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By means of an ab initio plane-wave pseudopotential method,
monovacancy, divacancy and self-interstitials in hcp titanium are
investigated. The calculated monovacancy formation energy is 1.97 eV,
which is in excellent agreement with other theoretical calculations, and
agrees qualitatively with published experimental results. The relaxation of
the atoms around a single vacancy is observed to be small. Two divacancy
configurations, the in-plane and the off-plane, have also been shown to be
equally stable. With regards to the interstitials, of the eight configurations
studied, two (octahedral and basal octahedral) have relatively lower
formation energies and are, thus, the most likely stable configurations.
We find small energy differences between them, suggesting their possible
co-existence. It is also observed that the tetrahedral configuration decays
to a split dumbbell configuration, whereas both the basal tetrahedral and
the basal pseudocrowdion interstitials decay to the basal octahedral
configuration. Using the nudged elastic band method (NEB), we determine
a possible minimum energy path (MEP) for the diffusion of self-interstitial
titanium atoms from an octahedral site to the nearest octahedral site.
The energy barrier for this migration mechanism is shown to be about
0.20 eV.

Keywords: self-interstitial; ab initio; density-functional theory; ion implan-
tation; point defects; residual stress; titanium

1. Introduction

Advances in computational techniques and resources have enabled detailed first
principles studies of important defect properties in both simple and transition
metals [1]. These defects may include vacancies, interstitials, dislocations and grain
boundaries. These advances could help in closing the gap between macroscopic and
microscopic theories seeking to elaborate, and link, the different length scales
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determining material properties. For instance, we can use basic ground state and
defect properties of materials, calculated from first principles electronic structure
techniques, to develop quantum-based interatomic potentials that can be applied in
molecular dynamics studies [2] of extended defects, and defect–defect interactions,
involving thousands of atoms [3]. These results, in turn, can provide fundamental
input into mesoscale and macroscale simulations of mechanical properties for the
material under consideration.

The properties of perfect crystals can be obtained from standard first principles
density functional theory (DFT) calculations. However, calculations for point
defects are much more difficult due to the loss of translational symmetry. The
problem is usually solved by using either the supercell [4,5] or Green’s functions
methods [6]. The knowledge of the properties of vacancies and interstitials is
necessary for understanding the thermodynamic and kinetic behaviour of metals and
alloys [7,8]. These properties include their structure and mobility, as well as the
interactions they can have with other defects or foreign atoms. A particularly
important property is the formation energy, which determines the specific equilib-
rium defect concentration. The vacancy formation energy also contributes to the self-
diffusion coefficient for the monovacancy mechanism [9], which is the main diffusion
process in closed packed metals. However, it is not easy to determine, experimentally
with precision, atomic quantities such as the formation energy of a single vacancy or
that of an interstitial. This is because these quantities are affected by the local
environment, such as the presence of impurities around the defect. Very pure samples
are therefore required to obtain reliable results [5].

Under normal conditions, self-interstitials are relatively rare in metals compared
to vacancies [10]. However, large densities of both vacancies and self-interstitial
atoms (SIAs) are produced in materials subjected to ion implantation [11], or high
energy radiation environments [12]. In the latter, it has been observed [10] that SIAs
are faster, which means that they have migration energy lower than that of vacancies.
Ion implantation is a low temperature, non-equilibrium process, by which almost
any element can be introduced into the near surface region of a material. Depending
on the implantation dose, the displacement of host atoms can lead to the formation
of vacancies and interstitials [13], whose long time evolution into voids and clusters
affects the mechanical properties of the implanted materials, such as inducing a
change in the local strain. The internal stress state of the material is, thus, modified.

We have recently started a programme to investigate the change in residual stress
due to implanted krypton ions in hcp titanium [14] and also to study the different
equilibrium point defect configurations resulting from the implantation. In this
framework, as a first step, we aim to gain insights into the various defect
configurations which may exist in hcp titanium. We have, thus, focused on the
calculations of mono and divacancy, as well as the self-interstitial formation energies
in hexagonal closed packed titanium, using first principles techniques and the
supercell approach. We also calculate the formation volumes, as well as the
structural relaxation around the defects. Using the nudged elastic band method
(NEB) [15], the minimum energy path (MEP) for one of the possible mechanisms
involved in self-interstitial diffusion was also determined.

Relative to cubic metals, there have been far fewer studies on point defects in
hexagonal closed packed materials, and among the hexagonal closed packed
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materials, zirconium has attracted the most attention owing to its importance in the
nuclear industry [12]. An earlier but related study by Tome [16] includes vacancy and
interstitial configurations in hcp metals using empirical potentials. More recent
investigations include studies on point defect diffusion in �-Ti by Fernandez [17],
using the embedded atom method. Similar studies include ab initio pseudopotential
studies on hcp zirconium by Domain et al. [12] and Willaime [18]. To the authors’
knowledge, the present work is the first ab initio pseudopotential study of vacancy,
divacancy and self-interstitial configurations in hcp titanium.

