertial zone
» Demonstration of Kraichnan67 for 2D Navier-Stokes (forcing term) :

= %ew 23, enstrophy inertial zone

{ E[5v) (0)°

]E[(SVH (E)3 = %EZ, energy inertial zone

P. Héas & al. (INRIA) Evidence of power laws from images 7/23



- Turbulence power laws

In particular,
» K4llaw of Kolmogorov41 for 3D Navier-Stokes :

3 4, -
E[sv) (6)°] = —geé, in the inertial zone
» Demonstration of Kraichnan67 for 2D Navier-Stokes (forcing term) :

= %ew 23, enstrophy inertial zone

{ E[5v) (0)°

]E[(SVH (E)3 = %EZ, energy inertial zone

» Model of Lindborg01 for atmospheric flows :
E[Svy (€)°] = —el + Lo
[ P

where € et €, are flux across scales in the energy and enstrophy cascades
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- Turbulence power laws

In particular,
» K4llaw of Kolmogorov41 for 3D Navier-Stokes :

3 4, -
E[sv) (6)°] = —geé, in the inertial zone
» Demonstration of Kraichnan67 for 2D Navier-Stokes (forcing term) :

= %ew 23, enstrophy inertial zone

{ E[5v) (0)°

]E[(SVH (E)3 = %EZ, energy inertial zone

» Model of Lindborg01 for atmospheric flows :
E[Svy (€)°] = —el + Lo
[ P

where € et €, are flux across scales in the energy and enstrophy cascades

Strict self-similarity :

2¢3

2 253
3 ~pBe3

BLS ~ Elsv(6)°] = Eldv) (0)*]

@ but intermittency = non-strict self-similarity
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- problem formulation

Self-similar constraint at scale ¢ :

@ 2-nd order moment : mean over the image support Q and over directions n

(horizontal, vertical and diagonal) :

E[EVH(Z)Z] ~ ﬁ /Q/n (6v” (2,s, n))2 dsdn

@ The turbulent velocity field v must respect the contraint :
1 ) c
ge(v,B,¢) = E(E[5V|| (01— pBe>)=0

depending on scaling law parameters (3, ¢).
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- problem formulation

Self-similar constraint at scale ¢ :

@ 2-nd order moment : mean over the image support Q and over directions n

(horizontal, vertical and diagonal) :

E[EVH(Z)Z] ~ ﬁ /Q/n (6v” (2,s, n))2 dsdn

@ The turbulent velocity field v must respect the contraint :

_! 2 ¢y
ge(v,8,¢) = 2(E[5V|| (O1—pL>)=0
depending on scaling law parameters (3, ¢).

Problem (P) : minimization of image observation model subject to contraints {g(v, 8, ¢)} :

miny fy(/,v)
s.t.

P &wv,8,0=0, veer -
veR"

where | is the power law scale range.
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- Dual problem and optimal solution

@ Lagrangian associated to problem (P) :
Lv, A, 8,¢) = fy(1,v) + > Xege(v, B,¢), A ={X}

el

Dual problem (D) : find the “saddle point” (v*, X\*) of the lagrangian

L(v*, A%, 3,¢) = m)z:xx{mvin L(v, X, 3,¢)}

@ Solved with Uzawa algorithm
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- but conditioning to prior ...

Objective : remove the prior dependance by

@ selecting the most likely prior power law (3, ¢) directly from the image!
@ Thus, characterize turbulence

o flow regularity
o flux across scales
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Evidence of power law priors
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- Bayesian modeling

3-level bayesian hierarchical model :

I — v — B¢

Image motion multi-scale model

@ 1-st inference level : a posteriori estimation of motion v knowing (3, ¢)

p(!lv, ¢, B)p(v|¢, B)

e
puvin ¢, 5) p(11C, B)

L likelihood X prior o .
a posteriori = ——————— likelihood X prior
evidence
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- Bayesian modeling

