Neutrino at Collider - I

“Parity restored at TeV scale?”

Fabrizio Nesti

Università dell’Aquila

Summer School on Particle Physics

ICTP — April 2011
Are we satisfied with the SM?

Gravity?
Dark Matter?
The Higgs? Hierarchy?

SM aesthetically incomplete

Accidental symmetries, B, L?

Can we have new physics at collider?

Neutrino masses are new physics

Dirac or Majorana?

Low scale?

Key questions: which symmetry? at which scale?
Outline

New physics - SM already needs extension

- Neutrino mass
 Majorana - Dirac - generic
- Consequences
 $0\nu\beta\beta$
 versus Cosmology?
 New physics at TeV?

Beyond SM

- Further hints from Quantum Numbers
- Let’s restore Parity, Left-Right at TeV scale
- Constraints
- Back to $0\nu\beta\beta$
 typell example
- LNV @ Collider
 Signals
- Outlook
Neutrino have mass

From oscillations we know their mass differences

\[m_2^2 - m_1^2 = 7.6 \times 10^{-5} \text{ eV}^2 \]

\[|m_3^2 - m_2^2| = 2.4 \times 10^{-3} \text{ eV}^2 \]

and mixing angles, \(\theta_{12} = 35^\circ \pm 4^\circ, \theta_{23} = 45^\circ \pm 8^\circ, \theta_{13} < 13^\circ. \)

From oscillations we don’t know:

- The absolute neutrino mass scale
 (direct searches, cosmology: \(m_{1,2,3} < 1 \text{ eV} \))

- The mass hierarchy
 (normal \(m_1 < m_2 < m_3 \) or inverted \(m_3 < m_1 < m_2 \)?)

- Dirac or Majorana
 \((\nu \neq \nu^c \text{ or } \nu \equiv \nu^c \text{ [Majorana '37]})\)
Neutrino have mass

From oscillations we know their mass differences

\[m_2^2 - m_1^2 = 7.6 \times 10^{-5} \text{ eV}^2 \]

\[|m_3^2 - m_2^2| = 2.4 \times 10^{-3} \text{ eV}^2 \]

and mixing angles, \(\theta_{12} = 35^\circ \pm 4^\circ \), \(\theta_{23} = 45^\circ \pm 8^\circ \), \(\theta_{13} < 13^\circ \).

From oscillations we don’t know:

- The absolute neutrino mass scale
 (direct searches, cosmology: \(m_{1,2,3} < 1 \text{ eV} \))

- The mass hierarchy
 (normal \(m_1 < m_2 < m_3 \) or inverted \(m_3 < m_1 < m_2 \)?)

- Dirac or Majorana
 \((\nu \neq \nu^c \text{ or } \nu \equiv \nu^c \text{ [Majorana '37]}) \)
Theory?

What about theory?

In the SM:

- Lepton Number conserved. (also family L_e, L_μ, L_τ separately!)
- Only left neutrinos, there is no renormalizable mass term.
- Effective theory: a $D = 5$ nonrenormalizable operator?

BSM:

- Or new states.
- Question: is it low or high scale physics?
- Physical consequences.
Theory?

What about theory?

In the SM:

- Lepton Number conserved. (also family L_e, L_μ, L_τ separately!)
- Only left neutrinos, there is no renormalizable mass term.
- Effective theory: a $D = 5$ nonrenormalizable operator?

BSM:

- Or new states.
- Question: is it low or high scale physics?
- Physical consequences.
Theory?

What about theory?

In the SM:
- Lepton Number conserved. (also family L_e, L_μ, L_τ separately!)
- Only left neutrinos, there is no renormalizable mass term.
- Effective theory: a $D = 5$ nonrenormalizable operator?

BSM:
- Or new states.
- Question: is it low or high scale physics?
- Physical consequences.
Neutrino masses

- **Dirac mass** ($\Delta L = 0$) – need Right-Handed neutrino ν_R
 \[M_D \overline{\nu_R} \nu_L + h.c. \equiv M_D \nu_R^c C \nu_L \rightarrow M_D \nu_R^\ast \nu_L \beta \delta^{\alpha \beta} + h.c. \]

 M_D generic complex.

 Generated with familiar Yukawa term, $y_D H \bar{\ell}_L \nu_R$.

- **Majorana mass** ($\Delta L = 2$)
 \[M_L (\overline{\nu^c_L}) \nu_L + h.c. \equiv M_L \nu_L^t C \nu_L \rightarrow M_L \nu_L \alpha \nu_L \beta \epsilon^{\alpha \beta} + h.c. \]

 M_L symmetric!

 Breaks total lepton number L. (as family ones, L_e, L_μ, L_τ.)

 Generated only as effective operator, $\frac{\lambda}{M}(\bar{\ell}H)(H\ell)$.

[Mohapatra, Pal, “Massive neutrinos in physics and astrophysics”]
[Denner et al, “Compact Feynman rules for Majorana fermions”, PLB291]
[Dreiner, Haber, Martin, “Feynman Rules using two-component spinor notation”]
Neutrino masses

- **Dirac mass** ($\Delta L = 0$) – need **Right-Handed neutrino** ν_R

 \[M_D \bar{\nu}_R \nu_L + h.c. \equiv M_D \nu_R^c C \nu_L \rightarrow M_D \nu_R^* \alpha \nu_L \beta \delta^{\alpha \beta} + h.c. \]

 M_D generic complex.

 Generated with familiar Yukawa term, $y_D \ H \bar{\ell}_L \nu_R$.

