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Kovàsznay modes

• Small perturbations of a compressible fluid produces vorticity, acoustics and en-

tropic ( Kovàsznay 1952, Monin and Yaglom 1971).

- Nonlinear regime: interaction of the three basic modes.

• Definition of a compressible flow: one of the two modes acoustics and entropic are

excited, with a non-zero velocity.

• Flows with variable density are not necessarily “compressible” (e.g. mixing of two

incompressible flows, etc.)
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Linear Kovásznay modes

Continuity equation
∂ρ

∂t
+
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∂xi

= 0
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∂
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κ
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∂xi
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The Kovásznay modes

The Navier-Stokes equations may be rewritten as a system for the vorticity, the di-

vergence, the pressure and the entropy:

∂ωk

∂t
= ν

∂2ωk

∂xi∂xi

.

∂
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(
∂u′

i

∂xi
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= −
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o
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+ 4
3
ν

∂2

∂xj∂xj

(
∂u′

i

∂xi

)
.

∂p′

∂t
=

γ po

cp

χ
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+ (γ − 1) χ
∂2p′

∂xi∂xi

− γ po D,

ρo
∂s′

∂t
=

∂

∂xi
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κ
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∂xi

)
+

∂

∂xi

(
κ

po

γ − 1

γ

∂p′

∂xi

)
.
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Linear Kovásznay modes

Dimensionless form: k−1 (length), (co k)−1 (velocity) τ = co k t (time)

ω(x, τ) = ω̃(τ) e in·x, D(x, τ) = D̃(τ) e in·x, p′(x, τ) = p̃(τ) e in·x, s′(x, τ) = s̃(τ) e in·x

dD̃

dτ
= +p̃ − 4

3

ν k

co

D̃,

ds̃

dτ
= −

χ k

co
s̃ − (γ − 1)

χ k

co
p̃,

dω̃

dτ
= −

ν k

co

ω̃,

dp̃

dτ
= −

χ k

co

s̃ − (γ − 1)
χ k

co

p̃ − D̃.
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Kovásznay modes: Vorticity, Acoustics and Entropy

D(τ) = D
(1)
0 eλ1 τ + D

(2)
0 eλ2 τ −

ε

Pr
s0 eλ3 τ ,
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[
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4
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)]
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0
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4
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s(τ) = −
γ − 1

Pr
ε

[
D

(1)
0 eλ1 τ + D

(2)
0 eλ2 τ

]
+ s0 eλ3 τ ,

ω(τ) = ω(0) e−ε τ .

(1)

with λ1,2 = ± i −
ε

2

(
4
3

+
γ − 1

Pr

)
, λ3 = −

ε

Pr
and ε =

ν k
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=
M

Re
.

Pressure waves of the form: p(x, τ) = e i (k·x± i co k t)e−
1

2
(ν+(γ−1)χ) k2 t.
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Nonlinear interactions of Kovásznay modes

Variables are expanded as: ρ = ρo + ρ(1) + ρ(2) + . . .

∂ρ(n)

∂t
+ ρo ∇ · v(n) = F

(n)
1 ,

∂v(n)

∂t
+ ∇p(n) − µo ∇

2v(n) −
1

3
µo ∇

(
∇ · v(n)

)
= F

(n)
2 ,

po

R

∂v(n)

∂t
− κo ∇

2T (n) = F
(n)
3 ,

p(n)

po

−
ρ(n)
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−
T (n)
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= F
(n)
4 ,

E(n)

R
−

γ

γ − 1

T (n)

To

+
p(n)

po

= F
(n)
5 ,

v(1) = v
(1)
Ω + v(1)

p + v(1)
s .

6 interactions VE; VA; EA; VV; EE; AA.
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Nonlinear interactions of Kovásznay modes

Sound source Vorticity source Entropy source

“steepening”

and

“self-scattering”

Sound-Sound
∂2vpi vpj

∂xi∂xj
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+c2
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∂xi∂xj
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∂2
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∂Ss

∂xi
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Approximations for low-Mach number flows

• Kovàsznay modes → vorticity, acoustics and entropy;

• acoustics → CFL condition for the numerics ∆t =
∆x

u + cs
≪ 1;

• When cs is large ∆t → 0 ⇒ Approximations of Navier-Stokes equations.

