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1. — Introduction

In this lectures I will review recent developments in the atomistic simulation of matter
at extreme conditions of pressure and temperature. The idea of simulating the behavior
of matter by directly solving on the computer the Newton’s equations for a collection of
atoms has been first proposed by E. Fermi [1] in the ’40s, although the first systematic
studies started only later, in the ’60s, thanks to the pioneering work of A. Rahman [2].
Since then, the exponential increase in the computer power and the continuous refinement
of the simulation techniques have turned computer simulations from a toy model of
statistical physics into an extremely valuable and predictive tool [3]. The application
of atomistic simulations is now widespread in many fields of condensed matter physics,
materials science, and chemistry.

High pressure phenomena is one of the fields that have benefited more from com-
puter simulations. In fact, contrary to experiments, where every minor increase in the
maximum achievable pressure is considered as a major technical challenge, atomistic sim-
ulations at high pressure just require to confine the same number of particles in a smaller
simulation box, with periodic boundary conditions, to achieve arbitrarily high pressures.
This statement is of course too simplistic. Reducing the average interatomic distances
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poses in fact a number of methodologically problems that have challenged theorists for
decades. In the first place, thermodynamics imposes that pressure — and not volume —
be the expernal “knob” that one should fix. Suppose that we are interested in the phase
transformation of a material from phase A to phase B, with a large volume collapse (e.g.
carbon from graphite to diamond). If we were to confine our collection of carbon atoms
in a simulation box of fixed shape and volume, initially fitting the shape of the graphite
crystal, then the direct transformation of the atomic positions from the graphite to the
diamond lattice would be strongly hindered by the energy cost (elastic energy in the
case of a uniform strain or surface energy in the case of creation of voids) required to
fit the diamond lattice in the same box. In other words, if the number of atoms and
the volume are both conserved, then density changes — a crucial driving force in most
pressure-induced transitions — are not allowed.

An even more challenging problem for atomistic simulation is the choice of the inter-
atomic potential. Evolving the Newton’s equations
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for a collection of N atoms with positions {R1, Ras,...Rx}, implies that the force field,
or more precisely, the potential V(Ry,Ra,..Ry) of interaction among them is given. A
very convenient way to construct interatomic potentials consists in approximating them
through appropriately chosen functional forms tailored to capture the physics of the sys-
tem under consideration. The parameters of the functional form are then adjusted to fit
known experimental properties (e.g. equilibrium volumes, distances, bulk moduli, etc.).
The simplest example is the case of condensed rare gases, where atoms can be reasonably
well approximated by rigid spheres, so that the potential is typically approximated by a
sum of pair (two-body) interatomic contributions
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with ® having a repulsive (attractive) character at short (long) distances, and a mini-
mum at a distance roughly corresponding to the equilibrium (zero-pressure) interatomic
spacing. However, for the vast majority of materials the approximation of eq. (2) is
too crude, and more complex functional forms have been introduced, that include three-
body and higher-order terms, or even with an explicit dependence on the local atomic
environment. In the study of high pressure phenomena the problem of constructing a
reliable interatomic potential is particularly severe. When pressure is increased, in fact,
interatomic distances vary over of wide range, often wider than the range of validity of a
given functional form. It turns out that in most cases it is impossible to reproduce with
the same functional form the behavior of a material at completely different conditions
of pressure and temperature. This is particularly true when pressure induces chemical
and/or electronic changes, but may also be the case for simple metals, as will be shown
in in Section 2.6 .
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The problem of determining the best functional form for V' ceases to exist if we look
instead for a brute force derivation of V from “first principles”, based on the laws of
quantum mechanics. Although by doing so the complexity of the problem increases dra-
matically, implying for example that a much smaller number of atoms can be simulated
and for much shorter times than conventional simulations, the accuracy of the results
obtained from such a first-principles approach is unparalleled. Thanks to the availability
of increasingly powerful computer and to the methodological advances described in the
following sections, first-principles simulations have now become a reliable and predictive
tool to investigate the behavior of matter at high-pressure, complementing experiments
when these are available, and extending our knowledge to conditions of pressure and
temperature presently unreachable in the laboratory.

2. — Molecular Dynamics

2°1. Basic concepts. — Molecular dynamics, or MD for short (for historical reasons we
keep calling the method “molecular” dynamics even if the dynamical entities are actually
the atoms) consists of solving the Newton’s equations (1) for a collection of atoms whose
positions are constrained within a simulation box defined by the three edges a,b,c, or
equivalently by the 3 x 3 matrix h = (a, b, ¢). Periodic boundary conditions are applied
in order to mimick the extended system and minimize the energy cost of a free surface (in
the absence of periodic boundary conditions even for a simulation box containing as much
as 10% atoms half of the atoms would be at the surface). The dynamics are evolved by
discretizing Newton’s equations with a sufficiently small but finite time step (typically of
the order of 107'+10715s). The overall simulation time depends on the complexity of the
potential and on the number of atoms. It can range from 10~?s in the case of “empirical”
potentials (where the number of atoms can reach a few millions), down to a 10~ !!s for
first-principles simulation (where the number of atoms is limited to about 102). Analysis
of the atomic trajectories provides information on the structural (lattice parameters,
interatomic distances, angles, etc.), thermodynamical (thermal expansion, heat capacity,
phase diagrams, etc.) and dynamical (vibrations, elastic constants, transport, diffusion,
viscosity, etc.) properties of the system under study. I refer the reader to textbooks [4, 5]
and to a collection of relevant papers [6] for further details.