- **Majorana mass** ($\Delta L = 2$)

 \[M_L (\nu_L^c) \nu_L + h.c. \equiv M_L \nu_L^t C \nu_L \rightarrow M_L \nu_L \alpha \nu_L \beta \epsilon^{\alpha \beta} + h.c. \]

 M_L symmetric!

 Breaks total lepton number L. (as family ones, L_e, L_μ, L_τ.)

 Generated only as effective operator, $\frac{\lambda}{M} (\ell H)(H \ell)$.

 [Mohapatra, Pal, “Massive neutrinos in physics and astrophysics”]
 [Denner et al, “Compact Feynman rules for Majorana fermions”, PLB291]
 [Dreiner, Haber, Martin, “Feynman Rules using two-component spinor notation”]
Neutrino masses

- **Dirac** mass ($\Delta L = 0$) – need **Right-Handed neutrino** ν_R

 \[M_D \overline{\nu_R} \nu_L + h.c. \equiv M_D \nu_R^c C \nu_L \rightarrow M_D \nu_R^* \nu_L \beta \delta \alpha \beta + h.c. \]

 M_D generic complex.

 Generated with familiar Yukawa term, $y_D H \overline{\ell_L} \nu_R$.

- **Majorana** mass ($\Delta L = 2$)

 \[M_L (\overline{\nu^c_L}) \nu_L + h.c. \equiv M_L \nu_L^c C \nu_L \rightarrow M_L \nu_L \alpha \nu_L \beta \epsilon \alpha \beta + h.c. \]

 M_L symmetric!

 Breaks total lepton number L. (as **family** ones, L_e, L_μ, L_τ.)

 Generated only as effective operator, $\frac{\lambda}{M}(\ell H)(H \ell)$.

>[Mohapatra, Pal, “Massive neutrinos in physics and astrophysics”]
>[Denner et al, “Compact Feynman rules for Majorana fermions”, PLB291]
>[Dreiner, Haber, Martin, “Feynman Rules using two-component spinor notation”]
Neutrino masses

- **Dirac mass** \((\Delta L = 0)\) – need **Right-Handed neutrino** \(\nu_R\)

\[
M_D \bar{\nu}_R \nu_L + h.c. \equiv M_D \nu_{R}^{ct} C \nu_L \rightarrow M_D \nu_{R}^{* \alpha} \nu_L \beta \delta^{\alpha \beta} + h.c.
\]

\(M_D\) generic complex.
Generated with familiar Yukawa term, \(y_D H \bar{\ell}_L \nu_R\).

- **Majorana mass** \((\Delta L = 2)\)

\[
M_L (\bar{\nu}_L^c) \nu_L + h.c. \equiv M_L \nu_{L}^{t} C \nu_L \rightarrow M_L \nu_{L}^{\alpha} \nu_L \beta \epsilon^{\alpha \beta} + h.c.
\]

\(M_L\) symmetric!
Breaks total lepton number \(L\). (as *family* ones, \(L_e, L_\mu, L_\tau\).)
Generated only as effective operator, \(\frac{\lambda}{M} (\ell H)(H \ell)\).

[Mohapatra, Pal, “Massive neutrinos in physics and astrophysics”]
[Denner et al, “Compact Feynman rules for Majorana fermions”, PLB291]
[Dreiner, Haber, Martin, “Feynman Rules using two-component spinor notation”]
Seesaw (type-I)

Once present, the singlet ν_R can have renormalizable Majorana mass. So,

$$\begin{pmatrix} \nu_L & \nu_R^c \end{pmatrix} \begin{pmatrix} 0 & M_D^t \\ M_D & M_R \end{pmatrix} \begin{pmatrix} \nu_L \\ \nu_R^c \end{pmatrix}.$$

- **Seesaw**: if $M_R \gg M_D$, the mass matrix is $\begin{pmatrix} M_\nu & 0 \\ 0 & M_N \end{pmatrix}$,

$$M_\nu \simeq -M_D^t M_R^{-1} M_D, \quad M_\nu \simeq M_R,$$

M_R large \Rightarrow M_ν small.

(eigenstates: light Majorana and heavy Majorana)

[Minkowski '77, Mohapatra Senjanović '79, GRS '79, Glashow '79; Yanagida '79]
Seesaw (type-I)

Once present, the singlet ν_R can have renormalizable Majorana mass. So,

\[
\begin{pmatrix}
\nu_L & \nu_R^c
\end{pmatrix}
\begin{pmatrix}
0 & M_D^t \\
M_D & M_R
\end{pmatrix}
\begin{pmatrix}
\nu_L \\
\nu_R^c
\end{pmatrix}.
\]

- **Seesaw:** if $M_R \gg M_D$, the mass matrix is

\[
\begin{pmatrix}
M_\nu & 0 \\
0 & M_N
\end{pmatrix},
\]

\[
M_\nu \simeq -M_D^t M_R^{-1} M_D , \quad M_\nu \simeq M_R ,
\]

M_R large $\Rightarrow M_\nu$ small.

(eigenstates: light Majorana and heavy Majorana)

[Minkowski '77, Mohapatra Senjanović '79, GRS '79, Glashow '79; Yanagida '79]
Seesaw (type-I)

Once present, the singlet ν_R can have renormalizable Majorana mass. So,

$$
(\nu_L \quad \nu_R^c) \begin{pmatrix}
0 & M_D^t \\
M_D & M_R \\
\end{pmatrix}
\begin{pmatrix}
\nu_L \\
\nu_R^c \\
\end{pmatrix}.
$$

- **Seesaw**: if $M_R \gg M_D$, the mass matrix is

$$
\begin{pmatrix}
M_\nu & 0 \\
0 & M_N \\
\end{pmatrix},
$$

$$
M_\nu \simeq -M_D^t M_R^{-1} M_D, \quad M_\nu \simeq M_R,
$$

M_R large \Rightarrow M_ν small.