• Compressibility effects: stratification and dynamic compressibility,

⇒ various approximations available: low-Mach number, anelastic approximation, etc.
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Approximations for low-Mach number flows

The Navier-Stokes equations are written under the form:

∂ρ

∂t
+

∂

∂xi

ρui = 0,

∂

∂t
ρui +

∂

∂xj

ρuiuj = −
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1
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ρδi2,

ρ
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1

RePr

∂2T
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Ma2(γ − 1)

Re
σijDij,

with the eos P = ρ T .

and the dimensionless numbers:

Re =
ρ∗vL

µ
, Ma2 =

v2

γR∗T∗

, Fr =
v2

g L
and Pr =

µCp

κ
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Approximations of the Navier-Stokes equations

Full Navier-Stokes equations

↓

γ Ma2 ≪ 1

Fr ≪ 1,
γ Ma2

Fr
∼ 1 Fr ∼ 1,

γ Ma2

Fr
≪ 1

ւ ց

Anelastic approximation Low Mach number Approximation

↓ ↓

high gravity low gravity

weak vertical extension weak temperature gradient

ց ւ

Boussinesq Approximation
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The Low-Mach number approximation (or quasi-isobaric) (I)

One uses the Mach number for an asymptotic expansion:

ρ = ρ(0) + γ Ma2ρ(1) + (γ Ma2)
2
ρ(2) + . . .

P = P (0) + γ Ma2P (1) + (γ Ma2)
2
P (2) + . . .

u = u(0) + γ Ma2u(1) + (γ Ma2)
2
u(2) + . . .

Order 1/γ Ma2:

one obtains
∂P (0)

∂xi

= 0, ⇒ P (0) = P (0)(t)

provided that
γ Ma2
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≪ 1 and

γ Ma2
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≪ 1

However
γ Ma2

Fr
=

g L

R T
= γ

g L

c2
s

: stratification of the column of height L.



The Low-Mach number approximation (II)

zeroth order:

∂ρ(0)
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ρ(0)u
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∂
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ρ(0)u
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i u
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∂xi

+
1
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1
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(0)
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,

∂
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ρ(0)T (0) +

∂

∂xi

ρ(0)u
(0)
i T (0) −

γ − 1

γ

dP (0)

dt
=

1

RePr

∂2T (0)

∂xj∂xj

,

P (0) = ρ(0)T (0).

The dissipation function σijDij has disappeared from the energy equation.
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The Low-Mach number approximation (III)

• Examples of calculation with LM approximation (Fröhlich and Peyret, 1990; Fröhlich

et al., 1992; Le Quéré et al., 1992; Sameen et al., 2008, etc.);

• Comparison with the full NS equations:

– small density differences (but larger than Boussinesq approximation!)

– numerical methods close to “incompressible” ones (same cost)

– time steps much larger (one order of magnitude at least)
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The anelastic approximation (I)

When the stratification of the fluid is large, one has:

γ Ma2
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=

g L

R T
= γ

g L
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s

∼ O(1)

Order 1/γ Ma2:
1
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ρ(0) δi2
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The anelastic approximation (II)

zeroth order:
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=
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Examples of anelastic applications

• Examples of anelastic applications: Astrophysics and Geophysics

Astrophysics : Gough, J. Atmos. Sc. 1968; Dintrans and Rieutord, Mon. Not. R.

Astron. Soc., 2000; Rogers and Glatzmaier ApJ, 2005; Bannon et al., Mon. Weather

Rev., 2006, etc.
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Boussinesq approximation

• The Boussinesq approximation are obtained from the low Mach numbers approxi-

mations for layers of small thickness: Spiegel and Veronis, 1960, Gray and Giorgini,

1976.
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Other approximation of the Navier-Stokes equations (I)

• The previous approximations are single-length, single-time-scale.

• In some cases, there are several length-scales and a single-time-scale.

Example: interaction of quasi-incompressible, small scale turbulent flow with with

acoustics waves of same time-scale (Klein et al., J. Eng. Math., 2001 and JCP,

1995).

The ratio of the length-scales are given by:

1

M
=

La Ta

Lf Tf

=
La

Lf

; one uses two scales x and M x.

One uses the Mach number for an asymptotic expansion:

P (x, t) = P (0)(x, M x, t) + MP (1)(x, M x, t) + M2 P (2)(x, M x, t) + o(M2)

u(x, t) = u(0)(x, M x, t) + M u(1)(x, M x, t) + o(M)
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Other approximation of the Navier-Stokes equations (II)

one gets:

p(0) = p(0)(t), p(1) = p(1)(M x, t), p(2) = p(2)(x, M x, t)

- The pressure p(0) is uniform (equivalent to the thermodynaamic pressure),

- p(1) depends on M x, and acts as a large scale driving force,

- p(2) allows us to satisfy the divergence constraint.