2°2. Molecular dynamics at constant pressure. — In order to overcome the limitations,
illustrated in Section I, deriving from the choice of a fixed simulation box, Parrinello and
Rahman [7, 8] have extended the earlier idea, due to Andersen [9], of allowing the volume
of the box to adjust according to the required pressure, and transformed the simulation
box into a fully dynamical variable, driven by an appropriate equation of motion.

Let us consider a generic simulation box described by the matrix h;;. The position
R of an atom in the box can be written as:

(3) R; = hS;

where Sy is the “scaled” position of atom I, whose components vary between 0 and 1.
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In standard MD the cell (the matrix h) is fixed, and the dynamics for the independent
degrees of freedom {R} are obtained from the lagrangian

N
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In the Parrinello-Rahman method, h and Sy are both independent degrees of freedom,
and their dynamics are obtained from the modified lagrangian

N
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where P is the pressure we want to impose (it is a parameter that has to be fixed at
the outset), Q is the cell volume, itself a function of h (2 = Det(h)), and W is the
inertial “mass” of the cell, a fictitiuous parameter that controls the time scale of the
cell dynamics. Three major differences can be noticed in eq. (5), with respect to (4).
First, since we want to impose pressure (P) as the external thermodynamical variable,
the correct thermodynamical potential is now the enthalpy H = E + P, and therefore
the lagrangian (5) contains an additional —P() term. Second, the cell dynamics requires
a (fictitiuous) kinetic energy associated with the cell parameters; this is the third term
in the right-hand side of (5). Third, the kinetic energy of the atoms is written, in (5), in
terms of the “internal” velocity hS 1, which differs from RI by the term hS 1. All these
differences are required for a proper thermodynamic treatment of pressure, and it can
actually be proven that lagrangian (5) samples exactly the isobaric ensemble of statistical
mechanics [10].
The equations of motion that can be derived from the lagrangian (5) are:
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where greek letters are cartesian indices, summation over repeated indices is assumed,
and where

(7 Gap = hyahyp
The stress tensor II is defined as
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The equations of motion (6a) for the atomic positions are modified with respect to the
standard Newton’s equations (1) by the addition of a term that accounts for the variation
of the metric tensor G, while a new equation of motion (eq. 6b) is introduced for the cell
parameters. The dynamics of the cell parameters in (6b) is controlled by the unbalance
between the imposed pressure P and the instantaneously calculated value of the stress
tensor (8). At equilibrium (A = 0) the shape and volume of the cell will be such that the
internal stress coincides with the external pressure P. During the dynamics, however,
the cell edges fluctuate dynamically around the equilibrium position.

It is not difficult to show [11] that the lagrangian (5) has the constant of motion

1 1 .
(10) Hp = > MV} +V(Ra,...,Ry) + PO+ §WTr(hth) ,
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which corresponds to the enthalpy H of the system, apart for the last term, which
becomes negligible for large N (its contribution to H at equilibrium is %kBT).

Although the lagrangian (5) allows the exploration of the constant-pressure statistical
ensemble for every value of W, this is only true in priciple, i.e. if averages are taken over
an infinitely long simulation time. In practice, the choice of W is dictated by the need to
ensure the most efficient coupling with the “real” degrees of freedom, namely the atomic
coordinates Sr. In fact, if the goal of the simulation is to reproduce a phase transition,
the cell parameters have to respond as quickly as possible to the tendency of the atoms
to move from the positions characterising the initial phase to those corresponding to the
new phase.

After the original work of Parrinello and Rahman [7] several variants of the constant-
pressure MD methodology have been proposed. Instead of considering the cell matrix
h as the dynamical variable, a fictitiuous dynamics on the strain tensor [12] or on
the metric tensor [13] has been shown to prevent occasional spurious rotations of the
cell matrix. MD under non-isotropic compression conditions has also been shown to be
feasible with a suitable modification of the cell dynamics and has been used to simulate
transformations under uniaxial stress [8]. More recently, a technique to force the MD
to satisfy the Hugoniot compression curve has been developed and tested [14], and a
new method to study phase transitions in clusters proposed [15, 16]. Finally, it should
be mentioned that although here we have only focused on MD at constant pressure, a
very similar methodology exists to force the dynamics to sample the canonical ensemble
(constant temperature) [17], and that the two techniques can be merged, with a few
caveats [18] .