(eigenstates: light Majorana and heavy Majorana)

[Minkowski '77, Mohapatra Senjanović '79, GRS '79, Glashow '79; Yanagida '79]

But what can M_D and M_R be?
Scales m_D, m_R quite free... (yukawa perturbativity, $M_D < 500$GeV)

Some scenarios using $m_\nu = m_D^2/m_R \lesssim 1$eV

- $m_D \sim 100$GeV – (like heavy quarks?)
 \[
m_D^2/m_\nu = m_R \gtrsim 10^{13-15}$GeV, \]
 High scale physics

 Fits with GUT scenario, related to B?, ...

- $m_D \lesssim$ MeV – Now one can have much lower m_R:
 \[
m_D^2/m_\nu = m_R \lesssim$ TeV, \]
 Collider scale

More interesting:

m_R associated to physical states: observable (see later)

Seesaw-I not the only possibility...
Seesaw (type-I) - at which scale?

Scales m_D, m_R quite free... (yukawa perturbativity, $M_D < 500\text{GeV}$)

Some scenarios using $m_\nu = m_D^2/m_R \lesssim 1\text{ eV}$ ignoring mixings

- $m_D \sim 100\text{ GeV}$ – (like heavy quarks?)

$$m_D^2/m_\nu = m_R \gtrsim 10^{13\div15}\text{ GeV},$$

High scale physics

Fits with GUT scenario, related to B^-?, ... [Bajc lectures]

- $m_D \lesssim \text{MeV}$ – Now one can have much lower m_R:

$$m_D^2/m_\nu = m_R \lesssim \text{TeV},$$

Collider scale

More interesting:

m_R associated to physical states: observable (see later)

Seesaw-I not the only possibility...
Seesaw (type-I) - at which scale?

Scales m_D, m_R quite free... (yukawa perturbativity, $M_D < 500$GeV)

Some scenarios using $m_\nu = m_D^2/m_R \lesssim 1$ eV ignoring mixings

- $m_D \sim 100$ GeV – (like heavy quarks?)

$$m_D^2/m_\nu = m_R \gtrsim 10^{13-15}$ GeV, High scale physics

Fits with GUT scenario, related to B^-?, ...

- $m_D \lesssim$ MeV – Now one can have much lower m_R:

$$m_D^2/m_\nu = m_R \lesssim$ TeV, Collider scale

More interesting:

m_R associated to physical states: observable (see later)

Seesaw-I not the only possibility...
Seesaw (type-I) - at which scale?

Scales m_D, m_R quite free... (yukawa perturbativity, $M_D < 500\text{GeV}$)

Some scenarios using $m_\nu = m_D^2/m_R \lesssim 1\text{eV}$ ignoring mixings

- $m_D \sim 100\text{GeV}$ – (like heavy quarks?)

$$m_D^2/m_\nu = m_R \gtrsim 10^{13\div15}\text{GeV},$$ High scale physics

Fits with GUT scenario, releted to $B\?,\ldots$ [Bajc lectures]

- $m_D \lesssim \text{MeV}$ – Now one can have much lower m_R:

$$m_D^2/m_\nu = m_R \lesssim \text{TeV},$$ Collider scale

More interesting:

m_R associated to physical states: observable (see later)

Seesaw-I not the only possibility...
Seesaw (type-II)

- In a $SU(2) \times U(1)_Y$ theory, the lepton doublet ℓ can couple also with a triplet scalar field $\Delta_L \in (3, 1)$:

$$\mathcal{L}_{Y\Delta} = Y_\Delta \ell_L^t \tau_2 \Delta_L \ell_L$$

with symmetric Y_Δ. In components

$$\Delta_L = \begin{pmatrix} \delta^+ / \sqrt{2} & \delta^{++} \\ \delta^0 & -\delta^+ / \sqrt{2} \end{pmatrix}$$

- If it has a (neutral!) VEV $\langle \delta^0 \rangle = v_L$, it generates a neutrino Majorana mass $M_L \nu^t_L \nu_L$, with

$$M_L = Y_\Delta v_L.$$

- The triplet couples to Higgs, $m_\Delta^2 \Delta^2 + m_\Delta H \Delta H$. (\(m_\Delta \gg v\))

So it has a naturally small VEV, \(v_L \sim v^2 / m_\Delta\).

$$M_\nu \sim Y_\Delta v^2 / m_\Delta$$

Again, large \(m_\Delta \rightarrow \) small \(M_L\).
Seesaw (type-II)

- In a $SU(2) \times U(1)_Y$ theory, the lepton doublet ℓ can couple also with a \textbf{triplet} scalar field $\Delta_L \in (3, 1)$:

$$\mathcal{L}_{Y\Delta} = Y_\Delta \ell_L^t \tau_2 \Delta_L \ell_L$$

with symmetric Y_Δ. In components

$$\Delta_L = \begin{pmatrix} \delta^+ / \sqrt{2} & \delta^{++} \\ \delta^0 & -\delta^+ / \sqrt{2} \end{pmatrix}$$

- If it has a (neutral!) VEV $\langle \delta^0 \rangle = v_L$, it generates a neutrino Majorana mass $M_L \nu_L^t \nu_L$, with

$$M_L = Y_\Delta v_L.$$

- The triplet couples to Higgs, $m_\Delta^2 \Delta^2 + m_\Delta H \Delta H$. $(m_\Delta \gg v)$

