On the Limits of Navier-Stokes Theory

and Kinetic Extensions
for Gaseous Hydrodynamics
Nicolas G. Hadjiconstantinou

Mechanical Engineering Department
Massachusetts Institute of Technology

Acknowledgements: Husain Al-Mohssen, Lowell Baker, Thomas
Homolle

Financial support: Lawrence Livermore National Laboratory,
NSF /Sandia National Laboratory, Rockwell International



Introduction

Our interest in small scale hydrodynamics:

— Motivated by the recent significant interest in micro/nano
science and technology

— Lies in the scientific challenges associated with breakdown
of Navier-Stokes description

In simple fluids, Navier-Stokes description expected to break
down when the characteristic flow lengthscale approaches the
fluid “internal scale” A\

In a dilute gas, \ is typically identified with the molecular
mean free path > d (molecular diameter—measure of molec-
ular interaction range)

Agir =~ 0.05um (atmospheric pressure). Kinetic phenomena
appear in air at micrometer scale.



Breakdown of Navier-Stokes description (gases)

Breakdown of Navier-Stokes #= breakdown of continuum assump-
tion.

In the regime on interest, hydrodynamic fields (e.g. flow ve-
locity, stress) can still be defined (e.g. taking moments of the
underlying molecular description [Vincenti & Kruger, 1965])

Navier-Stokes description fails because collision-dominated tran-
port models, i.e. constitutive relations such as
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fail

Without ‘“closures’, conservation laws such as the momentum
conservation law

cannot be solved



Practical applications*

Examples include:

e Design and operation of small scale devices (sensors/actuators,
pumps with no moving parts [Muntz et al., 1997-2009; Sone
et al., 2002], ...)

e Processes involving nanoscale transport (Chemical vapor de-
position [e.g. Cale, 1991-2004], micromachined filters [Ak-
tas & Aluru, 2001&2002], flight characteristics of hard-drive
read/write head [Alexander et al., 1994], damping/thin films
[Park et al., 2004; Breuer, 1999],...)

e VVacuum science/technology: Recent applications to small-
scale fabrication (removal/control of particle contaminants
[Gallis et al., 2001&2002],...)

e Similar challenges associated with nanoscale heat transfer in
the solid state (phonon transport) [Majumdar (1993), Chen
“Nanoscale Energy Trnsport and Convesion” (2007)]

*These are mostly low-speed, internal, incompressible flows, in contrast to
the external, high-speed, compressible flows studied in the past in connection
with high-altitude aerodynamics
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Introduction to Dilute Gases+1

In dilute gases (number density (n) normalized by atomic volume
is small, i.e. nd3 < 1):

The mean intermolecular spacing § ~ 1/nl/3 is large com-
pared to the atomic size, i.e. §/d~ (1/nd3)1/3 > 1

Interaction negligible most of the time = particles travel in
straight lines except when “encounters’ occur

The hydrodynamically relevant inner scale is the average dis-
tance between encounters (mean free path) A = 1/(v/27nd?)

Because A\/d = 1/(v/2mnd3) > 1 or A > 6 > d, time between
encounters > encounter duration =treat particle interactions
as collisions

Motivates simple model such as hard sphere as reasonable
approximation (for discussion and more complex alternatives
see [Bird, 1994])

*Air at atmospheric pressure meets the dilute gas criteria
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Deviation from Navier-Stokes is quantified by Kn = \A/H
H is flow characteristic lengthscale

Flow regimes (conventional wisdom):

e Kn < 0.1, Navier-Stokes (Transport collision dominated)

e Kn < 0.1, Slip flow (Navier-Stokes valid in body of flow, slip
at the boundaries)

e 0.1 < Kn <10, Transition regime

e Kn 2> 10, Free molecular flow (Ballistic motion)



Kinetic description for dilute gases-

Boltzmann EquationT: Evolution equation for f(x,v,t):
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f(x,v,t)d3vd3x = number of particles (at time t) in phase-space
volume element d3vd3x located at (x, V)

Connection to hydrodynamics:

1
p(x,t) = /allvmfdv, u(x,t) = 5.0 Jally mv fdv, ...

The BGK approximation:
| [ i = Frovlod?Qd®vy &~ —(f = £0)/7

*References: Y. Sone, Kinetic theory and fluid dynamics, 2002; C. Cercignani,
The Boltzmann equation and its applications, 1988.

fSubsequently shown to correspond to a truncation of the BBGKY Hierarchy
for dense fluids to the single-particle distribution by using the (Molecular
Chaos) approximation P(v,vi) = f(v) f(v1) = f f1.