2°3. First-principles MD. — Here we will concentrate on the problem of determining a
reliable interatomic potential, to be used in the MD equations (6). The approach we will
follow starts from the “first principles”, namely from the fundamental quantum mechan-
ical laws that govern the behavior of a collection of electrons and nuclei. Although we
know very well what these laws are — the Schridinger equation for the coupled electrons-
nuclei system — solving them on the computer without any further approximation would
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require an exceptional effort, many orders of magnitude more than what is available at
present, in terms of computer memory and speed. The first approximation we are go-
ing to introduce is the so called “adiabatic”, or Born-Oppenheimer approximation [19].
This approximation stems from the consideration that electrons react much faster than
nuclei to external perturbations, due to their smaller mass. As a consequence, electrons
can be considered to be always in their ground state, for every instantaneous nuclear
configuration {R, ..., Ry}. Therefore, the interaction potential V' can be expressed as

(11) V(Rla"'JRN) = <w0|He(R1;---;RN)|¢O>

where 1), is the electronic ground state wavefunction calculated for the nuclear configu-
ration {Ry, ..., Rn}, according to the Hamiltonian

Jj=1,i—1
(12) H,=-— Z 2+ Z __r|
i=1,N, i=1,N. J
:z Pajecias
i=1,N, RI| I=1,N |RI—RJ|

where N, is the number of electrons and Z; the atomic number of atom I. It is worth
to stress that the Hamiltonian (12) acts on the electrons, and depends on {R4, ..., Rx}
only parametrically. This implies that the ground state wavefunction 1), will also depend
parametrically on {R, ..., Rn}, i.e. a different wavefunction is obtained for every nuclear
configuration. Although the problem has been simplified considerably, finding v, for the
Hamiltonian (12) is still an impossible task, at least for systems with more than a few
electrons, because of the many-body nature of the electron-electron Coulomb interaction
(second term in the right-hand side of (12)). Among the approximations that allow to
overcome the problem, those based on density functional theory are probably among the
most widespread and accurate, particularly when dealing with relatively large systems
(hundreds of electrons or more). Density functional theory (DFT) is an ezact theory
that allows one to recast the problem of finding the many-electron ground state of (12)
into the problem of finding the ground state of a system of independent electrons in a
potential that explicitly depends on the electron density [20, 21]. Although the theory
is formally exact, approximations have to be made in order to derive the functional
form of the potential. The most common of these approximations is the so-called local-
density approximation (LDA), whereby the potential is approximated locally with the
functional form of the uniform electron gas, which is known almost exactly from numerical
calculations [22]. The LDA can be systematically improved by adding contributions
from the local gradient of the density (gradient corrections, or GGA). A discussion of
how different GGA functionals perform in different systems would go beyond the scope
of these lectures, so I refer the interested reader to the vast literature existing on the
subject [23].
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A final approximation that is commonly made in first-principles calculations is to
assume that core states are actually frozen to their atomic shape and energy. Orthogo-
nalization of the valence states to the core states is ensured by the replacement of the
electron-nuclei Coulomb potential, the third term in the right-hand side of (12), with a
so-called “pseudopotential”, whose scattering properties are constrained to be identical
to those of the full atomic potential. A database of pseudopotentials for almost every
element of the periodic table has been published [24]. When the basis set over which
the wave functions are expended consists of plane waves, a very popular choice in first-
principles codes, smoother pseudopotentials [25] may be less demanding in terms of basis
set size.

The above approximations have finally brought the problem into the category of those
that can be nowadays solved numerically on a powerful computer. To summarize, a rough
flow chart of how the MD time step is accomplished in a first-principles MD code consists
of (a) choosing an initial set of nuclear positions {R4, ..., Ry}, (b) solving the electron
hamiltonian (12), i.e. determining the ground state wave function for that particular
nuclear configuration, (c¢) calculating the forces on the nuclei as the derivative of the
potential (11) [N.B. this can be accomplished either numerically, by finite differences,
or by exploiting the so called Hellman-Feynman theorem, whereby the derivative of the
potential can be expressed as the expectation value of the derivative of the Hamiltonian
in (11), on the ground state wave function], (d) evolving the Newton’s equations for
all nuclei with a finite time step At, i.e. determining the new set of nuclear positions
corresponding to time ¢ + At, and finally going back to (b) with the new set of positions.
This procedure is iterated for a large number of time steps, depending on the system
and on the property under study. In order to integrate Newton’s equations properly, the
time step At of integration must be much smaller than the fastest period of oscillation of
the nuclei. Because typical periods (vibrations, phonons, etc.) are in the 10714 - 10712 5
range, typical At are in the range of a fraction of a fs, which means that a ps of
simulation requires about 10* time steps. One of the computationally heavier steps of
a first-principles MD simulation is the determination of the ground state wave function.
Considering that this step has to be repeated 10* times, most of the methodological
effort has been focused to the search of efficient ways to update the wave function from
one time step to the next one. Most of the differences bewtween existing codes for
first-principles MD [CASTEP (Cambridge), VASP (Vienna), CPMD (Stuttgart/Ziirich),
PARATEC (Berkeley) and FPMD (Trieste), just to name a few] can be ascribed to
different techniques in the way wave functions are evolved.

