
Recent results on MHD Turbulence:
weak MHD turbulence

Stanislav Boldyrev
Jean C. Perez 

(U. Wisconsin-Madison)

NSF Center for Magnetic Self-Organization 
in Laboratory and Astrophysical Plasmas



2

Hydrodynamic turbulence vs MHD 
turbulence
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The nature of the guide field
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Equations of Magnetohydrodynamics

Use Elsasser variables: 

Separate fluctuating part:

When                ,          of any amplitude and shape propagates 
without dispersion against the guide field.
When                ,          of any amplitude and shape propagates 
without dispersion along the guide field.
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MHD turbulence
Anisotropy of “eddies”

Shear Alfvén waves
dominate the cascade:

B

B0 MHD equations in Elsasser variables

Weak turbulence
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Alfvenic turbulence

After interaction, shape of each packet changes, but energy does not.

Z+Z-

Z-Z+

Ideal system conserves the Elsasser energies
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Weak MHD turbulence: Phenomenology
Three-wave interaction of shear-Alfven waves

Only counter-propagating waves 
interact, therefore, k1z and k2z should 
have opposite signs.

Either                        or   

Wave interactions change  k⊥ but not  kz

At large k⊥:
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Analytical framework
[Galtier, Nazarenko, Newell, Pouquet, 2000]

In the zeroth approximation, waves are not interacting 
and they have random phases:

When the interaction is switched on, the energies 
slowly change with time:

split into pair-wise correlators using Gaussian rule
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Analytical framework
[Galtier, Nazarenko, Newell, Pouquet, 2000]

split into pair-wise correlators using Gaussian rule

This kinetic equation has all the properties discussed in the phenomenology: 
it is scale invariant,   z± interact only with z∓,   kz does not change 
during interactions. 
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Analytical framework
[Galtier, Nazarenko, Newell, Pouquet, 2000]

Consider statistically balanced case: 
The general balanced solution of the Galtier et al Eqs is:

where g(kz) is an arbitrary function smooth at kz=0.
The spectrum of weak balanced  MHD turbulence is therefore:



11

Unbalanced MHD turbulence
(non-balanced, imbalanced, cross-helical…)

Imbalance means that cross-helicity is nonzero:

Or, equivalently, the energies of waves traveling in opposite directions along 
the guide field are not equal. This is a very common situation in nature:

• Solar wind: more Alfven waves travel out of the sun than toward the sun

• Interstellar medium: MHD turbulence is driven by spatially localized sources

• Even when balanced overall, MHD turbulence is always locally unbalanced–
it creates patches of positive and negative cross-helicity.

[Lithwick & Goldreich (2003); Ng et al (2003); Rappazzo et al (2007); Chandran (2008); 
Beresnyak & Lazarian (2008);  Matthaeus et al (2008); Perez & SB (2009)]
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Unbalanced weak MHD turbulence
(where problems begin)

The kinetic equation has a one-parameter family of solutions:

with -1 < α < 1

What do these solutions mean?   Hint: calculate energy fluxes!

The solution with steeper (shallower) spectrum corresponds

to larger (smaller) energy flux toward large k⊥.

Assume that e+ has the steeper spectrum and

denote the energy fluxes and        : 

[Galtier et al 2000]

Then:
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Unbalanced weak MHD turbulence
(where problems begin)

The kinetic equation has a one-parameter family of solutions:

with -1 < α < 1

The energy spectra 
(log-log plot)

“pinning” at the 
dissipation scale

0

[Grappin et al 1983,
Lithwick & Goldreich

2003]
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Unbalanced weak MHD turbulence
(where problems begin)
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The spectra are “pinned” at the dissipation scale. 

• If the ratio of the energy fluxes is specified, then the slopes are specified, 
but the amplitudes depend on the dissipation scale, or on the Re number. 
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Unbalanced weak MHD turbulence
(where problems begin)
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Unbalanced weak MHD turbulence
(where problems begin)
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Unbalanced weak MHD turbulence
(where problems begin)
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Unbalanced weak MHD turbulence
(contradiction)
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The spectra are “pinned” at the dissipation scale.

• If the amplitudes at k⊥=0 are specified, then slopes and fluxes 
depend on the Re number.

• If the fluxes are specified, then the amplitudes depend on the Re number

Both possibilities seem to contradict the physical intuition that large-scale 
properties of turbulence are independent of the dissipation scale.
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Unbalanced weak MHD turbulence
Revise the basic assumptions:

OK
OK

?

Different K --
different phases

since in Alfven waves v=± b 

However, at               ,  the fluctuations are NOT waves: 

[S.B. & Perez (2009)]

What is the physical meaning and the role of the condensate?

One can  introduce the “condensate”: 

where Δ(kz) is concentrated at kz=0.  
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A model for weak unbalanced MHD turbulence
(the role of the condensate)

[S.B. & Perez (2009)]

Introduce weak condensate 

How will it change the kinetic equations?

The first integral in the right hand side is degenerate; 
it is zero for a one parameter family of solutions:

The second integral (interaction with the condensate) is zero ONLY if

AND

Condensate lifts the degeneracy. The only universal solution is
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A model for weak unbalanced MHD turbulence
(the physical meaning of the condensate)

[S.B. & Perez (2009)]

Unbalanced MHD turbulence is not mirror invariant, since, e.g., 

Magnetic helicity, another ideal invariant, cascades toward large scales. 
Magnetic field can pile up at kz=0, where it is not in equipartition with 
the velocity field:
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A model for weak unbalanced MHD turbulence
(the physical meaning of the condensate)

[S.B. & Perez (2009)]

k⊥

k z

Suppose that we force here 
(do not force condensate kz=0)

k⊥
condensate builds up

universal scaling appears 
asymptotically at large k⊥

Energy flux

Energy flux
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Numerical results (10242x256)

Balanced

Unbalanced. 
Fixed            .
Two Re cases
are shown

Condensate 
(note the Log scale)

[S.B. & Perez (2009)]
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Conclusions

• Weak MHD turbulence spontaneously generates a condensate 
of the residual energy                 at small              
The condensate is the consequence of mirror symmetry 
breaking in unbalanced turbulence. 

• When turbulence is balanced, its spectrum is

• When turbulence is unbalanced, the interaction with 
the condensate becomes essential, and the universal 
spectrum              is established asymptotically at large 
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