In this paper, after describing the computational procedures used, results for
defect free �-Ti are presented as a test of the calculations. These include calculations
of the lattice parameters and elastic constants, which are compared with previous
ab initio calculations and published experimental data. Results concerning mono and
divacancy formation energies and volumes, binding energies, self-interstitial forma-
tion energies and volumes, as well as self-interstitial atom migration, are then
presented and discussed. In this study, convergences of the defect formation energies
with respect to the cell sizes were also confirmed.

2. Methods

Eight different self-interstitial and three divacancy configurations were considered.
They are shown in Figures 1 and 2, respectively. In naming the self-interstitials, we
have adopted the notation of Johnson and Beeler [19]. The self-interstitial site
marked as O has an octahedral coordination; the interstitial site S denotes a h001i
split dumbbell, and has two atoms sharing the same site in the c direction; C is often
termed as pseudocrowdion, and is the site midway between the two nearest
neighbour atoms out of the basal plane; while T has a tetrahedral coordination. BT,
BC and BO are basal projections of tetrahedral, pseudocrowdion and octahedral
configurations, respectively. BS is the split dumbbell, which involves two atoms
equidistant from a vacant site, aligned in perpendicular direction to the c-axis. The
three divacancy configurations are termed the in-plane, the off-plane and the basal–
basal. They are denoted as Dv1, Dv2 and Dv3, respectively. In the in-plane
configuration (Dv1), two nearest adjacent atoms of the same plane are missing; the
off-plane configuration (Dv2) has one atom missing at the basal plane, and the other
atom at the nearest off basal plane. In the basal–basal (Dv3) configuration, there are
two missing atoms at the centre of two basal planes at distance c, where c is the
lattice parameter of the hcp structure. Dv2,Dv1 and Dv3 thus correspond to divacancy
at first, second and fourth nearest neighbours, respectively.

All the DFT calculations were performed with the QUANTUM-ESPRESSO package
[20]. We used an ultrasoft pseudopotential (PP) of the Vanderbilt type [21] that
considers 4s2, 3d2, and the semi-core states (3s2 and 3p6), in the valence band. The PP
method is implemented in a plane-wave basis set. We used the exchange-correlation
functional, developed by Perdew and Wang [22], in the framework of the generalised
gradient approximation (GGA). Regarding the cutoff energy for the plane-wave basis
set, we performed extensive convergence studies with values up to 612 eV, but
convergence with respect to the total energy, within 2 meV per atom, was achieved for
476 eV. Hence, this value is used throughout the work presented here. In addition,
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convergence of the total energy (within 2meV) per atom with respect to the discrete
Brillouin zone (BZ) sampling was achieved with an 8� 8� 8 Monkhorst–Pack [23]
grid. This corresponds to 80 irreducible k-points. Equivalent k-points meshes
were used for the supercells employed to study various defects configurations.

Figure 1. Schematics of the initial eight interstitial configurations in the hcp structure
investigated in this study. The interstitials are indicated by the arrows.

Figure 2. Divacancy configurations (a) Dv1, (b) Dv2 and (c) Dv3 in the hexagonal closed
packed structure, as studied in this work. Filled black circles (�) are regular atomic sites, while
open squares (h) are vacancy positions.
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We have allowed full relaxation of the atomic positions around the defects, as well as
the relaxation of the lattice parameters. This was performed by varying the cell lattice
parameters, while allowing atomic relaxations and determining the total energy.
The minimum of the energy–volume parabolic curve was then chosen as the relaxed
configuration of the supercell with a defect. For a given structure, the positions of the
atoms were determined by minimising the forces on the ions, using the conjugate
gradient algorithm as implemented in the QUANTUM-ESPRESSO code. The structural
parameters were considered to be fully relaxed when the forces on the ions were
less than 0.05 eV/Å, and the total pressure in the system was less than 1 kbar. During
the relaxation runs, the Brillouin zone (BZ) integration was done using the
Methfessel–Paxton scheme [24], with a smearing of 0.26 eV.

The Climbing Image Nudged Elastic Band (CI-NEB) [25] method was used to
describe the minimum energy paths (MEPs) and the transition states for migration of
self-interstitial titanium atoms between two stable configurations. The NEB method
is a reliable method of finding the MEP, when the initial and final states of a process
are known. An interpolated chain of configurations, commonly referred to as
images, between the initial and final positions is connected by springs and relaxed
simultaneously to the minimum energy path. With the climbing image scheme, the
highest-energy image climbs uphill to the saddle point. In this study, five images were
used to determine the MEP, and the migration barrier energy of diffusing self-
interstitial titanium atoms. We have used a supercell containing 64 atomic sites and a
2� 2� 2 k points mesh. All the images are relaxed until the maximum force acting
on an atom is less than 0.05 eV/Å.