2'4. The Car-Parrinello method. — A rather original and very efficient way to evolve
the wave functions has been proposed in 1985 by Car and Parrinello [26]. Instead of solv-
ing very accurately the Hamiltonian (12) at each time step, they relaxed the constraint
that the wave function be exactly in the ground state. The exact solution was replaced
by a fictitious dynamics of the wave function about the exact ground state. Although
applied in a completely different context, it is easy to see the analogy with the ideas that
underlie the constant-pressure MD technique discussed in Section 2.2 . Also in that case,
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in fact, the need to adjust the shape and volume of the simulation cell in order to equili-
brate pressure was fulfilled by introducing a fictitious dynamics on the cell parameters,
which were allowed to vary dynamically with the second order (Newton’s like) equations
of motion (6b). In the Car-Parrinello method the solution of the Hamiltonian (12), which
is equivalent to minimize the right-hand side of (11) with respect to the wavefunction, is
replaced by the dynamical evolution of the following “extended” Lagrangian

ZM wz|¢z ZMIR2 E[{vi}, {Ri}] + ZAU ¢1|¢J> U)

ij

where E is the DFT functional, expressed here in terms of the wave functions and,
parametrically, of the positions of the nuclei, y is a fictitious mass that can be used to
control the time scale of the electronic dynamics, and A;; are Lagrange multipliers that
ensure the orthogonality of the wave functions. The equations of motion that can be
obtained from the above Lagrangian are:

(14a) phs = —<— + ZAMLJ
- 1 8E

Eq. (14a) defines the dynamics of the wave functions, which will oscillate (by virtue of
the second order time derivative) around the equilibrium condition

(15) 5 zp, ZAU%

Notice that eq. (15) is the mathematical rephrasing of the DFT prescription of minimis-
ing the DFT functional E with respect to variations of the (orthogonal) set of orbitals.
Eq. (14b) instead coincides with Newton’s equation (1) and the first-principles poten-
tial (11), with the only difference that the wave functions in (145) are not at the exact
ground state. As shown in [27], the period of oscillation of the wave functions around
the ground state scales with ,u%, which means that for a sufficiently small value of y the
oscillations can be made much faster than the typical time scales of the dynamics of the
nuclei. In this limit, the effect of the fast oscillations averages out on the time scale of
the dynamics of the nuclei, and the resulting net force on the nuclei is very similar to
the force that would be calculated with the electrons in their ground state [28]. Further
details on the Car-Parrinello method can be found in review papers [29, 30].

2°5. First-principles MD at constant pressure. — Merging the constant-pressure method
described in Section 2.2 with the first-principles Car-Parrinello method described in Sec-
tion 2.4 is not completely straightforward, and requires some care in the definition of how
the wave functions change upon cell rescaling [31, 32, 33]. The problem can be tackled by
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starting from the Car-Parrinello Lagrangian (13) and expressing all spatial coordinates,
both electronic (r) and nuclear (R), in terms of scaled coordinates, r = hs and R = hS,
as already done in (3). The constant-pressure dynamics can now be introduced by adding
to the original Car-Parrinello Lagrangian (13) the last two terms of the constant-pressure
Lagrangian (5). This yields the first-principles constant-pressure Lagrangian:

(16) zp——uz [ dstis) + ZMIIhSIF By}, (hS1}] +

DY ( [as v - 8;) + Ty - P
ij
with the following definition of the wave function in scaled coordinates:
(17) (s) = VQ ¢u(r) = VQ Y (hs)

where vy, is the wave function expressed in terms of the real coordinate r, and ¢ is the
wave function in scaled coordinates. Notice that ¢ in (17) is correctly normalized when
the integral is performed on ds. Notice also that by using definition (17) we neglect, in
the fictitious kinetic term (first term of Eq. 16), the contribution due to the deformation
of the cell, as already done for the nuclear coordinates (see eq. 9).

The equations of motion for wave functions, nuclear positions and cell that follow
from Lagrangian (16) are:

(18a) ,wﬁbz = 67,[}* + ZAU%
- 1 6E .
(180) St = ~, aRﬂh -G, 5Gpy57,
. 1
(18¢) has = W (Ilyy — Pasy) thw,

Eq. (18a) coincides with the equation of motion (14a) derived in Section 2.4, with the
only difference that 1 is here defined in a slightly different way [see eq. (17)]. Eq. (18b)
coincides with the constant-pressure equation of motion (6a) for the nuclear positions.
Finally, eq. (18¢) coincides with constant-pressure equation of motion (6b), with the
difference that here the stress tensor II is calculated from first-principles [34] .