So it has a naturally small VEV, $v_L \sim v^2 / m_\Delta$.

$$M_\nu \sim Y_\Delta v^2 / m_\Delta$$

Again, large $m_\Delta \rightarrow$ small M_L. [Magg, Wetterich, PLB '80]
Seesaw (type-II)

- In a $SU(2) \times U(1)_Y$ theory, the lepton doublet ℓ can couple also with a triplet scalar field $\Delta_L \in (3, 1)$:

$$\mathcal{L}_{Y\Delta} = Y_\Delta \ell^t_L \tau_2 \Delta_L \ell_L$$

with symmetric Y_Δ. In components

$$\Delta_L = \begin{pmatrix} \delta^+ / \sqrt{2} & \delta^{++} \\ \delta^0 & -\delta^+ / \sqrt{2} \end{pmatrix}$$

- If it has a (neutral!) VEV $\langle \delta^0 \rangle = v_L$, it generates a neutrino Majorana mass $M_L \nu^t_L \nu_L$, with

$$M_L = Y_\Delta v_L.$$

- The triplet couples to Higgs, $m_\Delta^2 \Delta^2 + m_\Delta H \Delta H$. ($m_\Delta \gg v$) So it has a naturally small VEV, $v_L \sim v^2 / m_\Delta$.

$$M_\nu \sim Y_\Delta v^2 / m_\Delta$$

Again, large $m_\Delta \rightarrow$ small M_L. [Magg, Wetterich, PLB ’80]
Masses, general

Seesaw type-I plus type-II lead to the general scenario:

\[
\begin{pmatrix}
\nu_L & \nu^c_R
\end{pmatrix}
\begin{pmatrix}
M_L & M^t_D \\
M_D & M_R
\end{pmatrix}
\begin{pmatrix}
\nu_L \\
\nu^c_R
\end{pmatrix}.
\]

with \(M_L, M_D \ll M_R\).

- Eliminating the \(M_D\) mixing, one gets \(\begin{pmatrix} M_\nu & 0 \\ 0 & M_N \end{pmatrix}\), with

\[
M_\nu \simeq M_L - M^t_D \frac{1}{M_R} M_D, \quad M_N \simeq M_R.
\]

- Note, now that there can be cancelations to get light \(M_\nu\).

And there can be cancelations also inside \(M^t_D M_R^{-1} M_D\).

(see Casas-Ibarra parametrization of \(M_D\))
Masses, general

Seesaw type-I plus type-II lead to the general scenario:

\[
(\nu_L \quad \nu_R^C) \begin{pmatrix} M_L & M_D^t \\ M_D & M_R \end{pmatrix} (\nu_L \quad \nu_R^C)
\]

with \(M_L, M_D \ll M_R \).

- Eliminating the \(M_D \) mixing, one gets \(\begin{pmatrix} M_{\nu} & 0 \\ 0 & M_N \end{pmatrix} \), with

\[
M_{\nu} \simeq M_L - M_D^t \frac{1}{M_R} M_D, \quad M_N \simeq M_R.
\]

- Note, now that there can be cancelations to get light \(M_{\nu} \).

And there can be cancelations also inside \(M_D^t M_R^{-1} M_D \).

(see Casas-Ibarra parametrization of \(M_D \))
Neutrino at Collider - I
F. Nesti

Outline
Neutrino
Dirac vs Majorana
Seesaws
Diagonalization
Lepton Violation
$0\nu\beta\beta$
Experiments
New Physics

Masses, diagonalization

Now, as for quarks, mass eigenstates are not flavour ones.
Charged leptons-neutrino mismatch enters Left charged current.

\[M_e = V_{eL} m_e V_{eR}^\dagger \]
\[M_\nu = V_{\nu L} m_\nu V_{\nu R}^\dagger \]
\[U_{PMNS} = V_{eL}^\dagger V_{\nu L} = \begin{bmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu1} & U_{\mu2} & U_{\mu3} \\ U_{\tau1} & U_{\tau2} & U_{\tau3} \end{bmatrix} = \begin{bmatrix} c_{13} & s_{13}e^{-i\delta} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & e^{i\alpha_1} & 0 \\ 0 & e^{i\alpha_2} & 1 \end{bmatrix} \]

- **Dirac mass, generic complex**
 \[V_{\nu L} \neq V_{\nu R} \]
 so 5 external phases irrelevant.
 (Kinetic, current and masses respect $U(1)_{L_x}$!)
 Only \mathcal{CP} from the 'Dirac' phase, as in CKM (U_{e3} suppressed).

- **Majorana mass, complex symmetric**
 \[V_{\nu R} \equiv V_{\nu L}^* \]
 Now the two phases α_1 and α_2 can not be removed!
 (i.e. Majorana mass breaks lepton numbers!)
 These phases however appear only in LNV processes.
Neutrino at Collider - I
F. Nesti

Outline
Neutrino
Dirac vs Majorana
Seesaws
Diagonalization
Lepton Violation
0νββ Experiments
New Physics

Masses, diagonalization

Now, as for quarks, mass eigenstates are not flavour ones. Charged leptons-neutrino mismatch enters Left charged current.