• Example: baroclinic vorticity generation by a long-wave acoustics:

the initial condition is stratified density profile and a right-running acoustic pulse in

the horizontal direction.
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Stratified flows
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=
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Thermodynamical assumptions

• Isentropic or homentropic:

- no diffusion process (Reynolds and Péclet numbers → ∞)

- large diffusion time scales

- p = p(ρ) ∼ ργ

• Isothermal or homothermal:

- very large heat conduction Péclet number → 0

- p = p(ρ) = R To ρ = c2
T ρ ∼ ρ

Polytrop p = p(ρ) ∼ ρΓ Γ = γ, isentropic, Γ = 1, isothermal. Γ polytropic index.
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Stability of stratified flows: heuristic criterion

Landau and Lifshitz: The equilibrium is unstable if a particle of fluid which is moved

up is lighter than the surroundings fluid:

Unstability criterion: V (p′, s′) − V (p′, s) < 0

V (p′, s′) − V (p′, s) ≈

(
∂V

∂s

)

p

(s′ − s)

or (
∂V

∂s

)

p

ds

dz
< 0 for most of the fluids

ds

dz
< 0

since

(
∂V

∂s

)

p

=

(
∂V

∂T

)

p

T

Cp

> 0
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Stability of stratified flows: equations of motion

∂ρ

∂t
+

∂ρ uj

∂xj

= 0,

ρ

(
∂ui

∂t
+ uj

∂ui

∂xj

)
= −

∂p

∂xi

− g ρ δi2,

∂

∂t
(p ργ) + uj

∂

∂xj

(p ργ) = Ṡ with the eos p = p(ρ, F ).

the equilibrium state satisfies
1

ρo

dpo

dz
= −g

dpo

dz
=

1

ρo

(
∂po

∂ρo

)

S

dρo

dz
+

1

ρo

(
∂po

∂So

)

ρ

dSo

dz
≡ −c

(o) 2
F χρ − Σ(o)

χρ ≡
1

ρ(o)

dρ(o)

dz
and Σ(o) ≡

1

ρ(o)

(
∂p

∂F

)(o)

ρ

dF (o)

dz
,
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Rigorous approach

Normal mode analysis:

For linear system of differential equations with constant coefficients, we seek solutions

under the form:

Ψ(x, y, z, t) = Ψ̂(z) eσ t e i (kxx+kyy),

where n = σ + i ω and k = (k2
x + k2

y)
1/2.

Initial boundary value problem → boundary value problem

∂V

∂t
+ ui

∂V

∂xi

= S with B.C. becomes AV = λ V

where V = (ρ u v T )T .

The matrix A depends on the mean field Vo = (ρo uo vo To)
T , and the derivative D.
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Stability of stratified flows: Sturm-Liouville problem

Pressure perturbation p̂, for the mode k, satisfies a second-order differential equation

[Gamaly et al. (1976); Sitt (1980); Gamaly et al. (1980)]

d

dz

(
1

ρ(o)

dp̂

dz

)
−

1

ρ(o)

[
k2 +

(
σ2 +

g k2 Σ(o)

σ2

)
1

c
(o) 2
F

]
p̂ = 0.

The eos iso-F for the perturbations of density and pressure is

p̂ = c
(o) 2
F ρ̂

→ Sturm-Liouville problem
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Stability of stratified flows

⇒ it admits two infinite, discrete sets of perturbation modes, the growth rate of which

are given by the following expression

σ± 2
n = 1

2

[
ζn ±

(
ζ2
n − 4 g k2 Σ(o)

)1/2
]
.

where ζ ≡ −
(
σ2 + g k2 Σ(o)/σ2

)
and for Σ(o) = cst

• σ+
n convective-type modes. Unstable or marginally stable.

• σ− 2
n ∝ −k2 c

(o) 2
F acoustic-type modes (Lamb’s modes).

Amplitude p̂ ∝ eRe{σ−

n }t eıIm{σ−

n }t
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Stability of stratified flows

σ+
n > 0 if g Σ(o) < 0

This provides a necessary and sufficient condition for convective instability for a strat-

ified perfect compressible fluid against iso-F perturbations

g

(
∂p

∂F

)(o)

ρ

dF (o)

dz
< 0.