2'6. Empirical potentials from first-principles simulations. — Although a first-principles
approach to the determination of the interatomic potential is in most cases mandatory,
the very short time scales and small sizes that can be afforded nowadays imply that a
number of properties, in particular those that require long thermalization times or large
spatial scales cannot be obtained entirely from first principles. Among these properties
we can list high-temperature elastic constants, thermal conductivity, phase relations,
mechanical properties (rheology), etc. In most of these cases, simulation times of ns and
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box sizes as large as 10* atoms are required to extract statistically meaningful informa-
tion. An effective trade-off consists of generating empirical potentials that reproduce
with the best possible accuracy the first-principles interatomic potential. This approach
has been vastly explored in the past, mostly by fitting the parameters of appropriate
functional forms to selected low-pressure properties of the materials under study, such as
elastic constants, lattice parameters, defect energies, etc [35]. Alternatively, the param-
eters can be fitted to the ab-initio calculated force constants and geometries of simple
molecular analogues [36]. Finally, in the force-matching method the potential is required
to fit the forces calculated from first principles on a number of different configurations
ranging from clusters, surfaces and bulk solids [37]. It has been shown, however, that
all the above procedures have intrinsic limitations, mostly due to our ignorance of the
exact functional form of the interatomic potential. In the case of aluminium metal, for
example, it has been shown that even including about 170 atomic configurations leads
to a potential with an energetical accuracy of only ~ 0.10 eV/atom [38]. A common
requirement in all the approaches explored so far has been that the potential must be
able to reproduce the first-principles results in a large variety of physical, chemical, or
thermodynamical situations. However, when this requirement is relaxed, and the po-
tential is required to reproduce the behavior of a material only at a specific condition
(e.g. of pressure and temperature), then its accuracy can be dramatically increased [39].
Application of this method to the study of compressed iron will be illustrated in Section
3.10 .

3. — Applications

3°1. Silicon. — Silicon has been often a benchmark system for new first-principles
methodologies. Technically speaking silicon is appealing because of the simple (diamond)
structure, the affordable size of the plane-wave basis set needed to describe its electronic
states, and for the rather good performance of the LDA. The first prediction of pressure-
induced transitions with first-principles methods was indeed carried out for silicon [40].
Silicon was also chosen for the first application of the Car-Parrinello method [26] and of
the constant-pressure extension of the Car-Parrinello method [31]. In Ref. [31] a sponta-
neous transformation from diamond to simple hexagonal was observed in the simulation
at about 30 GPa, roughly 15 GPa above the transition reported in experiments. Similar
results have been obtained in subsequent works [41, 42]. These results, together with the
observation that the simulation did not give the 8-Sn and Imma phases, experimentally
observed in a narrow pressure range between 11 and 16 GPa [43], illustrate very clearly
the limitations of a simulation approach to phase transitions. In the real system, phase
transitions take place in the vast majority of cases through nucleation of the new phase
around a seed that may consists of a thermal fluctuation, or a defect, or anything else
that perturbs locally the initial phase and allows to overcome locally the energy barrier
between the initial and the final phase. The limited size and time scale of the simulations
do not allow the simulated system to sample sufficiently large regions of the phase space.
Therefore, fluctuations are hindered and the transition takes place only when a global
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mechanical instability is approaching. In the case of silicon, for example, it is known that
a mechanical (phonon) instability occurs in the diamond structure at about 30 GPa [44],
in nice agreement with the transition pressure in the simulation. This suggests that great
care has to be used when extracting transition pressures from simulations. On the other
hand, the simulations correctly predict the stability of the simple hexagonal phase at
high pressure, a non trivial result considered the dramatic change in the electronic struc-
ture brought about by the transition, a feature that could be hardly captured without a
first-principles description.

3'2. Carbon. — Carbon is probably the first system where first-principles MD simula-
tions have been used to explore the high-pressure behavior. Constant-volume simulations
of the compressed liquid have shown that the average coordination at megabar pressures
is slightly less than four, indicating that the density of the compressed liquid might be
lower than that of the compressed solid (diamond) at the same pressure [45]. Although
this behavior is “normal”, it indicates that liquid carbon is substantially different from
liquid silicon, which is instead known, both from experiment and from simulations, to be
denser than its solid. The normal behavior of carbon implies that its melting slope dT'/dP
is positive according to the Clausius-Clapeyron relation. This is consistent with recent
shock-wave experiments [46]. Simulations at extremely high pressure indicate however
that the melting slope might eventually become negative [47], due to an increase in coor-
dination in the liquid from four to about six and to the concomitant stability of four-fold
coordinated solid phases up to at least 1000 GPa. In fact, simulations in the solid phase
suggest that not only a six-fold coordinated phase (simple cubic) becomes enthalpically
favored only above 2300 GPa, but they also indicate that a transition to the simple
cubic phase might be hindered by very large energy barriers. Instead, kinetics might
favor the transition of carbon from diamond into a different six-fold coordinated cubic
structure, named SC4, at about 3000 GPa [48]. At lower pressures, constant-pressure
first-principles MD has been used to study the transformation path of graphite to di-
amond. The transformation has been shown to proceed through an intermediate state
consisting in the sliding of the graphite planes from the ABAB stacking characteristic
of hexagonal graphite, the most stable form of carbon at ambient conditions, into an
orthorhombic AB’AB’ stacking, from where perfectly 4-fold coordinated cubic or hexag-
onal diamond was obtained [49]. Finally, simulations under non-isotropic stress [8] have
been performed on diamond with the aim of clarifying its stability and properties at the
tip of a loaded diamond anvil [50]. It was found that diamond becomes mechanically
unstable when the differential stress (the difference between the radial and the vertical
stress) exceeds 200 GPa [51], a condition that may be reached in a diamond anvil for
sample pressures exceeding 300 GPa [52].