\[
M_e = V_{eL} m_e V_{eR}^\dagger, \quad U_{PMNS} = V_{eL}^\dagger V_{\nu L} = \begin{bmatrix}
U_{e1} & U_{e2} & U_{e3} \\
U_{\mu1} & U_{\mu2} & U_{\mu3} \\
U_{\tau1} & U_{\tau2} & U_{\tau3}
\end{bmatrix}
\]

\[
M_\nu = V_{\nu L} m_\nu V_{\nu R}^\dagger
\]

\[
= \begin{bmatrix}
e^{i\alpha_e} & 0 & 0 \\
e^{i\alpha_\mu} & 0 & 0 \\
e^{i\alpha_\tau} & 0 & 0
\end{bmatrix}
\begin{bmatrix}
1 & 0 & 0 \\
0 & c_{23} & s_{23} \\
0 & -s_{23} & c_{23}
\end{bmatrix}
\begin{bmatrix}
c_{13} & 0 & s_{13}e^{-i\delta} \\
0 & 1 & 0 \\
-s_{13}e^{i\delta} & 0 & c_{13}
\end{bmatrix}
\begin{bmatrix}
c_{12} & s_{12} & 0 \\
-s_{12} & c_{12} & 0 \\
0 & 0 & 1
\end{bmatrix}
\]

\[
= \begin{bmatrix}
1 & 0 & 0 \\
0 & e^{i\alpha_1} & 0 \\
0 & 0 & e^{i\alpha_2}
\end{bmatrix}
\]

- **Dirac** mass, generic complex

 so 5 external phases irrelevant.

 (Kinetic, current and masses respect $U(1)_{L_X}$!)

 Only \mathcal{CP} from the 'Dirac' phase, as in CKM (U_{e3} suppressed).

- **Majorana** mass, complex symmetric

 Now the two phases α_1 and α_2 can not be removed!

 (i.e. Majorana mass breaks lepton numbers!)

 These phases however appear only in LNV processes.
Masses, diagonalization

Now, as for quarks, mass eigenstates are not flavour ones. Charged leptons-neutrino mismatch enters Left charged current.

\[
M_e = V_{eL} \, m_e \, V_{eR}^\dagger, \quad U_{PMNS} = V_{eL}^\dagger \, V_{\nu L} = \begin{bmatrix}
U_{e1} & U_{e2} & U_{e3} \\
U_{\mu1} & U_{\mu2} & U_{\mu3} \\
U_{\tau1} & U_{\tau2} & U_{\tau3}
\end{bmatrix},
\]

\[
M_\nu = V_{\nu L} \, m_\nu \, V_{\nu R}^\dagger.
\]

\[
\begin{bmatrix}
e^{i\alpha_e} & 0 & 0 \\
0 & e^{i\alpha_\mu} & 0 \\
0 & 0 & e^{i\alpha_\tau}
\end{bmatrix}
\begin{bmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{bmatrix}
\begin{bmatrix} c_{13} & 0 & s_{13} e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13} e^{i\delta} & 0 & c_{13} \end{bmatrix}
\begin{bmatrix}
c_{12} & s_{12} & 0 \\
-s_{12} & c_{12} & 0 \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix} 1 & 0 & 0 \\ 0 & e^{i\alpha_1} & 0 \\ 0 & 0 & e^{i\alpha_2} \end{bmatrix}
\]

- **Dirac** mass, generic complex \(V_{\nu L} \neq V_{\nu R} \)
 - so 5 external phases irrelevant.
 - (Kinetic, current and masses respect \(U(1)_{Lx} \)!) Only \(CP \) from the 'Dirac' phase, as in CKM (\(U_{e3} \) suppressed).

- **Majorana** mass, complex symmetric \(V_{\nu R} \equiv V_{\nu L}^* \)
 - Now the two phases \(\alpha_1 \) and \(\alpha_2 \) can not be removed!
 - (i.e. Majorana mass breaks lepton numbers!)
 - These phases however appear only in LNV processes.
Neutrino - up to now

What we saw:

- Neutrino have masses (Dirac or Majorana)
- Need extension of the SM.
- Add heavy $\nu_R \rightarrow$ seesaw-I.
- Add heavy $\Delta_L \rightarrow$ seesaw-II.

- Majorana violates Lepton number by two units
- Two extra ‘Majorana’ CP phases in the mixing matrix U_{PMNS}.

let’s look at consequences...
Lepton number violation, consequences

\[W^- \rightarrow \nu \nu W^+ \]

Lepton number violation, consequences

Outline

Neutrino

Dirac vs Majorana

Seesaws

Diagonalization

Lepton Violation

$0\nu\beta\beta$

Experiments

New Physics
Lepton number violation, consequences

- Nuclear neutrinoless double beta decay:
 \[^A_ZX \rightarrow ^{A+2}_ZX + 2e^- \]
 \[\cdots \tau_{0\nu\beta\beta} \gtrsim 10^{24} y, \text{ but testable!} \]
 (and double electron nuclear capture, \[^A_ZX + 2e^- \rightarrow ^{A-2}_ZX, \text{ etc.} \])

[Racah, Nuovo Cim. '37]
Lepton number violation, consequences

- Nuclear neutrinoless double beta decay:

 \[A_X \rightarrow A_X + 2e^- \]

 \[\tau_{0\nu\beta\beta} \gtrsim 10^{24} \text{y}, \text{ but testable!} \]

 (and double electron nuclear capture, \(A_X + 2e^- \rightarrow A_{X-2}, \) etc.)

- Collider: same sign dileptons:

 Very small for standard \(W \ldots \)
Lepton number violation, consequences

- Nuclear neutrinoless double beta decay:
 \[^A_Z X \rightarrow ^{A+2}_Z X + 2e^- \]
 ... \(\tau_{0\nu\beta\beta} \gtrsim 10^{24} \text{y} \), but testable!

 (and double electron nuclear capture,
 \[^A_Z X + 2e^- \rightarrow ^{A}_{Z-2} X \], etc.)

- Collider: same sign dileptons:

 Very small for standard \(W \)...