As particular cases, we have the following criteria for instability:

• the isothermal criterion ∇ip
(o)∇iT

(o) > 0;

• the isentropic one ∇ip
(o)∇iS

(o) > 0, or
dp(o)

dz

(
1

γ p(o)

dp(o)

dz
−

1

ρ(o)

dρ(o)

dz

)
> 0;

• the incompressible one ∇ip
(o)∇iρ

(o) < 0, obtained by setting γ → ∞.

- Turbulent Mixing and Beyond International Conference -
Int. Center for Theoretical Physics, Trieste, Italy, 27 July - 7 August 2009



Scannapieco’s approach for adiabatic stratified flows (I)

∂ρ

∂t
+

∂ρ uj

∂xj

= 0,

ρ

(
∂ui

∂t
+ uj

∂ui

∂xj

)
= −Sr−1 ∂p

∂xi

− ρ δi2,

∂

∂t
(p ργ) + uj

∂

∂xj

(p ργ) = Ṡ with the EOS p = ρ T.

Exponentially varying zeroth-order quantity:

ρo = ρo exp (z/H) where H is the density-gradient length-scale H =

(
1

ρo

∂ρo

∂z

)−1

.

Hypothesis: - we seek solutions over an interval d such that d ≪ H,

- the speed of sound cs is supposed to be constant.
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Scannapieco’s approach for adiabatic stratified flows (II)

An equation for the momentum µ = ρ u1 z is written

D2µ + Dµ

(
−

1

H
− n2 H−1 + Sr

k2 + Sr n2

)

+µ

[
−k2 − Sr n2 +

k2

n2

(
1

H
+

Sr

γ

)
−

(
H−1 + Sr

) Sr k2 − n2/H

n2 + k2/Sr

]
= 0

The general solution is µ = A1 exp (q1 z) + A2 exp (q2 z)

1 2 3 4 5 excluded 6

H = −Sr−1 H = −γ Sr−1 |H| < d H > 0

H
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Scannapieco’s approach for adiabatic stratified flows (IV)

1 2 3 4 5 excluded 6

H = −Sr−1 H = −γ Sr−1 |H| < d H > 0

H

Acoustic Gravity Lamb

H > 0 oscillatory growing growing-oscillatory

H > −c2
s/γ g = −1/γSr oscillatory oscillatory growing-oscillatory

H = −c2
s/γ g = −1/γSr oscillatory oscillatory oscillatory

H < −c2
s/γ g = −1/γSr oscillatory oscillatory growing-oscillatory

H > −c2
s/g = −1/Sr oscillatory growing growing-oscillatory
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RTI for compressible fluids

Density
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RTI for compressible miscible fluids

∂ρ

∂t
+

∂ρ uj

∂xj
= 0,

ρ

(
∂ui

∂t
+ uj

∂ui

∂xj

)
= −Sr−1 ∂p

∂xi

+ Re−1 ∂σij

∂xj

− ρ δi2,

ρ Cv;m

(
∂T

∂t
+ uj

∂T

∂xj

)
= (γr − 1)

[
SrRe−1 σij Dij − p

∂uj

∂xj

]

+Re−1

[
−Sc−1 T dcCv;m

∂2c

∂xj∂xj

+ Pr−1 γr
∂2T

∂xj∂xj

]
,

∂c

∂t
+ uj

∂c

∂xj

= (ρRe Sc)−1 ∂2c

∂xj∂xj

,

p = ρ T (1 + At − 2At c) .
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RTI: Equilibrium state
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Linear stability of RTI: solution method

• For perfects fluids

- in each fluid, the second order ODE for the amplitude is solved

- matching condition for the pressure at the interface ⇒ dispersion relation.

• For viscous fluids

- approximate equilibrium state in presence of diffusion (viscosity, thermal conduc-

tion and diffusion of species)

- numerical methods to solve the linear eigenvalue problem:

A φ̂ = λ φ̂ where φ̂ =
(
ρ̂ ûi T̂ ĉ

)T
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RTI: linear stability

Perturbation type

Hydrostatic Isothermal (T ) Isentropic (S) General (G)

Equilibrium type Re Pr → 0, Re → ∞ Re → ∞

TT -case TS-case TG-case

Blake (1972), Baker (1983) Bernstein-Book (1983), Lafay et al. (2007)

Isothermal (T ) Mathews et al. (1977) Livescu (2004)

Re Pr 6= 0 Ribeyre et al. (2004) Hoshoudy (2007)

Livescu (2008)