3'3. Hydrogen. — The high-pressure phase diagram of hydrogen is reviewed elsewhere
[53]. It consists of a low pressure phase I where molecules are centered on the sites
of a hcp lattice, but are free to rotate around their center of mass, of an intermediate
broken-symmetry phase II, where molecular rotations are hindered by the crystal field,
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of a high-pressure phase III, characterized by a strong infrared activity, and by one (or
more) liquid phase(s) above melting. Here we summarize the hints provided by first-
principles simulations. A large number of authors have focused on the low-temperature
portion of the phase diagram. Simulations on Hs at low temperature are particularly
challenging because of the need to include the possibility that the unit cell be large [54],
combined with the very large number of points needed to sample the Brillouin zone [55].
This required the development of a new method for Brillouin zone integration, based
on perturbation theory [56]. Simulations in phase II have helped understand its crystal
structure, which on the basis of MD within the gradient-corrected LDA is either Pca2; or
P2;/c [57]. Simulations in phase III have suggested that the infrared activity might be
due to a grouping of molecules in triplets [58]. More recently, it has been shown that most
of the structures proposed so far are actually unstable mechanically, whereas structures
with a layered triangular-like arrangement of molecules might be favored [59]. None of
the above simulations has attempted to study the insulator-metal transition, expected
to occur at sufficiently elevated pressures, because of intrinsic problems in the LDA (or
GGA) approximation close to the metallic transition [60]. However, attempts to search
for compounds where hydrogen metallization takes place at lower pressures have been
made [61]. All the simulations described so far have assumed that the nuclei (protons)
behave as classical particles, i.e. they obey Newton’s equation. This approximation is
not fully correct for hydrogen, where quantum effects are certainly important, e.g. in
preserving rotational disorder in phase I down to very low temperatures. Path-integral
MD simulations [62, 63] in phases I, I, and IIT have shown that the degree of order
increases with pressure, and that quantum effects increase the localization of the protons,
contrary to elementary considerations [63].

At high temperature, first-principles simulations have been carried out to investigate
the structure of the liquid at various conditions of pressure and temperature. At rel-
atively low temperatures (~ 3000 K) and high pressures (> 150 GPa) the liquid was
found to be mostly monoatomic [64], although peculiar filamentary structures have been
observed [65]. The conductivity calculated with a Kubo-Greenwood formulation [64]
appears to overestimate by almost one order of magnitude the conductivity measured
along the multiple-shock compression curve achieved in gas-gun experiments [66]. Al-
though this may indicate a problem in the determination of temperature in experiments,
the discrepancy might also be attributed to the insufficient size of the simulation box.
Determinations of the pressure-vs-density equation of state along the principal Hugoniot
of deuterium [67, 68] are in strong disagreement with laser-shock experiments [69], sim-
ulations showing a much smaller compressibility than experiments. Inclusion of spin in
the description of electronic states improves, but only marginally, the agreement [70].
At variance with multiple-shock experiments, however, theoretical conductivities calcu-
lated [71] along the principal Hugoniot agree with optical reflectivity data [72] . Appli-
cations of first-principles simulations to the understanding of the interiors of the giant
planets Jupiter and Saturn [73] have shown that the sound velocity of dense hydrogen is
not compatible with available planetary models, and have suggested that helium is fully
miscible in hydrogen [74], again contrary to evidences from planetary modeling [75]. It is



FIRST-PRINCIPLES MOLECULAR DYNAMICS SIMULATIONS AT HIGH PRESSURE 13

clear that more work needs to be done in order to resolve this discrepancies, for example
by repeating the simulations with larger simulation cells.

3'4. Ozxygen. — Among the diatomic molecules, O stands out for its magnetic mo-
ment (S = 1), caused by the exchange interaction between electrons in the two-fold
degenerate 7* molecular orbitals. Magnetism controls most of the low-pressure and low-
temperature properties of solid molecular oxygen, including its crystal structure and its
insulating antiferromagnetic electronic structure [76]. Upon compression, intermolecu-
lar electronic hopping eventually overcomes the on-site exchange interaction, leading to
a paramagnetic metal. The (-Oy phase, observed above 96 GPa [77] has in fact been
reported to be metallic [78]. First-principles simulations have been used to investigate
how the transition takes place and to give some insight on the crystal structure of (-Os,
so far little contrained by experiments. In order to account for the magnetic moments in
the low pressure phases, the local spin density approximation (LSDA) has been used. In
the LSDA both the total electronic density and the magnetization density are optimised
independently at each time step. The magnetization density correctly disappeared at
high pressure, during the simulation [79], and concomitantly a new peak appeared in
the structure factor of the simulation cell, indicating a trasformation to a new phase.
Further refinement of the crystal structure found in the simulation [79] lead to a satis-
factory agreement with the experimental positions of the X-ray diffracted peaks of the
¢-O2 phase [77].