The five independent elastic constants of the hcp structure are calculated with the
strain matrices proposed by Fast et al. [26]. Deformations preserving the hexagonal
symmetry of the cell were used to calculate C11þC12, C33 and B, while triclinic and
monoclinic deformations are used, respectively, for C44 and C11–C12. Since �-phase
Ti is not centrosymmetric, internal relaxations were allowed for each deformation of
the cell. The elastic constants were obtained from a third order polynomial fit,
performed over the energies calculated for nine values of the strain ranging from
�2% to þ2%. The equilibrium lattice parameter and the bulk modulus were
obtained from the calculation of the total energy as a function of volume. These
results are then fitted to the Murnaghan’s [27] equation, which in turn gives the
equilibrium atomic volume (�0), the equilibrium energy, the bulk modulus (B0) and
its derivative with respect to pressure (B00). For an hcp structure, there is an
additional parameter to be optimised at any given volume, the c/a ratio, where a is
the distance between the two nearest atoms in the same basal plane. The energy as a
function of the c/a ratio was fitted to the polynomial of the form,

Eðc=aÞ ¼ �ðc=aÞ3 þ �ðc=aÞ2 þ �ðc=aÞ þ �, ð1Þ

where �, �, � and � are fitting parameters. The c/a ratio corresponding to the
minimum energy is the equilibrium ratio for titanium at that volume. If we define N
as the total number of atoms in a perfect supercell, the vacancy formation enthalpy
can be calculated by using the expression [28],

H f
nv ¼ EðN� n, n,V0Þ �

N� n

N
EðN, 0,N� 0Þ þ pðV0 � ðN� nÞ� 0Þ, ð2Þ
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where EðN� n, n,V0Þ denotes the total energy of a relaxed supercell, obtained by
removing n atoms from an ideal supercell initially consisting of N atoms. The volume
V0 corresponds to the equilibrium volume of the supercell at pressure p; �0 is the
equilibrium volume of one atom at pressure p in the perfect lattice; n¼ 1, 2 for the
mono and divacancy, respectively. For the interstitial configurations, the formation
energy is defined as

H f
nv ¼ EðNþ n, n,V0Þ �

Nþ n

N
EðN, 0,N� 0Þ þ pðV0 � ðNþ nÞ� 0Þ: ð3Þ

Here, EðNþ n, n,V0Þ denotes the total energy of a relaxed supercell, obtained by
adding n atoms. In this work, all calculations are performed at zero pressure and,
thus, H f

1v ¼ E f
1v is the vacancy formation energy, and H f

2v ¼ E f
2v is the divacancy

formation energy.
The vacancy or interstitial formation volume can be defined via the change in the

macroscopic dimensions upon its formation, where, for a precise definition, the
geometry of the sample must be specified. For supercell geometry, it is defined as

� f
nv ¼ V0 � ðN� nÞ�0, ð4Þ

for vacancy defects, with n¼ 1, 2 for the mono and divacancy, respectively. For
interstitial defects, the formation volume is defined as

� f
ni ¼ V0 � ðNþ nÞ�0, ð5Þ

where n is the number of extra atoms inserted into the supercell. The relaxation
(contraction) volume due to a defect formation is expressed as � 0 �� f

nv for a
monovacancy and � 0 þ� f

ni for an interstitial. Attraction between defects is
quantified through calculations of binding energies, EB

2v, which are defined as
follows:

EB
2v ¼ 2E f

1v � E f
2v, ð6Þ

where E f
1v

and E f
2v are mono and divacancy formation energies, respectively.

According to this definition, a positive or negative binding energy implies a stable
or metastable divacancy configuration with respect to two isolated monovacancies,
respectively.

In any defect-related calculations, the size of the supercell N should be large
enough to minimise the interactions between the defects. Supercells consisting of up
to N¼ 96 atomic sites were used to study the monovacancy properties and
convergence with respect to cell size, while supercell of size N¼ 64 atomic sites have
been used in studying Dv1 and Dv2 divacancies, and N¼ 72 was used for the Dv3

configuration. For the interstitials, cells of sizes N¼ 36, 64 and 96 were used. The
smallest supercell consists of 16 Ti atoms, and has dimensions 2a� a

p
3� 2c, where

a and c represent the calculated lattice parameters. The second supercell, N¼ 36 has
dimensions 3a� 3a� 2c, while the supercell with 48 atoms measures 3a� 2a

p
3� 2c.

