Ultra-high energy cosmic rays and large-scale structure of the Universe

P. Tinyakov

1Université Libre de Bruxelles, Bruxelles, Belgium

2Institute for Nuclear Research, Moscow, Russia

NUSKY
Trieste, June 2010
Outline

Introduction

Case of small deflections

How small the deflections are?

Conclusions
INTRODUCTION & MOTIVATION

- Last generation of UHECR experiments (Auger in the South and TA in the North) are rapidly collecting events at highest energies $E > 10^{19}$ eV.
INTRODUCTION & MOTIVATION

- Last generation of UHECR experiments (Auger in the South and TA in the North) are rapidly collecting events at highest energies $E > 10^{19}$ eV
- One of the questions is settled: there is a cut-off in the spectrum
 - HiRes: 5σ
 - Auger: 20σ
 - TA: 3.5σ

However, there is not much progress (so far) in the other two key questions — (i) chemical composition and (ii) anisotropies and sources
- Auger data indicate heavy composition at high energies and anisotropy (excess around Cen A, correlation with nearby AGN). These are (potentially) contradictory statements.
- The HiRes and TA indicate light composition and isotropy. But this is also uncomfortable.

[Graphs showing energy distribution and cut-off analysis]
INTRODUCTION & MOTIVATION

- Last generation of UHECR experiments (Auger in the South and TA in the North) are rapidly collecting events at highest energies $E > 10^{19}$ eV
- One of the questions is settled: there is a cut-off in the spectrum
 - HiRes: 5σ
 - Auger: 20σ
 - TA: 3.5σ
- However, there is not much progress (so far) in the other two key questions — (i) chemical composition and (ii) anisotropies and sources
INTRODUCTION & MOTIVATION

- Last generation of UHECR experiments (Auger in the South and TA in the North) are rapidly collecting events at highest energies $E > 10^{19}$ eV
- One of the questions is settled: there is a cut-off in the spectrum
 - HiRes: 5σ
 - Auger: 20σ
 - TA: 3.5σ
- However, there is not much progress (so far) in the other two key questions — (i) chemical composition and (ii) anisotropies and sources
- Auger data indicate heavy composition at high energies and anisotropy (excess around Cen A, correlation with nearby AGN). These are (potentially) contradictory statements.
INTRODUCTION & MOTIVATION

- Last generation of UHECR experiments (Auger in the South and TA in the North) are rapidly collecting events at highest energies $E > 10^{19}$ eV
- One of the questions is settled: there is a cut-off in the spectrum
 - HiRes: 5σ
 - Auger: 20σ
 - TA: 3.5σ
- However, there is not much progress (so far) in the other two key questions — (i) chemical composition and (ii) anisotropies and sources
- Auger data indicate heavy composition at high energies and anisotropy (excess around Cen A, correlation with nearby AGN). These are (potentially) contradictory statements.
- The HiRes and TA indicate light composition and isotropy. But this is also uncomfortable.
The question addressed in this talk:
What anisotropy is expected at high energies?
The question addressed in this talk:
What anisotropy is expected at high energies?

More specifically:
If one assumes light composition (protons) as indicated by the TA data, what anisotropy must be present without any concrete assumptions about sources?
The question addressed in this talk:
What anisotropy is expected at high energies?

More specifically:
If one assumes light composition (protons) as indicated by the TA data, what anisotropy must be present without any concrete assumptions about sources?