Direct Simulation Monte Carlo (DSMC) [Bird]

Smart molecular dynamics: no need to numerically inte-
grate essentially straight line trajectories.

System state defined by {x;,v;}, i=1,...N

Split motion:
— Collisionless advection for At (x; — x; + v;At):
g—l— 8f —I—F of =0
ov

— Perform collisions for the same period of time At:

Z= [ [ - F vl o Qddvy

Collisions performed in cells of linear size Axz. Collision
partners picked randomly within cell

Significantly faster than MD (for dilute gases)

In the limit At,Ax — 0, N — oo, DSMC solves the Boltz-
mann equation [Wagner, 1992]

DSMC (solves Boltzmann)# Lattice Boltzmann (solves NS)



Slip flow
e Maxwell’s slip boundary condition:

2 — oy, du 3 u 0T
Ugas|wall — Uw = A wait + >
ov dn

Temperature jump boundary condition:
2—o0op 2v A dT|
or v+ 1Prdn wall

Tga8|wall — Ty =

n = wall normal

s = wall tangent

oy = tangential momentum accommodation coefficient
o = energy accommodation coefficient

e For the purposes of this talk o, = op = fraction of diffusely
(as opposed to specularly) reflected molecules (see Cercig-
nani (1998) for more details)

e« [ hese relations are an oversimplification
and responsible for a number of misconceptions

e Slip-flow theory can be rigorously derived from asymptotic
analysis of the Boltzmann equation [Grad, 1969; Sone, 2002]



Main elements of first-order asymptotic analysis
(Discuss isothermal flow; see [Sone, 2002] for details and
non-isothermal case)

e The (Boltzmann solution for) tangential flow speed, u, is
given by

U=U+UKN

— 1« = Navier-Stokes component of flow
— urny = Knudsen layer correction, — 0 as n/A — co(C> )

e Slip-flow conditions provide effective boundary conditions for
u, the Navier-Stokes component of the flow




e Constitutive relation remains the same (by definition!).

e Slip-flow relation:
du

’a,ga,3|wall — Uw — a(JU7 ga’S)Ad_anall

Some results:

— For oy — 0O
2
a(oy — 0, gas) — —
Ov

a(oy =1, BGK) = 1.1467 [Cercignani, 1962]

a(oy =1,HS) = 1.11 [Ohwada et al., 1989]

Fairly insensitive to molecular model but numerically dif-

ferent from Maxwell model a(oy, = 1) = 2;3”|0,U:1 =1

(important for interpretation of experiments)




e Experiments: For engineering (dirty) surfaces in air suggest
that oy, is close to one [Bird, 1994]
Recent results: oy =~ 0.85 — 0.95 (see e.g. [Karniadakis &
Beskok, 2002])
HOWEVER recent experiments typically use Maxwell form

2_0'1)

a:
Ov

which is numerically different from Boltzmann theory in
the oy — 1 limit

— Note: the upper limit Of 0.95 is probably not an accident
but perhaps a manifestation of the fact that a(ocy = 1) =
1.1...7

*(2-0.95)/0.95=1.11!



Flow Physics beyond Navier-Stokes

Microchannels are the predominant building blocks in small scale
devices. For simple problems studied here assume oy = o = 1.

L
Tw(x)
P; Yy = 0 o
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T; Ty
Yy Tw(x)




Example: Pressure-driven flow in a channel
(Linear regime)

“Poiseuille” flowrate for arbitrary Knudsen number can be scaled
using the following expression [Knudsen (1909)] (experiments)
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Solid line: Numerical solution of the Boltzmann equation
[Ohwada, Sone & Aoki, 1989]

Stars: DSMC simulation



Convective heat transfer In
microchannels
“Graetz Problem”

L
7 Tw(x)
P; 0
,,,,,,,,,,,,,,, y=0____ 7
T; To
Y T ()

Tw(x) — TO) X Z E

We are interested in the non-dimensional heat transfer coefficient
between the gas and the wall (Nu)

TdA h2H 2H
" q 7 — Japua . . q

_Tb—Tw’ b~ pr’U,wdA, K _Ii(Tb—Tw)




Nusselt number as a function of Knudsen number
[Hadjiconstantinou & Simek, 2003]
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e Slip flow accurate for Kn < 0.1

e Slip flow qualitatively robust beyond Kn ~ 0.1



Second-order slip models

Models which extend the Navier-Stokes description to Kn 2 0.1
(second-order slip models) are very desirable because:

e Numerical solutions of the Navier-Stokes description are or-
ders of magnitude less costly than solutions of the Boltzmann

equation

e [ he effort invested in Navier-Stokes simulation tools and
solution theory for the last two centuries

e Improve accuracy of first-order slip-flow description around
Kn~0.1

A large number of empirical approaches have appeared (1969-
2004) based on fitting parameters. Do not work except for
the flow they have been fitted for



A second-order slip model for the
hard-sphere gas
[Hadjiconstantinou, 2003&:2005]

RIGOROUS asymptotic theory worked out for BGK gas [Cer-
cignani, 1964; Sone 1965-1971] but overlooked because...