Depends on At , Sr , Depends on At , Sr , Depends on At , Sr ,

and hH,L. γ-independent γH,L and hH,L γH,L, hH,L,

Re, Sc and Pr

SS-case

Isentropic (S) Lezzi-Prosperetti (1989)

Re → ∞ Irrelevant case Depends on At , Sr , Irrelevant case

γH,L and hH,L

General (G) Has to be done Has to be done Has to be done
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RTI: linear stability of perfect fluids

Two types of parameters: stratification and eos (γ’s)

General trends:

• the growth rate strongly decreases as the stratification increases;

• the growth rate increases as the adiabatic indices γH,L increase;

• stratification and compressibility effects are more important at small wave num-

bers;

• growth rates are larger when the light fluid is more compressible than the heavy

one (γL < γH);

• compressibility effects are larger at small Atwood numbers.
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RTI: linear stability of viscous fluid
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RTI: Numerical Simulations
dns les

Euler trek flash

equations 1st-order fd method in space ppm-type method for miscible fluids

Sin’kova et al. (1999) 2nd-order in space and time

Fryxell et al. (2000)

2d-mah, mah-3d turmoil-3d

fv method explicit fd method

Volkov et al. (1999) ft method for non-miscible fluids

Youngs (1991)

FronTier Dimonte et al. (2004)

2nd-order fd method in space Simulation results comparison

4th-order Runge-Kutta in time miles approach with

ft method for non-miscible fluids various numerical schemes

Jin et al. (2005)

George and Glimm (2005)

leeor-3d

ale with ft method

Hecht et al. (1995)

Belotserkovskii and Oparin (1999)

Inogamov and Oparin (1999)

2nd-order scheme



RTI: Numerical Simulations

dns les

Navier-Stokes aménophis Mellado et al. (2005)

equations Pseudo-spectral adaptive method 6th-order Padé in space

Le Creurer and Gauthier (2008) 4th-order Runge-Kutta in time.

Cook (2007)

10th-order compact scheme

4th-order Runge-Kutta in time



RTI: Numerical Simulations

• Most of the simulations carried out with the Euler or the full NS equations;

• The initial equilibrium state is usually weakly stratified and the γ’s are equals (5/3

or 7/5). ⇒ compressibility effects are small;

• However:

- Single mode two-dimensional simulations (Jin et al. (2005)).

Stratification, 10−2 ≤ M2 = λ g/c2
H ≤ 0.50, and the γ’s: 1.1 ≤ γH,L ≤ 4;

- George and Glimm (2005): mixing zones arising from stratified equilibrium states,

self-similarity is lost (LH,L).

Time-dependent Atwood number:

h = αeff

∫ t

0

∫ s1

0
2At(s) g ds ds1 ⇒ self-similarity recovered.

- Olson and Cook (2007) example of a strong compressible behavior in the turbulent

regime. In a compressible fluid, acoustics waves are generated → shocklets →

coalesce into a shock wave.
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Influence of initial conditions in turbulence

• It is well-known that in a nonlinear dissipative system, the initial conditions are

forgotten;

• Mixing layers: how much time is it necessary to forget the initial conditions ?

• RT-mixing layers: Studied by several authors (Ramaprabhu et al. (2005) and

Andrews (2009))

• In compressible flows, the nonlinear system of equations is partially parabolic.

• Chandrasekhar’s observation (1951) on the fluctuations of density in isotropic com-

pressible turbulence.

“The largest structures in the density fluctuations are determined by the initial

conditions and represent permanent features of the flow.”
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Isotropic (compressible) turbulence

• No real turbulent flow is isotropic or homogeneous in the large scales;

• But is it easy to develop analytical statistical theories;

• Homogeneous and isotropic turbulence

ui (x, t) = ccste and ρ (x, t) = ccste

• Exemple of double correlation of velocities:

Bij (r, t, t′) = ui (x, t) uj (x + r, t′),

By using the properties of isotropic and homogeneity, one can show that this

correlation may be written as

Bij (r) = −
1

2r

∂BLL (r)

∂r
rirj +

(
BLL +

r

2

∂BLL

∂r

)
δij.

where BLL is the double correlation of longitudinal velocities.
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Chandrasekhar’s invariant

From
∂ρ

∂t
+

∂ρui

∂xi

= 0, one gets
∂

∂t
ρ ρ′ +

∂

∂xi

ρ′ ρ ui +
∂

∂xi

ρ ρ′ u′

i = 0.