3-level bayesian hierarchical model :

I — v — B¢

) ” ~
image motion multi-scale model
@ 1-st inference level : a posteriori estimation of motion v knowing (3, ¢)
p(llv, ¢, B)p(vI¢, B)
p(v|l,¢,B) = ——————
p(11¢, B)
likelihood X prior
a posteriori = ——————— likelihood X prior
evidence
@ 2-nd inference level : most likely model (3, ¢) selection given /

o Evidence by marginalization of motion v : huge dimension !

o116 8) = [ plilv, ¢, B)pivlc, B)av

@ But evidence = normalization constant of the first inference level

p(11v, ¢, B)p(vIC, B)
I¢, B)= 22 > )
plle.®) p(vI1, ¢, B)
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- 1-st level of inference

@ Solving (P) equivalent to minimizing over v the Gibbs posterior energy

— log p(vl/, ¢, B) o< —logp(llv, ¢, B) — logp(v|¢, B)
D e ——
posterior energy= L(v,\*,3,¢)
o fa(l,v) + D AL(B Oee(v, B, 0),
N—— ¢

likelihood energy (observation model)

self similar prior energy

where the likelihood and the prior are quadratic Gibbs Random Fields :

1
(1, v) = 5\,TAOV —bJv+coes
—_—

gaussian energy

1
ST xege(v, 8,¢) = S5 (8, 4)(5vTAev — by v+ (6, Q)
14 14

gaussian energy
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- 2-nd level of inference

@ Likelihood, prior and posterior are Gibbs distributions :

= Bayesian evidence = ratio of partition functions
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- 2-nd level of inference

@ Likelihood, prior and posterior are Gibbs distributions :

= Bayesian evidence = ratio of partition functions
@ We show that a Gaussian approximation of the log evidence reads

1 det(Ag+ S, ApA
— log p(1[¢, B) o< (v , 1) +7|ogM
2 det(3", A5 Ag)

——
likelihood energy at the MAP
log Occam factor

NB : the Occam factor is a uncertainty ratio (variance ratio in 1D) between the

self-similar prior and the posterior
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- 2-nd level of inference

@ Likelihood, prior and posterior are Gibbs distributions :

= Bayesian evidence = ratio of partition functions

@ We show that a Gaussian approximation of the log evidence reads

1 det(Ag+ S, ApA
— log p(1[¢, B) o< (v , 1) +7|ogM
2 det(3", A5 Ag)

——
likelihood energy at the MAP
log Occam factor

NB : the Occam factor is a uncertainty ratio (variance ratio in 1D) between the

self-similar prior and the posterior

@ Sampling of (8,¢) to maximize the evidence p(/(¢, 8)
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Experimental evaluation
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- 2D turbulence

@ Forced 2D DNS (re = 3000), dissipative or enstrophy cascade at small scales : ¢ ~ 2
@ Synthesis of a particule image sequence [Carlier05]

@ Power law priors in the scale range of [1,10] pixels

Left : particle image obtained by DNS of 2D Navier-Stokes equations & true velocity field.

Right : estimated velocity field.
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- 2D turbulence
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Experimental evaluation - 2D turbulence

Barron angular error :  4.2656° 3.0485° 2.8836°

0.09602 0.09141

RMSE : 0.138501

Horn & Schunck (1981) Corpetti & al. (2002) Yuan & al. (2007) proposed method

(gradient penalization) (div-curl reg.) (zero div & curl reg.) (self-similar reg.)
TN proposed maad <
: o o

Hom & Sehunck (1981
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B 0 0 o00r oor X
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2-nd order structure function Energy spectrum
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Experimental evaluation - Atmospheric turbulence

@ MSG images and direct physical observation model [Heas&al. 07]
@ Atmospheric turbulence : energy cascades at small scales [1,10] km [Lindborg01] :