- Meson neutrinoless double beta decay, e.g. \(K^+ \rightarrow \pi^- \ell^+\ell^+ \)
 \(BR < 10^{-20} \), much less than current limits, \(BR \lesssim 10^{-10} \)

[Racah, Nuovo Cim. ’37]

[Keung Senjanović ’83]

[Littenberg Schrok, ’92]
Neutrino at Collider - I
F. Nesti

Outline

Neutrino
Dirac vs Majorana
Seesaws
Diagonalization

Lepton Violation
$0\nu\beta\beta$
Experiments
New Physics
Neutrinoless double beta decay $0\nu\beta\beta$

- Actually a loop process:
 Neutrino $p \sim 100$ MeV
 Released $Q \sim 3$ MeV.

Decay width:
$\Gamma_{0\nu} = G(Q) |M|^2$

[phase space] [amplitude]

- The amplitude is $M = 8G_F^2 \int d^4x d^4y J^\mu_{had}(x) J^\nu_{had}(y) L_{\mu\nu}(x, y)$
 where the leptonic tensor is (in momentum space)

$$L_{\mu\nu} = \bar{e} \gamma_\mu L \left[\frac{p + M_\nu}{p^2 - M_\nu^2} \right]_{ee} \gamma_\nu R e^c$$

- LNV explicitly related to Majorana neutrino masses.
 Light neutrinos ($M_\nu \ll p \sim 100$ MeV) give

$$L_{\mu\nu} \propto M_{ee}^\mu \frac{1}{p^2}$$
Neutrinoless double beta decay $0\nu\beta\beta$

- Actually a loop process:
 Neutrino $p \sim 100$ MeV
 Released $Q \sim 3$ MeV.

 Decay width:
 $\Gamma_{0\nu} = G(Q) |\mathcal{M}|^2$
 [phase space] [amplitude]

- The amplitude is $\mathcal{M} = 8G_F^2 \int d^4xd^4y J^\mu_{had}(x) J_\nu^{\nu}(y) L_{\mu\nu}(x, y)$
 (in momentum space)

 where the leptonic tensor is

 $$ L_{\mu\nu} = \bar{e} \gamma_\mu L \left[\frac{p + M_\nu}{p^2 - M_\nu^2} \right]_{ee} \gamma_\nu R e^c $$

- LNV explicitly related to Majorana neutrino masses.
 Light neutrinos ($M_\nu \ll p \sim 100$ MeV) give

 $$ L_{\mu\nu} \propto M_{ee}^\nu \frac{1}{p^2} $$
Neutrinoless double beta decay $0\nu\beta\beta$

- Actually a loop process:
 Neutrino $p \sim 100$ MeV
 Released $Q \sim 3$ MeV.

Decay width:
$\Gamma_{0\nu} = G(Q) |\mathcal{M}|^2$

- The amplitude is
 $\mathcal{M} = 8G_F^2 \int d^4x d^4y J_{had}^\mu(x) J_{had}^\nu(y) L_{\mu\nu}(x, y)$

- LNV explicitly related to Majorana neutrino masses.
 Light neutrinos ($M_\nu \ll p \sim 100$ MeV) give

$$L_{\mu\nu} \propto M_{ee}^\nu \frac{1}{p^2}$$
Strenght of LNV in $0\nu\beta\beta$, from standard light neutrinos:

$$M^{ee}_\nu = \sum U^2_{ei} m_i = m_1 |U^2_{e1}| + m_2 |U^2_{e2}| e^{i\alpha_1} + m_3 |U^2_{e3}| e^{i\alpha_2}$$

So, from oscillations, $|U^2_{e1}| \sim 0.6$, $|U^2_{e2}| \sim 0.25$, $|U^2_{e3}| < 0.04$, ... Majorana phases important and there can be a cancelation!
$0
\nu \beta \beta$ cont’d

Strenght of LNV in $0\nu\beta\beta$, from standard light neutrinos:

\[
M_{\nu}^{ee} = \sum U_{e_i}^2 m_i = m_1 |U_{e_1}| + m_2 |U_{e_2}| e^{i\alpha_1} + m_3 |U_{e_3}| e^{i\alpha_2}
\]

- So, from oscillations, \(|U_{e_1}| \sim 0.6, |U_{e_2}| \sim 0.25, |U_{e_3}| < 0.04, \)
 ... Majorana phases important and **there can be a cancelation!**
0νββ cont’d

Strength of LNV in $0νββ$, from standard light neutrinos:

$$M_{ee}^\nu = \sum U_{ei}^2 m_i = m_1 |U_{e1}^2| + m_2 |U_{e2}^2| e^{i\alpha_1} + m_3 |U_{e3}^2| e^{i\alpha_2}$$

- So, from oscillations, $|U_{e1}^2| \sim 0.6$, $|U_{e2}^2| \sim 0.25$, $|U_{e3}^2| < 0.04$, … Majorana phases important and there can be a cancelation!

Possible $0νββ$, as a function of lightest neutrino mass:

Can distinguish the hierarchy. And the absolute mass.

$[\text{Vissani '02}]$
0νββ, matrix elements

Neutrino propagator, i.e. $1/r$ for light e^{-mr}/r for heavy neutrino.

- Well approximated by its typical momentum $p \sim 100 \div 200$ MeV.
- Both for light or heavy neutrino exchange (no core suppression)

$$\left\langle \frac{m_\nu}{p^2} \right\rangle_{nu} \simeq \frac{m_\nu}{p^2}, \quad \left\langle \frac{1}{m_N} \right\rangle_{nu} \sim \frac{1}{m_N}$$
0νββ, matrix elements

Neutrino propagator, i.e. $1/r$ for light e^{-mr}/r for heavy neutrino.