3'5. Carbon ozides. — Carbon monoxide (CO) and carbon dioxide (CO5) are among
the most stable molecules known in nature. In both molecules, however, the carbon atom
is in a different hybridization state than the sp? or sp® states that characterize carbon
in its elemental dense forms, graphite or diamond, respectively. The dramatic decrease
in the intermolecular distances caused by the application of moderate pressures (a few
tens of GPa) leads in both molecules to polymerization and formation of extended cova-
lent solids, with carbon in sp? or sp® hybridisation. In CO, evidence that the molecular
solid transforms into a denser yellowish substance above 5 GPa has been reported [80].
Infra-red spectroscopy measurements on the compressed sample have later revealed the
polymeric nature of the compressed phase [81]. First-principles MD simulations on CO
have also observed polymerization, and have identified recurrent structural units (C40
five-membered rings) as peculiar of the CO polymer [82]. The simulation have also
been used to attribute peaks in the infra-red spectra to speficic vibrational modes of the
polymer. In the case of CO2, pressure-induced polymerization has also been observed
experimentally [83] and calculated theoretically [84, 85]. Polymerization pressures in
CO; are around 50 GPa, slightly larger than in CO. In first-principles MD simulations
the transformation took place at about 100 GPa [84], but since the transition involves
substantial electronic changes and formation of new bonds, it is likely that a large en-
ergy barrier prevents the transition to take place at the correct thermodynamic pressure
in simulations. Remarkably, simulations at different temperatures yielded rather differ-
ent results. At high temperature (~ 2000 K) the molecular solid transformed into an
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amorphous solid, while at lower temperatures (~ 1000 K) it transformed into a perfectly
ordered crystal, with a peculiar layer-like structure [84].

3'6. Hydrocarbons. — The fate of methane (CH,) at very high pressures and temper-
atures has important implications for our understanding of the interiors of Neptune and
Uranus [75]. Shock-wave experiments show evidence of a transition that has been initially
interpreted as due to full dissociation of CH, into its consituent elements, carbon and
hydrogen [86]. First-principles simulations have suggested that a more subtle chemistry
may pre-empt full dissociation. Formation of hydrocarbons of molecular weight higher
than methane has in fact been reported on the basis of constant-pressure simulations at
100 GPa and 4000 K [87]. Evidence for hydrocarbon formation has been later confirmed
by static laser-heated diamond-anvil cell experiments [88], although at a considerably
lower pressure than in the simulations.

Acetylene (C2Hz) is known to polymerize in the pressure range 3.5-14 GPa [89].
First-principles simulations at constant pressure do reproduce the polymerization [90],
but once again at a considerably higher pressure (25 GPa). However, simulations indicate
also that a self-trapped exciton on a single, cis-bent molecule in crystalline acetylene is
a very effective polymerization seed at lower pressure (< 9 GPa), much closer to the
experimental pressure range. This suggested that the reaction might be sensitive to
light irradiation, as later confirmed [91]. Further compression from the polymeric phase
yielded, in the simulations, an amorphous hydrogenated carbon phase with a very large
proportion of sp®-like carbon atoms [92].

3'7. Water and Ammonia. — Water (H50) and ammonia (NH3) are, with methane,
the main consituents of the giant planets Neptune and Uranus, where they are subjected
to pressures up to a few hundred GPa and temperatures up to a few thousand Kelvin.
Whereas in the low-pressure condensed phases molecules are held together by hydrogen
bonds, extreme conditions have the effect of reducing the relative strength of the hydrogen
bond, either by thermal induced partial breaking of the directional O-H- - -O linkage, or
by its pressure-induced symmetrization. First-principles simulations have reproduced the
pressure-induced symmetrization at low temperature [93, 94], although the precise value
of the transition pressure could only be obtained by properly treating quantum effects on
the protons [95, 96]. The calculated infrared activity of ice across the symmetrization
[97] compares favorably with experiments. At high temperature, partial collapse of the
hydrogen bonding has been observed close to the critical point [98, 99], and its almost
complete collapse has been reported at 10 GPa and 600 K [100]. At higher pressures and
temperatures water becomes completely ionised, as a two-component fluid above melting
and as a superionic phase below melting and for temperature above 2000 K [101]. Ionic
conductivities in the fluid compare rather well with shock-wave measurements [102]
at similar conditions. Finally, H,O is predicted to become metallic at temperatures
exceeding 7000 K and pressures above 300 GPa [101].