BGK model not good approximation to reality—Did not match
experiments/typical simulations (hard-sphere, VHS,...)

Model discussed here “conjectures’ second-order BGK asymp-
totic theory can be used for hard spheres, appropriately mod-
ifies

— Should get us close to experiments—currently lacking!
— If successful, approach can be extended to other models

Assumptions:

— Steady flow—Not restrictive (see below)

— 1-D—Can be relaxed

- M<1 (Re~H <«1)

— Flat walls—Can be relaxed to include wall curvature



T he model
[Hadjiconstantinou, 2003 & 2005]

du >d? T
Ugas|wall—Uw = aAdn|wau—B>\ i 2|wall (Captures u component only!)

H/2 232
H/ EX dy (includes Knudsen layer correction)

2"
o a=1.11
o 3 =0.61

e £ = 0.3 (same as BGK value ...)
o Coefficients NON-ADJUSTABLE
e Gas viscosity NON-ADJUSTABLE

NOTE: Knudsen layer contribution to @ is O(Kn?)



Recall...

e Slip-flow boundary conditions provide effective bound-
ary conditions for u, the Navier-Stokes component of

the flow

Ugas|wanr (€Xtrapolated)

N

Ugas|wall

~ 1.5\ ~ 1.5\

e For Kn 2 0.1 Knudsen layer covers a substantial part of the
physical domain!

e EXistence of Knudsen layer means that the correct second-
order slip model is the one that does not agree with DSMC
within 1.5\ from the walls! Explains why fitting DSMC data

has not produced a reliable model.



Comments

e Results below: Steady flow=quasisteady at the molecular
collision time

e In Poiseuille flow, where curvature of u is constant, a correc-

tion of the form
H/2 921
il Sl
~H H/2 8y2

results in an “effective” second-order slip coefficient of 3 —¢.
In other words, while

H/2 H?2dP /1 5

7 10 = =5, g (5 + ek + 20K0%)
_ 1 H/2 282A _ H?4dP /1 5
“—H/H/zl y]dy oy ds 5 T oK+ 208 - OKn?)

e An experiment measuring flowrate in pressure-driven flows
in order to measure 3, in fact measures the effective second-
order slip coefficient 3 — & = 0.31

e Recent experiments [Maurer et al., 2003] measure
73" (in reality B — &) = 0.25 £ 0.1.



u/ U

Comparison with DSMC

simulations of oscillatory

Couette flow

Kn=20.1, S~ 4
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Comparison with DSMC simulations of oscillatory
Couette flow

Kn=0.2, S~?2 Kn=0.4, S~1
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Comparison for stress amplitude at the driven wall
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In some cases, second-order slip combined with a
collisionless theory comes close to bridging the gap



Comparison for an “Impulsive Start Problem” at Kn = 0.21
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Variance reduction in Monte Carlo
solutions of the Boltzmann equation

e Statistical convergence (E « N—1/2) associated with field
averaging process leads to prohibitive cost in many flows

e For example

Ey,=—= , Ma = uo/\/YRT
YT e VYMa~/ NM o/

[Hadjiconstantinou, Garcia, Bazant & He, 2003]
Typical MEMS flows at Ma < 0.01 require enormous number

of samples.
e.g. to achieve a 1% statistical uncertainty, in a 1m/s flow,

~ 5 x 108 samples are required.

e Variance reduction: [Baker & Hadjiconstantinou (2005, 2006,
2008a, 2008b)], [Homolle & Hadjiconstantinou (2007a, 2007b)]



Primary difficulty in solving the Boltzmann equation lies in effi-
ciently evaluating collision integral

[a]COll (x,6,8) = g//(f,fi_ffl) er|o d°Q d ey

7
p— %/// <5/1 —+ 5’2 — 51 — 52) f1f2|cr|0‘d29d3cld3C2

f=r(c), f1=f(c1), fa= f(c2), f'=f(), f1=r(c)

51=26(c—cy) 8y =3(c—c)) d2=0(c—cz), 8 =3 (c— ch)