- Well approximated by its typical momentum $p \sim 100 \div 200$ MeV. Both for light or heavy neutrino exchange (no core suppression)

\[
\left\langle \frac{m_\nu}{p^2} \right\rangle \simeq \frac{m_\nu}{p^2}, \quad \left\langle \frac{1}{m_N} \right\rangle \simeq \frac{1}{m_N}
\]

- Real calculation, w/ nuclear models, uncertain by a factor of 20–100–200%
Neutrinoless double beta decay, cont’d

Need to avoid the much more favored single beta decay.

- In some nuclei β-decay is forbidden! [Bethe-Weizsäcker formula]

- Now, $\beta\beta$ can proceed through both $2\nu\beta\beta$, or $0\nu\beta\beta$.

How to distinguish them? – We don’t detect neutrinos.
Neutrinoless double beta decay, cont’d

Need to avoid the much more favored single beta decay.

- In some nuclei β-decay is forbidden!

\[\text{[Bethe-Weizsäcker formula]} \]

- Now, $\beta\beta$ can proceed through both $2\nu\beta\beta$, or $0\nu\beta\beta$.

How to distinguish them? – We don’t detect neutrinos.
Recognized by the spectrum of electrons

In real life, the line is not so definite...
Neutrino double beta decay, evidence

- Heidelberg-Moscow experiment...

...claim of observation (!)[Klapdor-Kleingrothaus+ PLB '04, MPL '06, '10]

$$\tau_{0\nu} \sim 2.2 \times 10^{25} \text{y} \quad (6\sigma\ldots)$$

- This is conservatively translated into

$$m_{\nu}^{ee} \sim (0.4 \pm 0.2) \text{eV}$$
Neutrinoless double beta decay, evidence

- Heidelberg-Moscow experiment...

\[\tau_{0\nu} \sim 2.2 \times 10^{25} \text{y} \]

... claim of observation (!) [Klapdor-Kleingrothaus+, PLB '04, MPL '06, '10]

- This is conservatively translated into

\[m_{\nu}^{ee} \sim (0.4 \pm 0.2) \text{eV} \]
Neutrinoless double beta decay, evidence

- Heidelberg-Moscow experiment...

\[\tau_{0\nu} \sim 2.2 \times 10^{25} \text{y} \] (6σ...)

- This is conservatively translated into

\[m_{\nu}^{ee} \sim (0.4 \pm 0.2) \text{eV} \]

If true, evidence of Majorana...
Experiments ongoing!

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Isotope</th>
<th>Mass of Isotope [kg]</th>
<th>Sensitivity $\tau_{1/2}^{0\nu}$ [yrs]</th>
<th>Sensitivity $\langle m_{\nu}\rangle$, meV</th>
<th>Status</th>
<th>Start</th>
</tr>
</thead>
<tbody>
<tr>
<td>GERDA</td>
<td>^{76}Ge</td>
<td>18</td>
<td>3×10^{25}</td>
<td>~ 200</td>
<td>running!</td>
<td>2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>40</td>
<td>2×10^{26}</td>
<td>~ 70</td>
<td>in progress</td>
<td>\sim 2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1000</td>
<td>6×10^{27}</td>
<td>10-40</td>
<td>R&D</td>
<td>\sim 2015</td>
</tr>
<tr>
<td>CUORE</td>
<td>^{130}Te</td>
<td>200</td>
<td>$(6.5 \div 2.1) \times 10^{26}$</td>
<td>20-90</td>
<td>in progress</td>
<td>\sim 2013</td>
</tr>
<tr>
<td>MAJORANA</td>
<td>^{76}Ge</td>
<td>30-60</td>
<td>$(1 \div 2) \times 10^{26}$</td>
<td>70-200</td>
<td>in progress</td>
<td>\sim 2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1000</td>
<td>6×10^{27}</td>
<td>10-40</td>
<td>R&D</td>
<td>\sim 2015</td>
</tr>
<tr>
<td>EXO</td>
<td>^{136}Xe</td>
<td>200</td>
<td>6.4×10^{25}</td>
<td>100-200</td>
<td>in progress</td>
<td>\sim 2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1000</td>
<td>8×10^{26}</td>
<td>30-60</td>
<td>R&D</td>
<td>\sim 2015</td>
</tr>
<tr>
<td>SuperNEMO</td>
<td>^{82}Se</td>
<td>100-200</td>
<td>$(1 - 2) \times 10^{26}$</td>
<td>40-100</td>
<td>R&D</td>
<td>\sim 2013-2015</td>
</tr>
<tr>
<td>KamLAND-Zen</td>
<td>^{136}Xe</td>
<td>400</td>
<td>4×10^{26}</td>
<td>40-80</td>
<td>in progress</td>
<td>\sim 2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1000</td>
<td>10^{27}</td>
<td>25-50</td>
<td>R&D</td>
<td>\sim 2013-2015</td>
</tr>
<tr>
<td>SNO+</td>
<td>^{150}Nd</td>
<td>56</td>
<td>4.5×10^{24}</td>
<td>100-300</td>
<td>in progress</td>
<td>\sim 2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>500</td>
<td>3×10^{25}</td>
<td>40-120</td>
<td>R&D</td>
<td>\sim 2015</td>
</tr>
</tbody>
</table>

For a recent review [Rodejohann, arXiv:1106.1334]

Stay tuned
Cosmology, limits on absolute scale (WMAP-7, SDSS, HST)

\[\sum m_\nu \lesssim 0.4 \div 1 \text{ eV} \]
[WMAP 95\% C.L.]

\[\sum m_\nu \lesssim 0.17 \text{ eV} \]
[Seljak, Slosar, Mcdonald 06]

\[\sum m_\nu \lesssim 0.44 \div 1 \text{ eV} \]
[Hannestad+ '08, Hamann+ '10]

…shrink…
Future clash with cosmology?