3'8. Other hydrogen-bonded systems: HyS and HBr. — Hydrogen disulfide (H2S)
and hydrogen bromide (HBr) are typically classified as hydrogen-bonded systems. The



FIRST-PRINCIPLES MOLECULAR DYNAMICS SIMULATIONS AT HIGH PRESSURE 15

strength of the hydrogen bond in both systems is however weaker than in water. The
weakness of the hydrogen bonding in H»S has been shown, by first-principles simulations,
to be responsabile for the large fluctuations of the S atoms around their average positions
in high-pressure phase IV [103]. This leads to the dynamical formation of short-lived S-
S bonds whose presence would be consistent with experimental scattering data [104].
Simulations at higher pressures indicate that the HoS molecular entity disappears com-
pletely in phase V. The structure of phase V is in fact characterized by the presence of
charged SH and SH™ species, while in phase VI hydrogen atoms intercalate between
sulfur sheets. Full dissociation into into elemental crystalline hydrogen and sulfur could
not be ruled out however [105].

Simulations of HBr have shown that, contrary to water, the hydrogen bond is here
weaker than the isotropic dispersive interactions. This results in a disordered rotator
phase (phase I), with fluctuating hydrogen bonds up to pressures exceeding 10 GPa.
Disorder is predicted to lead, at higher pressures, to cooperative proton-transfer dy-
namics [106, 107]. Further compression leads to the transition to the hydrogen-bond or-
dered phase III, where the hydrogen bond approaches and finally reaches its symmetrized
state [107]. A dielectric catastrophe follows, causing formation of Hy and possibly Bry
species [107, 108].

3°9. Silicates and other Farth’s materials. — The high-pressure behavior of silica (Si05)
has attracted a remarkable attention in the last decades, due to its relevance in materials
science and geophysics [109]. First-principles simulations have only recently started to
address this system. Simulations of quartz above its thermodynamical stability limit
have shed light on the structure of the intermediate ordered phase observed prior to
amorphization [110]. The direct transformation of cristobalite into stishovite has also
been reported, and the microscopic path elucidated [111]. Finally, the simulations
suggest that octahedral (six-fold) coordination persits in SiO2 up to pressures of 1400
GPa, where a new nine-fold coordinated structure is predicted to become favored [111].

Magnesium silicate perovskite (MgSiO3), the major component of the Earth’s lower
mantle, has been studied with first-principles MD with the aim of determining its low
temperature crystal structure [112] and elastic constants [113] and its thermoelasticity
at the temperatures of the Earth’s mantle [114, 115, 116].

Simulations were used to determine the preferential absorption site of a proton (H) in
the various polymorphs of Mg2SiO4 [117], as well as to study the microscopic mechanisms
responsible for the pressure-induced hydrogen sublattice amorphization in Mg(OH), and
Ca(OH), [118] .

3°10. Iron. — Among the materials of geophysical interest, iron has recently received
a lot of attention. Iron is the main constituent of the Earth’s core, and is found in the
liquid state, possibly mixed with light impurity, in the outer core, whereas deeper in the
inner core it solidifies because of pressure. Among the long standing question that first-
principles simulations have started to address we can list the melting temperature at the
pressure of the inner/outer core boundary, the elastic properties of the solid at inner core
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conditions, and the miscibility of light elements in the liquid at outer core conditions.
The determination of the melting temperature has been address independently in two
works [39, 119]. Two rather different approaches have been followed in the two works. In
the first one [119], the melting temperature has been determined by means of thermody-
namic integration [120] from a reference potential. In the second approach [39], a very
accurate empirical potential has been fitted to the first-principles MD trajectories and
melting has been determined with a straightforward two-phase coexistence method with
the empirical potential. Unfortunately the two methods yield melting temperatures that
differ by about 1300 K (6700 K versus 5400 K). The two approaches however agreed on a
number of other thermodynamical quantities including latent heat and volume jump at
melting. Elastic constants at Earth’s inner core conditions were shown to be consistent
with seismic data [39]. For what concerns the outer core, various thermodynamical and
structural properties of compressed liquid iron have been calculated [121], including the
viscosity coefficient [122]. The effect and solubility of light elements in liquid iron has
been studied in the case of oxygen [123] and sulfur [124, 125], and important implications
for the temperature and composition of the Earth’s core have been drawn [126]

3°11. Other simple metals. — The hep-to-bee pressure-induced transformation in Mag-
nesium (Mg) has been simulated with constant-pressure first-principles MD, and the
transformation path (Burgers mechanism) has been confirmed [127]. Simulations on
Rubidium (Rb) along the melting curve yielded structural information in good agree-
ment with experiments. A change in the compression mechanism observed at about 6
GPa has been explained in terms of a pressure-induced electronic s-to-d transition[128].
The localization (Mott transition) in expanded Rb, close to the critical point, has been
attributed to the large ionic fluctuations[129].

4. — Perspectives

First-principles simulations have experienced a tremendous impetus in the last decade.
Nonetheless, a number of major challenges still remain to be solved. Conceptually, im-
provements over the conventional approximations to DFT would be extremely welcome,
although this is admittedly a field where important developments do not seem to be
close to our horizons. Extending the number of properties that can be extracted from
first-principles simulations is instead a field where important progresses have been made
recently, or are in the progress of being made. Increasing the size and time scales of
the simulations is also a challenge that requires continuous effort, both from the techni-
cal (software) point of view and from the point of view of methodologies that allow to
alleviate the effort required to solve the electronic problem.

* %k Xk
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