Primes denote post-collision velocities



Consider the following simple Monte Carlo evaluation of the col-
lision integral

[;i_];]cou — g// (f,fi — ffl) |Cr|0d29 d3cl
N
= am ?%47” > (fz’fiz - fz’fl,i) crlio;
i=1

e cq1 is chosen with uniform probability in the (finite) volume V

e (2 is chosen with uniform probability on the unit sphere

e \Very slow



Consider an importance sampling approach:

le.g. [yde = [Lzdx = L Zfl gngg where z; is chosen with a
probability z(z;) where fzd:L' — 17"

4 2V A fifo 2 3. 3
dt :N—///5 05— 01— d’Qd3c,d
[dt]coll 4 1 + 2 1 2) N2 |c7"|0- C1 Co
Vil X
- A}TOONQ Mz; (5/1,i+5,2,i_51,i_52,i) cr|i0;

e c1; and cp; chosen from j—]vc— N = [ fid3c1 = [ fod3co
e Little computational effort is expended on rare collision events

e Analogous to DSMC where particles picked from population
(i.e proportionally to f)

e Main ‘secret” behind DSMC’s efficiency in computing the
collision integral



Variance reduction

e Observation: for low speed flows, the distribution function is
very close to equilibrium (Maxwell Boltzmann distribution)

e [ he collision integral is identically zero at equilibrium < f =
fMB \where fMB is an arbitrary Maxwell Boltzmann distri-

bution

e Write f = fMB 4 fd

= ?///(5/14-5’2—51—52) (fyB-l-ffl) X
(£275 4 £8) lerlo d*Q dPer dco

— ?///(5’1+5’2—51—52)(Qf{‘w#—fii)fgx

lcr|lo d?Q d3cq d3co

e



e Integral

?//](5’1%’2—51—52) (2715 + 1) 74
lcrlo d°2d3cq d3co

can be evaluated as

df w4 ,
— = lim 01, + 0. — 91 — 02
[dt]COll M—=00 Z;]_ < 1, + 27, 1, 27’L> X

sgn (2/M7 + £7) | sgn (£1), lerlion

— ¢1 and co are chosen with a probability ‘Qf{‘/*’B—I—fﬂ/J\/’l
and |f§‘//\/2 respectively
— Q2 is chosen with uniform probability on the unit sphere

— N1 = [|2fMB + ff|d3c1, N2 = [|f4]d3es,
sgn(z) £1ifz =20



Discussion of variance reduction approach

e Very efficient for f¢ <« fMB  In contrast to DSMC where
almost all (fMB/fd . 1) of collisions simulated are used to
calculate 0.0 (!), here all simulated collisions used to good
effect.

e Correct, even if f& ¢ fMB

e Mathematical basis

— Statistical uncertainty of Monte Carlo integration scales
with the integrand variance (second moment)

— As the flow speed (signal) decreases f¢ — 0 = integrand
second moment — 0 = Constant signal to noise ratio

— Compare to DSMC: As ¢ — 0, fMB dominates integrand
landscape = Constant statistical error = signal to noise
ratio o« Ma



Validation: Comparison of variance reduced finite volume
solutions to numerical solutions
Poiseuille Flow at arbitrary Knudsen numbers [Ohwada et al.
(1989)]

Solid line Kn = 0.8/+/m
Dashed line Kn =4/\/7

! ! ! ! ! ! ! !
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xc}L
u* = Normalized velocity = u/(dp/dxL)
Actual flow speeds O(1073)m/s. DSMC calculations infeasible



Statistical Uncertainty scaling

Statistical Uncertainty quantified by one standard deviation
Relative statistical uncertainty=Statistical uncertainty/ Signal
level
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Note: Computational cost scales with square
of the statistical uncertainty



LVDSMC

(Low-variance Deviational simulation Monte Carlo)

A simulation method akin DSMC which simulates the deviation
from equilibrium [Homolle& Hadjiconstantinou (2007a, 2007b)]

Statistical uncertainty comparison: DSMC vs LVDSMC
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Final Remarks

e Viscous constitutive relation robust up to Kn ~ 0.5 (pro-
vided kinetic effects are taken into account). No place for
adjustable viscosity

e Second-order slip requires even more care than first-order
slip: e.g.

— Second-order slip coefficient different for flow in tubes
(wall curvature)

— To second-order in Kn there exists slip (flow) normal to
the wall

— Knudsen layer contribution ~ O(Kn?) (to flow average)

e (Gas-surface interaction: More complex models?

e Deviational methods very promising
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