Correlation of density fluctuations δρ as

̟(r, t) = (ρ − ρ) (ρ′ − ρ) = δρ′ δρ where ρ = cste,

Correlation between mass flux and density is written as:

ρ′ ρ ui = −ρ ρ′ u′

i ≡ L(r, t) ξi, where ξi = xi − x′

i.

The previous equation writes r2 ∂̟

∂t
= 2

∂

∂r

(
r3 L

)
⇒

∂

∂t

∫ r

0

r2 ̟ dr = 2 r3 L.

If L → 0 faster than r−3 [ASSUMPTION], then

I =

∫
∞

0

r2̟(r, t) dr = cste.
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Meaning of the Chandrasekhar’s invariant ?

∂

∂t
ρ ρ′ +

∂

∂xi

ρ′ ρ ui +
∂

∂xi

ρ ρ′ u′

i = 0 → TF →
∂Π(k)

∂t
= i [Λj(k) + Λj(−k)] kj

with Π(k) =
1

(2 π)3

∫
δρ′ δρ(r) e ik·r dr; Λj(k) =

1

(2 π)3

∫
ρ′ ρ ui(r) e ik·r dr

If Π(k) has an expansion of the form: Π(k) = Πo +Πj kj +Πℓm kℓ km + . . . for |k| → 0

and Λj(k) finite at r = 0, it follows that
dΠo

dt
= 0

or Π(0) =
1

(2 π)3

∫
δρ′ δρ(r) dr =

1

2 π2

∫
∞

0

r2 ̟(r, t) dr = ccste

It means that the spectrum of δρ′ δρ, for |k| → 0 does not depend on time.
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Chandrasekhar’s invariant

• “The largest structures in the density fluctuations are determined by the initial

conditions and represent permanent features of the flow.” (Chandrasekhar (1951))

Provided that the correlation ρ′ ρ ui goes to zero fast enough with the distance r.

• Analogy with the Loitszansk̈ı invariant for HIT for an incompressible fluid.

- Turbulent Mixing and Beyond International Conference -
Int. Center for Theoretical Physics, Trieste, Italy, 27 July - 7 August 2009



Incompressible IHT: von Kármán - Howarth equation

• Navier-Stokes equations:

∂ui (x)

∂t
+

∂uk (x) ui (x)

∂xk

= −
1

ρ

∂P

∂xi

+ ν
∂2ui (x)

∂xk∂xk

.

∂Bij

∂t
(r, t) =

∂

∂rk

[Bik,j (r, t) − Bi,jk (r, t)] +
1

ρ

[
∂Bpj

∂ri

(r, t) −
∂Bip

∂rj

(r, t)

]
+ 2ν

∂2Bij (r, t)

∂rk∂rk

.

- no correlation between the velocity field and a scalar in a HIT.

- contraction over the indices i and j.

• von Kármán - Howarth equation

∂BLL

∂t
=

1

r4

∂

∂r

(
r4BLL,L

)
+

2ν

r4

∂

∂r

(
r4∂BLL

∂r

)
.
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Incompressible IHT: Loitszansk̈ı integral

• This is an integral relationship on the double correlation BLL.

∂

∂t

∫
∞

o

r4BLL (r, t) dr = lim
r→∞

r4BLL,L + 2ν lim
r→∞

r4∂BLL

∂r
.

• If the correlations BLL,L and BLL go to zero fast enough, one has:
∫

∞

o

r4BLL (r, t) dr = cste.

• Controversy over the last decades, numerical simulations and turbulence modeling

(edqnm) have shown that the Loitszansk̈ı integral depends on time.

• Recent work (Ishida et al., 2006, JFM): numerical simulation → Loitszansk̈ı integral

is [indeed] a constant.

• Reason: suppression of long-range velocity correlations in isotropic turbulence, by

a screening effect due to vorticity structure.
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Concluding remarks

• We have review some compressibility effects in stratified flows and Rayleigh-Taylor

induced flows.

• Two main effects: compressibilities (eos) and stratification.

• Various approximations of Navier-Stokes, depending on the application.

• Compressibilities may induced various types of behaviors (e.g. Lamb’s modes)

Open problems:

• Are there linear Lamb modes in viscous compressible RTI (see Barthélémy’s

talk) ?

• What about the nonlinear stability of Lamb’s modes ?

• Compressible homogeneous isotropic turbulence: Is Chandrasekhar’s quantity

an invariant ? (dependence on initial conditions)
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