Proceed as follows:
- First, assume the deflections are small and calculate expected anisotropy.
- Next, check if this assumption is reasonable and how the conclusions change if it is not satisfied.
SMALL DEFLECTIONS
FLUX CALCULATION

- At highest energies CR have propagation distance $\lesssim 100$ Mpc
- Matter distribution on these scales is inhomogeneous \Rightarrow one expects flux variations over the sky
- Matter distribution can be accurately mapped out to ~ 250 Mpc from the 2MASS Galaxy Redshift Catalog (XSCz) (unpublished; provided by T. Jarrett)
- Assume the UHECR luminosity proportional to the matter density
- Calculate all propagation effects (interaction with photon backgrounds, redshift)
- Apply Gaussian smearing with the angular scale θ treated as a free parameter
- Obtain the prediction for the flux sky map
C: Centaurus supercluster (60 Mpc); Co: Coma cluster (90 Mpc); E: Eridanus cluster (30 Mpc); F: Fornax cluster (20 Mpc); Hy: Hydra supercluster (50 Mpc); N: Norma supercluster (65 Mpc); PI: Pavo-Indus supercluster (70 Mpc); PP: Perseus-Pisces supercluster (70 Mpc); Ursa Major North group (20 Mpc) South group (20 Mpc); V: Virgo cluster (20 Mpc).
STATISTICAL TEST: FLUX SAMPLING

Events following the model would produce uniform distribution over the bands. No binning is actually needed (on the picture it is for illustration only): two distributions may be compared by the Kolmogorov-Smirnov test.
Events following the model would produce uniform distribution over the bands.
Events following the model would produce uniform distribution over the bands

No binning is actually needed (on the picture it is for illustration only): two distributions may be compared by the Kolmogorov-Smirnov test
WHAT IS SEEN IN TA

\[E > 4 \times 10^{19} \text{ eV} \]
WHAT IS SEEN IN TA

E\textgreater{}40 EeV

95\% CL

smearing angle, degrees

probability

NULL = structure

NULL = iso

0.001
0.01
0.1
1

0 2 4 6 8 10 12 14

NULL = iso

95\% CL

probability

smearing angle, degrees

0 0.001 0.01 0.1 1
WHAT IS SEEN IN TA

\[E > 5.7 \times 10^{19} \text{ eV} \]
WHAT IS SEEN IN TA

95% CL
E>57 EeV
NULL = structure
NULL = iso
smearing angle, degrees
probability
 0.001
 0.01
 0.1
 1

0 2 4 6 8 10 12 14
Statistical power is defined as the complement of the type-II error (type-II error is the probability of falsely accept null-hypothesis when the alternative hypothesis is true).

Statistical power is meaningful when it is close to 1 (say, larger than 0.5). Then two distributions separate.
STATISTICAL POWERS IN CASE OF TA

\[E > 1 \times 10^{19} \text{ eV} \]

\[
\begin{array}{c|c|c|c|c|c}
N & 2000 & 1400 & 1000 & 700 & 500 \\
\hline
\text{statistical power} & & & & & \\
\end{array}
\]

\[\theta, \text{ degrees} \]

\[\text{NULL-structure ALT=iso E>10EeV} \]
$E > 4 \times 10^{19} \text{ eV}$

![Graph showing statistical powers in case of TA](image)
$E > 5.7 \times 10^{19} \text{ eV}$
CONCLUSIONS OF THE TEST:

- Present TA data are compatible with both structure and isotropy
- Need to double or triple the statistics to see the difference
ARE DEFLECTIONS SMALL OR LARGE?
Origin of “deflections”:

- Finite angular resolution
 - 1.5° for TA, ~ 1° for Auger
 - subdominant

- Deflections in the extragalactic magnetic fields
 \[\theta = 1.8° \left(\frac{E}{10^{20} \text{eV}} \right)^{-1} \left(\frac{R}{50 \text{Mpc}} \right)^{1/2} \left(\frac{B}{10^{-9} \text{G}} \right) \]
 - a likely upper bound
 - may be larger in galaxy clusters (irrelevant for us)
 - may be larger in filaments (irrelevant for us?)
 - likely subdominant

- Deflections in the Galactic magnetic field
 - in the random component: likely subdominant
 - in the regular component: likely a dominant contribution
 \[\theta = 0.52° \left(\frac{E}{10^{20} \text{eV}} \right)^{-1} \left(\frac{R}{1 \text{kpc}} \right) \left(\frac{B}{10^{-6} \text{G}} \right) \]
Origin of “deflections”:

- Finite angular resolution
 - 1.5° for TA, $\sim 1^\circ$ for Auger
 - subdominant

- Deflections in the extragalactic magnetic fields
 \[\theta = 1.8^\circ \left(\frac{E}{10^{20}\text{eV}} \right)^{-1} \left(\frac{l_c R}{50\text{Mpc}^2} \right)^{1/2} \left(\frac{B}{10^{-9}\text{G}} \right) \]
 - a likely upper bound
 - may be larger in galaxy clusters (irrelevant for us)
 - may be larger in filaments (irrelevant for us?)
 - likely subdominant
Origin of “deflections”:

- Finite angular resolution
 - 1.5° for TA, \textasciitilde 1° for Auger
 - subdominant

- Deflections in the extragalactic magnetic fields

\[\theta = 1.8^\circ \left(\frac{E}{10^{20} \text{eV}} \right)^{-1} \left(\frac{l_c R}{50 \text{Mpc}^2} \right)^{1/2} \left(\frac{B}{10^{-9} \text{G}} \right) \]

 - a likely upper bound
 - may be larger in galaxy clusters (irrelevant for us)
 - may be larger in filaments (irrelevant for us?)
 - likely subdominant

- Deflections in the Galactic magnetic field
 - in the random component: likely subdominant
 - in the regular component: likely a dominant contribution

\[\theta = 0.52^\circ \left(\frac{E}{10^{20} \text{eV}} \right)^{-1} \left(\frac{R}{1 \text{kpc}} \right) \left(\frac{B_{\perp}}{10^{-6} \text{G}} \right) \]
GALACTIC MAGNETIC FIELD

- Coherent field in other galaxies:

M51

NGC891
Is there a coherent field in the Milky Way?

Smeared Faraday rotation measures

\[\text{RM} \propto \int dl \ n_e \cdot B_{||} \]

by Kronberg & Newton-McGee (2011):
Is there a coherent field in the Milky Way?

NRAO VLA Sky Survey (NVSS) rotation measures catalogue:
GMF general structure

- Two components are necessary: symmetric disk + antisymmetric halo [Pshirkov, P.T., Kronberg, Newton-McGee arXiv:1103.0814]

[Previous studies: Simard-Normandin & Kronberg (1980); Han & Qiao (1994); Stanev 1997; Tinyakov & Tkachev (2002); Prouza & Smida (2003); Sun et al. (2008);]
Fit to data:

DATA

MODEL

Bin size $10^\circ \times 10^\circ$
SIZE OF DEFLECTIONS (protons, $E = 4 \times 10^{19}$ eV)

ASS model
SIZE OF DEFLECTIONS (protons, $E = 4 \times 10^{19}$ eV)

BSS model
CONCLUSIONS FROM GMF STUDY

- In case of protons of energy $E = 4 \times 10^{19}$ eV a typical deflection is $5^\circ - 10^\circ$ depending on direction (larger along the Galactic plane).
- This implies deflections of order $20^\circ - 40^\circ$ at $E = 10^{19}$ eV.
- Potential caveat: degeneracy in the GMF parameters which may affect deflections. In particular, a combination of the halo strength and height over the Galactic plane is poorly constrained from RM measurements. This gives the uncertainty of about factor 2 in deflections.
CONCLUSIONS

- The deflections in the Galactic magnetic field can be calculated with the uncertainty of about factor 2.
- If CR are protons, we should see anisotropy at least at highest energies with $O(100)$ events above $E = 5.7 \times 10^{19}$ eV.
- If CR are iron, the deflections are $90^\circ - 180^\circ$ at $E = 5.7 \times 10^{19}$ eV and we should see no anisotropy except may be at largest scales (like dipole or quadrupole).