- Cosmology, limits on absolute scale (WMAP-7, SDSS, HST)
 \[\sum m_\nu \lesssim 0.4 \div 1 \text{ eV} \]
 \[\sum m_\nu \lesssim 0.17 \text{ eV} \]
 \[\sum m_\nu \lesssim 0.44 \div 1 \text{ eV} \]

 ...shrinking toward incompatibility with evidences of $0\nu\beta\beta$...
Future clash with cosmology?

- Cosmology, limits on absolute scale (WMAP-7, SDSS, HST)
 \[\sum m_\nu \lesssim 0.4 \div 1 \text{ eV} \]
 \[\sum m_\nu \lesssim 0.17 \text{ eV} \]
 \[\sum m_\nu \lesssim 0.44 \div 1 \text{ eV} \]

 \ldots shrinking toward incompatibility with evidences of $0\nu\beta\beta$\ldots
 \ldots in this case, need new physics beyond light neutrinos!
New Physics - where? when?

If m_{ee}^ν excluded by cosmology, can new Physics do the job?

Try to guess at the level of effective operators...

- The 'New Physics' operator is dimension 9
 \[O_{NP} = \lambda \frac{nnppee}{\Lambda^5} \]

- Require new physics amplitude to saturate $m_{ee}^\nu \sim eV$
 \[A_{0\nu}^{NP} = \frac{\lambda}{\Lambda^5} \quad \leftrightarrow \quad A_{0\nu}^{m\nu} = G_F^2 \frac{m_\nu}{p^2} \]

Result, the amplitudes are comparable for (say $\lambda \sim G_F^2 M_{W}^4$)

\[\Lambda \sim TeV. \]

...something would be expected at collider.
New Physics - where? when?

If \(m_{ee}^{\nu} \) excluded by cosmology, can new Physics do the job?

Try to guess at the level of effective operators…

- The ‘New Physics’ operator is dimension 9

\[
O_{NP} = \lambda \frac{nnppee}{\Lambda^5}
\]

- Require new physics amplitude to saturate \(m_{ee}^{\nu} \sim eV \)

\[
A_{0\nu}^{NP} = \frac{\lambda}{\Lambda^5} \quad \leftrightarrow \quad A_{0\nu}^{m\nu} = G_F^2 \frac{m_{\nu}}{p^2}
\]

Result, the amplitudes are comparable for (say \(\lambda \sim G_F^2 M_W^4 \))

\[
\Lambda \sim \text{TeV}.
\]

…something would be expected at collider.
New Physics - where? when?

If m_{ν}^{ee} excluded by cosmology, can new Physics do the job?

Try to guess at the level of effective operators...

- The ‘New Physics’ operator is dimension 9

$$O_{NP} = \lambda \frac{n nppee}{\Lambda^5}$$

- Require new physics amplitude to saturate $m_{\nu}^{ee} \sim eV$

$$A_{0\nu}^{NP} = \frac{\lambda}{\Lambda^5} \iff A_{0\nu}^{m_{\nu}} = G_F \frac{m_{\nu}}{p^2}$$

Result, the amplitudes are comparable for (say $\lambda \sim G_F^2 M_W^4$)

$$\Lambda \sim \text{TeV}.$$

... something would be expected at collider.
New Physics - where? when?

If m_{ν}^{ee} excluded by cosmology, can new Physics do the job?

Try to guess at the level of effective operators...

- The ‘New Physics’ operator is dimension 9

$$O_{NP} = \lambda \frac{nnppee}{\Lambda^5}$$

- Require new physics amplitude to saturate $m_{\nu}^{ee} \sim eV$

$$A_{0\nu}^{NP} = \frac{\lambda}{\Lambda^5} \iff A_{0\nu}^{m_{\nu}} = G_F^2 \frac{m_{\nu}}{p^2}$$

Result, the amplitudes are comparable for (say $\lambda \sim G_F^2 M_W^4$)

$$\Lambda \sim TeV.$$
Neutrino, recap

- Neutrino have mass
- Majorana? (κ, and possible $0\nu\beta\beta$).
- Possibly an effective operator: (not telling us the origin)
 \[
 \frac{\lambda}{M} (\ell H)^t (H \ell),
 \]
 [Weinberg '79]
- Realizations, e.g. type-I seesaw: (y and M quite free)
 \[
 y \bar{\ell} H \nu_R + M \nu_R^t \nu_R
 \]
- $0\nu\beta\beta$ probes, may require new physics beyond neutrino, at TeV.
Neutrino, recap

- Neutrino have mass
- Majorana? (ν, and possible 0νββ).
- Possibly an effective operator: (not telling us the origin)
 \[
 \frac{\lambda}{M} (\ell H)^t (H \ell),
 \]
 [Weinberg '79]
- Realizations, e.g. type-I seesaw: (y and M quite free)
 \[
 y \bar{\ell} H \nu_R + M \nu^t_R \nu_R
 \]
- 0νββ probes, may require new physics beyond neutrino, at TeV.
- So... maybe TeV M hints to something? New interactions?
 ... e.g.: M breaks lepton number, B − L, ...
- Maybe we can test a low M and new forces at LHC?
 (Yes, because of ν at collider.)

Hints from quantum numbers...

Tomorrow.