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1 – Unstable Periodic Orbits

• Role of UPO's has been acknowledged since the work of Poincaré    
 (“founder” of modern dynamical systems theory); 

• Typical trajectory will wander incessantly in a sequence of close   
 approaches to the UPOs;

• Analogy from statistical mechanics in physics: set of UPO's can   
 be viewed as the microstates from which a macroscopic 
 description of the system can be calculated;

• Accuracy of predictions is limited by the (non-composite) UPO of 
 smaller period which we fail to include; 

http://www.chaosbook.org/ by Cvitanovic et al.

  
3



1 – Unstable Periodic Orbits

• Abstract “dynamical landscape” with peaks 
representing the UPOs; 

• Chaotic trajectory can be visualized as being 
the motion of a ball rolling on this abstract 
dynamical landscape;  

• Motion will be strongly affected by the 
sharpness of the peak (stability of the UPOs);

    • Strange attractor is closure of the set of all  
   the UPOs (in the neighborhood of which the
   system will spend most of the time)

from: http://www.scholarpedia.org/article/Unstable_periodic_orbits
Curator: Dr. Paul So, George Mason University, Fairfax, VA 4



1 – Unstable Periodic Orbits

• Kawahara & Kida1 found 2 periodic solutions in plane Couette flow, simulated 
using spectral methods;  

• Novel efficient algorithm to locate UPOs (Boghosian et al, preprint), based on 
previous work by Lan and Cvitanovic2;
    
• Tested on Lorenz model and several low-dimensional systems;
good convergence to the UPOs, including 2D fluid; 

• Plot Δ(t,T): find initial guess (minimum) for whole trajectory, and value of T; 

• Numerically relax minima (in 4D) towards finding UPO;

1. J. Fluid Mech., 449, 291-300, 2001       2. Phys. Rev. E, 69 (1): 016217, 2004 5



2– Dynamical Zeta function

• In “traditional” fluid turbulence, observables are computed as averages over 
  many time frames:

• Alternative approach would be to using a generating function:

• Then the moments of the PDF of an observable A are:
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2 – Dynamical Zeta function

• DZF expression

• Generating function:

• Computation of expectation value:
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Example of a strange attractor: Lorenz system

x: proportional to intensity of convection

y: proportional to temperature difference 

 

- each of the lobes corresponds to a steady                     
state

- but there are transitions, including reversal  
of direction: hot air descends, cold air 
ascends!

ρ = Prandtl number
σ = Rayleigh number
ρ = 28
σ = 10 
β = 8/3

“Deterministic nonperiodic flow”
E. N. Lorenz,  J. Atmos. Sci. 20 130 (1963)
Picture: http://en.wikipedia.org/wiki/Lorenz_attractor 8



2 – Dynamical Zeta function

• Comparison between the 2 approaches for the Lorenz equations: exact
   polynomial expansion (left) versus “noisy” time-integration (right). 9



2 – Dynamical Zeta function

  (Main)Advantages in this approach:

• Degree of accuracy is high and converges quickly, with the number of
   known lower period UPOs

• No need to redo initial value problem every time we wish to compute
   the average of some quantity

• Averages are no longer stochastic in nature, we have an exact expansion
   to compute them
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3 – Lower-dimensional systems
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3 – Lower-dimensional systems: 2D fluid

• Fluid flow simulated using OpenLB, with a sinusoidal force, to reproduce experimental work 
(quasi-2D)1. Colours represent the vorticity field: red is large negative value (counterclockwise), 
blue is large positive value (clockwise).  

1. N. T. Ouellette and J. P. Gollub, Phys. Rev. Lett. 99 (19), 2007, 194502

• Magnetohydrodynamic 
forcing in a thin layer of 
conducting fluid  
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3 – Lower-dimensional systems: 2D fluid 
revisited

• Same system as previous slide. Red denotes large negative 
vorticity (counterclockwise rotation), blue is large positive 
vorticity (clockwise rotation). Periodic solution shown here 
(found analytically) is highly unstable. 13
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4 – Lattice Boltzmann Method
 (or why stream and collide is all it takes)

• Fluid flow (nearly incompressible 
NSE) is simulated using the Lattice 
Boltzmann Method1,2

14
1. S. Chen, G. D. Doolen, Annu. Rev. Fluid Mech., 30, 329-364, 1998 
2. S. Succi, “The LBE for Fluid Dynamics and Beyond”, Oxford University Press, Oxford, 2001



4 – Lattice Boltzmann Method
• Basic premise: macroscopic dynamics is the result of collective behavior
 of many microscopic ones and the macroscopic dynamics not sensitive to
 underlying details is microscopic physics;

• How did we go from discrete velocities to hydrodynamics? Multi-scale 
(Chapman-Enskog) expansion, assuming diffusion time scale much slower
 than convection time scale; 

• Main areas of application: complex boundaries, interfacial dynamics, multiphase flows;
Codes: OpenLB, LB3D (amphyphilic fluids), HemeLB (cerebral blood flow); 

