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What is Uncertainty Quantification?

• Next step beyond traditional verification and validation
• Formal framework for the quantification of errors and 

uncertainties in numerical simulations using statistical 
techniques

• Begin by identifying all possible sources of uncertainty in a 
numerical simulation

• Determine how these uncertainties propagate through the 
simulation code to create uncertainty in the output 
quantities of interest

• Instead of obtaining a single answer for each quantity of 
interest, obtain a probability distribution for each quantity 
with error bars

• Involves performing a very large number of numerical 
simulations by varying each of the input parameters
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Goals

• To determine which input uncertainties produce the largest 
output uncertainties, and where possible, take steps to 
reduce them

• To use experiments to constrain the uncertainties of the 
input variables 

• To predict the results of future experiments with error bars
• To prioritize activities that best reduce uncertainty and 

increase confidence in the results
• To do all of this as efficiently as possible
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Steps in the uncertainty quantification process

• Identify sources of uncertainty
• Dimension reduction
• Design of experiments
• Screening
• Construction of statistical model
• Prediction
• Calibration
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Sources of uncertainty

• X
– Initial conditions
– Boundary conditions

•
– Material parameters 

• Equation of state 
• Opacity tables

• M
– Mesh parameters

• Grid size
• Number of spatial dimensions
• Number and structure of frequency groups

• P
– Code tuning parameters

• Artificial viscosity
• Time step control
• Constants in turbulence model

θ
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Types of uncertainty

• Aleatory
– Uncertainty that can be characterized by a probability 

distribution
– Probability distribution can be obtained using expert 

judgment, results of previous experiments, etc.
– A good example is measurement error in determining initial 

conditions
• Epistemic

– Uncertainty that results from lack of knowledge
– Not mathematically correct to characterize these 

uncertainties using a probability distribution
– These uncertainties should be treated in a different way
– An example is uncertainty resulting from using physics 

models
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Steps in the uncertainty quantification process

• Identify sources of uncertainty
• Dimension reduction
• Design of experiments
• Screening
• Construction of statistical model
• Prediction
• Calibration
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Dimension reduction

• Cost of analysis depends on the number of input 
parameters to a very large power

• It is crucial to reduce the dimension of the input space as 
much as possible

• Cost of analysis becomes prohibitive if the number of input 
parameters is more than a few tens

• For X parameters
– Use expert judgment

• For θ parameters
– Individual numbers in equation of state and opacity tables are 

not independent
– Use simple physics models to reduce the number of 

parameters if possible
– Use statistical curve fitting models such as PCA, PLS, or 

partitioning algorithms
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Dimension reduction

• For mesh (M) parameters
– Ideally, perform an initial study to determine mesh parameters 

required to obtain a converged solution and then hold these 
fixed for the UQ study

– For complex problems, convergence can not be achieved 
using a realistic amount of computer resources

– In this case, the mesh parameters must be varied to determine 
how important they are relative to the other input parameters

• For code tuning (P) parameters
– Many of these, such as artificial viscosity and time step 

controls, can be fixed at optimal values and considered as part 
of the discretization method

– Others, such as parameters in a subgrid model, need to be 
varied to determine their impact on the results
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Steps in the uncertainty quantification process

• Identify sources of uncertainty
• Dimension reduction
• Design of experiments
• Screening
• Construction of statistical model
• Prediction
• Calibration
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Design of experiments

Simple grid

x2

x1

• For n parameters and m 
values per parameter, need 
NS = mn simulations

• For n = 15 and m = 5, 
NS ~ 3 x 1010

• To do only corners
NS = 32,768
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Design of experiments

• Generate random numbers for 
(X1, X2, …, Xn)

• Choose NS sets of parameters
• Covers space with relatively few 

points
• Space filling properties not 

particularly good

x2

x1

Monte Carlo
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Design of experiments

• Divide input space into 
NS x NS x … x NS grid

• Choose a cell by random
• Within that cell, choose a random 

location
• Use each row in each direction only 

once

Latin Hypercube

x2

x1
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Steps in the uncertainty quantification process

• Identify sources of uncertainty
• Dimension reduction
• Design of experiments
• Screening
• Construction of statistical model
• Prediction
• Calibration
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Screening

• Even after using expert judgment to reduce the number of 
input parameters, not all the remaining parameters will be 
equally important in determining the output uncertainties