2
3

2
E[(SV(Z)Z] ~ BL3, avec 3 = Ce3 et ¢ = energy flux across scales (or dissipation rate)

@ Self-similarity constraints in the scale range [1, 4] pixels

Lower layer Intermediate layer

Pressure difference images
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- Atmospheric turbulence

Selection by evidence maximization of the flux ¢ in the energy cascade :

Lower layer Intermediate layer

-logP

—log P

25 3 35 4 45 5 55 1 15 2 25 3 35
Power Law Factor (in standard units) c10? Power Law Factor (in standard units)

Scaling law model evidence. Behavior of data term, minus the log evidence and of minus the log of occam factor w.r.t factor 3

@ Minimum of evidence = 3, yields energy flux across scales estimates :

emid ~ 0.79 x 109 m?s—3
elow ~ 1,20 x 107 5m?s 3.

@ Same order of magnitude as observed in situ by [Dewan97, Lindborg01]
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- Atmospheric turbulence

e

e=0.11e -5 €=0.79¢e — 5 e =2.15e — 5 [Heas&al. 07]

Intermediate wind fields for increasing energy flux (left) in comparison to [Heas&al. 07] (right)
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- Atmospheric turbulence

Lower layer Intermediate layer
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Summary :

@ Efficient physical-based inverse method for motion estimation
@ Power law model selection by bayesian evidence

@ Tool for characterization of physics of turbulence (regularity, flux exchanges,

dissipation) from images
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Summary :

@ Efficient physical-based inverse method for motion estimation
@ Power law model selection by bayesian evidence

@ Tool for characterization of physics of turbulence (regularity, flux exchanges,

dissipation) from images
Perspectives :
@ Bayesian evidence : what happens when observation model is wrong ?

@ Non stationary fields, multifractal models : localized statistics
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- Convex optimisation by Uzawa algorithm

Lagrangian minimisation w.r.t. v
@ Cancelling the functional (quadratic form) gradient

Vul(v,X) = Vufy(1,v) + > A Vige(v) = 0.
4
or resolution of a large linear system

(Ao + > AgAg)v =bg + > Agby,
[ [

» solution v* obtained by the Conjugate Gradient Squared (CGS) algorithm.
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@ Cancelling the functional (quadratic form) gradient

Vul(v,X) = Vufy(1,v) + > A Vige(v) = 0.
4
or resolution of a large linear system

(Ao + > AgAg)v =bg + > Agby,
[ [

» solution v* obtained by the Conjugate Gradient Squared (CGS) algorithm.

Maximisation of A
Concavity w.r.t. x of the dual function

w(\) = L(v*, \)

» solution x* obtained by a classical gradient algorithm.
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- Convex optimisation by Uzawa algorithm

Lagrangian minimisation w.r.t. v
@ Cancelling the functional (quadratic form) gradient

Vul(v,X) = Vufy(1,v) + > A Vige(v) = 0.
4
or resolution of a large linear system

(Ao + > AgAg)v =bg + > Agby,
[ [

» solution v* obtained by the Conjugate Gradient Squared (CGS) algorithm.

Maximisation of A
Concavity w.r.t. x of the dual function

w(\) = L(v*, \)

» solution x* obtained by a classical gradient algorithm.

= velocity v* and optimal weights x* of multi-scale regularization.
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- Atmospheric turbulence

Lower layer Intermediate layer
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Third order structure functions

Least square estimationof the flux e, in the enstrophy cascade :

E[v()}] = —et+ %ewl3
@ Least squares using the 3-rd structure functions yields :

emid ~ 2,58 4 0.78 x 10715573
elow ~ 416 4 0.23 x 10715573

@ Same order of magnitude as observed by [Charney71, Lindborg01, Tung03]
@ Direct energy cascade observed only on one layer ...
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- Atmospheric turbulence

Sufficiently converged statistics ?
Large scales

Lower layer : Small scales
m o
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@ Convergence of accumulated moments of second and third order Gy(z,¢), Gs(z, ¢) :
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