• Main advantages of LBM:
      - local collision operator + linear streaming operator (almost “embarrassingly”  
      parallel); 
      - minimal set of velocities, from which macroscopic quantities are computed;
      - no need for extra term for extra equation for pressure term, which so often requires
      extra numerical treatments (pressure is now eq. of state);
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5 – HYPO4D1

•  Communication pattern between      
processors: only the halo values need   
to be sent to nearest neighbors  →

•  Scalability tests at NGS and 
HPCx (Gold Star award) 

(i.e., ~1.9 speed-up for cubic 
lattice with L=1024, when 
going f rom 512 to 1024 
processors)

161. R. S. Saksena, B. Boghosian, L. Fazendeiro et al., Phil. Trans. R. Soc. A 
367:2557-2571, 2009
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5 – HYPO4D: Ranger + Intrepid scaling

• Linear scaling up to 16K on Ranger (left) and 33K on Intrepid (right). Also   close to 
linear up to 33K on Ranger and 65K on Intrepid; 

 

• In the halo-exchange step, all MPI communications are non- blocking, in order to prevent dead-lock; 

• No aggressive optimization pursued, so that code can be deployed (almost) seamlessly on different platforms;

• Ranger @TACC: Sun Constellation Linux Cluster, 62976 AMD cores, 123 TB memory, 579.4 TFlops 
(theoretical) peak;

• Intrepid @Argonne: IBM BlueGene/P, 163 840 cores, 80 TB memory, 557 TFlops (theoretical) peak;
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6 – Turbulent flow
• Current approach: fluid starts from rest, periodic boundary           
  conditions in all directions (isotropic, homogeneous turbulence),
  ABC type force applied:

• Numerical stability tests applied at all sites in the lattice at every  t i m e 
step, convergence tests and other quantities measured at  regular intervals;

• After a certain threshold of LB viscosity, (weak) turbulent behavior sets 
in;

• HYPO4D = initial value problem (LB) + minimum search + 4D numerical 
relaxation (variational principle applied to LBE ) + post-processing tools;
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6 - Turbulent flow: Convergence test

• Convergence test for the velocity field, taken between consecutive time steps. Notice 
sharp increase after turbulent regime sets in (vertical axis scale is logarithmic).

• Cubic lattice, 643, varying 
kinematic (LB) viscosity;

• Maximum Re ~ 500, taking 
velocity averaged over many 
time, steps, but DNS, no 
modeling included;

19

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 0  20000  40000  60000  80000  100000

C
o

n
v
 t

e
s
t:

 s
u

m
_

i_
r 

|(
v
_

i(
r,

t)
-v

_
i(
r,

t-
1

))
| 
/ 

s
u

m
_

i_
r 

|(
v
_

i(
r,

t-
1

))
|

Time step (t)

L=64, ABC forcing, varying tau only

tau = 0.506
tau = 0.515
tau = 0.521
tau = 0.527

tau = 0.53
tau = 0.56
tau = 0.59



6 - Turbulent flow: Energy spectrum E(q)

            
           

• Kolmogorov picture of turbulent flow divides   it  
(roughly) into 3 different scales: kinetic, inertial, 
dissipative;

• Left plot shows energy spectrum E(q) before 
transition to time-dependent behavior; 

• Right plot shows spectrum for 
two different time snapshots after 
the transition, with Kolmogorov 
fitting for visual aid;
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7 - 4D Numerical Relaxation: search for minima

• Vertical axis is T, horizontal axis is t, color code gives “delta” quantity: 

21



7 - 4D Numerical Relaxation: search for minima

• Detail of previous plot, showing several (purplish) 
minima/areas of interest, as well as hinting at some 
regularity in their distribution 

22



7 - 4D Numerical Relaxation: search for minima
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• New minima for ν = 0.01



7 - 4D Numerical Relaxation

24

• Memory critical resource for the full 4D relaxation procedure;

• For the minimum shown T~26.5K, we have to keep in memory at 
least 643*19 (number of LB velocities)*8(double precision)*2.65* 
 104 variables ~ 1 TB; Then SD=5 copies and CG=8!!!!!!

• Minimization algorithm:
 
- define functional                                                          with

- compute gradient  



7 - 4D Numerical Relaxation: algorithm
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7 - 4D Numerical Relaxation: failed 
experiment :(
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• Left: initial 26.5K trajectory;
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machine;
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• At every single SD step,      decreases!



8 - Prospects & Challenges
• Relaxation procedure in order to identify first (smaller period) UPOs in 3D NSE;

• Characterization of the UPOs (stability eigenvalues, but also energy dissipation rate, 
vorticity, enstrophy, etc);

• Compare averages from one or more UPOs with time forward averaging;

• Possible heteroclinic connections between periodic solutions, along which bursting 
(intermittency) may occur (K&K); 

• Classification of the (prime) UPOs identified + creation and maintenance of a digital 
library of such orbits;

• Could a symbolic dynamics be devised from some of these UPOs, for 3D NSE 
turbulence?

27
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