• It is vital to determine which parameters have the least 
impact on the results and remove them from the UQ study

• This can be accomplished by an initial screening process 
using a reduced set of simulations to determine regions of 
high and low sensitivity

• The use of emulators or reduced-fidelity simulations can 
help with this process

• Adding adjoint information into the simulation code is 
another approach
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Steps in the uncertainty quantification process

• Identify sources of uncertainty
• Dimension reduction
• Design of experiments
• Screening
• Construction of statistical model
• Prediction
• Calibration



Page 17

Construction of statistical model

• Formulation of Kennedy and O’Hagan
• Experimental data Y can be expressed as

• accounts for discrepancy between the simulator and the 
real process which generates the experimental data

• is the experimental error
• Construct a statistical model for          and 
• Now we can perform joint inference by using the posterior 

distribution of
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Gaussian process model
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Gaussian process model

• Essentially a regression 
model

• Response surface passes 
through the data points

• Error in fit increases with 
distance from the data points
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Gaussian process model
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Gaussian process model
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MARS (Multivariate Adaptive Regression Splines)

• Expand using splines as basis functions

• Basis functions are a constant, hinge functions, and 
interactions among hinge functions

• Response surface does not, in general, pass through the 
data points
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MARS

• Better for high-dimensional case with sparsity
• More efficient for high-dimensional case – instead of 

including all possible effects, unimportant effects can be 
excluded

• Computationally faster than Gaussian process models –
can handle larger data sets

• Each main effect and interaction effects can be easily 
estimated
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Steps in the uncertainty quantification process

• Identify sources of uncertainty
• Dimension reduction
• Design of experiments
• Screening
• Construction of statistical model
• Prediction
• Calibration
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Prediction

• Use statistical model to generate response surface
• Response surface can be used to predict output quantities 

of interest using any new combinations of input parameters
• Goodness of fit of statistical model can be evaluated in a 

number of ways
– Divide input data into two sets – training data and test data

• Use the training data to construct the statistical model
• Use statistical model to  predict test data

– Leave one out cross validation
• Leave out data for one simulation, construct model using the 

remaining data, then try to predict the omitted simulation
• Repeat for each simulation
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Steps in the uncertainty quantification process

• Identify sources of uncertainty
• Dimension reduction
• Design of experiments
• Screening
• Construction of statistical model
• Prediction
• Calibration
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Calibration (inverse problem)
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Sample UQ problem

• One-dimensional shock tube
– Limited set of input and calibration parameters
– Fast to simulate
– Analytic solution

• Can compare UQ analysis of analytic solution to analysis 
of simulation

• Can use analytic solution as a substitute for experimental 
results



Page 29

Initial Conditions

ρL, PL ρR, PR

Fixed initial conditions
ρR = PR = 1
uL = uR = 0

Varied input parameters:
ρL, PL, γ

Also added five inert input 
parameters that had no effect 
on the output

ρL

PL

t = 0

Diaphragm
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Analytic solution

Density Density
(enlarged)

Pressure Velocity
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Eight output values

• Four positions
xshk location of shock
xcd location of contact discontinuity
xtail location of tail of rarefaction
xhead location of head of rarefaction

• Four values of state variables
ρshk density at left of shock
ρcd density at left of contact discontinuity
Pshk pressure at left of shock
ushk velocity at left of shock
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Distribution of input parameters

• 62 simulations
– 350 < ρL < 650
– 70   < PL < 130
– 4/3  < γ < 5/3

• Orthogonal Array 
Latin Hypercube 
design
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Inert input variables

Inert variables given 
a uniform random 
distribution between 
0 and 1
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Correlations between output values - analytical
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Correlations between output values - simulation
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Simulation results vs. analytic solution

Some output variables show a small bias
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Gaussian process results – input significance
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Gaussian process results – input significance
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Bayesian MARS results
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MART results
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Leave one out cross validation
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Calibration and prediction

• Used the 62 runs from the simulation code and 10 data 
points from the analytic solution (substitute for experiment)

• Analytic solution was run computed with a fixed (but 
unknown) value of γ

• Calibration (the inverse problem) was performed using all 
eight output variables

• Fit the above model, estimated γ, and predicted the 
remaining 52 runs
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Calibration

Prediction of γ

γ

Posterior mean    = 1.410
Posterior median = 1.409
True value           = 1.400
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Prediction
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Prediction
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Prediction
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