Supercells of sizes N¼ 64, 72 atoms have dimensions 4a� 2a
p
3� 2c, 3a�

2a
p
3� 3c, respectively. The dimensions of N¼ 96 supercells used for the

monovacancy and the interstitial are, respectively, 3a� 2a
p
3� 4c and 4a�

2a
p
3� 2c. We have calculated the formation energies for a monovacancy and
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three different divacancy configurations denoted as Dv1, Dv2 and Dv3 (shown in
Figure 2). The binding energies of the three divacancy configurations were also
determined, while the formation energies and relaxation volumes of eight different
interstitial configurations were also calculated. The formation energy predicts the
thermodynamically preferred defect structure in a material [29], while the binding
energy gives an indication of the stability of a particular defect configuration with
respects to its constituents [30]. Convergences of defect formation energies with
respect to the cell sizes were confirmed.

3. Structural parameters

The lattice parameters and relative phase stabilities of �-phase titanium were
evaluated, the results being displayed in Table 1. The curves of E(a) at
c/a¼ 1.587 Å and E(c/a) at a¼ 2.950 Å, from which the lattice parameters are
deduced, are also shown in Figure 3. Agreements with experiment [31] are generally
good (within an error of �2%). These results are also in good agreement with
previous ab initio calculations performed using the linearised augmented-
plane-wave (LAPW) [32] and the GGA full-potential-linear-muffin-tin
(FP-LMTO) methods [33,34]. FP-LMTO is generally considered more accurate
than pseudopotential-based methods. Our GGA calculation, however, predicts a
stable ! phase, under zero external pressure, in contrast to experimental results
[35]. The energy difference between the � and ! phases is, however, very small
(�0.01 eV). Also, from the available experimental data [36], the ! phase is higher in
energy than the � phase by �0.02 eV/atom. Thus, the error we make in the
calculation is approximately 0.03 eV/atom; this is still within the accuracy of our
DFT calculations. In addition, ab initio pseudopotential calculation of Trinkle
et al. [37] shows the ! phase to be slightly lower in energy than the � phase at zero
external pressure. It should be mentioned also that GGA corrections usually

Table 1. Results for the equilibrium lattice constant a, equilibrium volume �0, the bulk
modulus B and the c/a ratio of the � (hcp) titanium structure, in comparison with experimental
data. Results for the ! and bcc relative phase stability (in eV/atom) tests are also included.
The two theoretical values from Reference [32] are due to two different exchange-correlation
potentials.

a (Å) B (GPa) �0 (Å
3)

c/a ratio
(hcp) E!�Ehcp Ebcc–Ehcp

Present work 2.930 112 17.26 1.585 �0.01 0.11

Published theory
LAPW 2.866b,

2.925b
127b,
108b

17.29b,
16.18b

1.586b,
1.595b

– –

FP-LMTO 108c,
125d

1.585c,
1.589d

Experiment 2.9506a 110a 17.64a 1.586a – –

a[31]; b[32]; c[33]; d[34].
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overestimate the equilibrium volume (�0) and underestimate the bulk modulus (B).
Across the transition metal (TM) series, however, and in agreement with our
results, the tendency to underestimate �0 in the beginning of the series (such as in
Ti and V), and to overestimate �0 at the end of the series (such as in Os, Ir and
Pt), is a well established trend [33].
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Figure 3. (a) Variation of lattice energy (eV) per atom with the lattice parameter a.
(b) Variation in lattice energy (eV) per atom with the c/a ratio.
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We summarise our theoretical elastic constants and compare with experimental
results in Table 2. Overall, the agreement with experiment [38] is good in light of the
expected density functional error for elastic constants of metals. The agreement is
satisfactory for the bulk, B, C11 and C33 moduli. Also, using the theoretical data of
Table 1, the calculated B, i.e. 110 GPa, is consistent with the 112GPa obtained from
the Murnaghan fit. However, the shear moduli C12 and C44 are underestimated,
while C13 is overestimated. The main problem with C12 and C13 may be due to
unfavourable error propagation in the evaluation of these elastic constants. The
deformations [26] used to extract C12 and C13 involve a linear combination of elastic
constants which are twice as large as C12 and C13. Consequently, the relative error
associated with the deformations is increased for each. Furthermore, the error in C12

may not be only attributed to calculation, but also to experiment, as C12 is known to
be particularly sensitive to experimental error [39]. As regards to C44, the same error
margin (�20%) has been reported in previous [18,40] GGA calculations in �-Zr.

4. Results and discussions

4.1. Vacancies

The calculated mono and divacancy formation energies from our first principles
calculations are shown in Table 3. While supercells of size N¼ 16, 32 are too small to
cancel the effect of vacancy–vacancy interactions, the value of E f

1v for the N¼ 48
supercell is higher than that of the largest employed cell, N¼ 96, by only 0.05 eV. The
difference between the E f

1v value for N¼ 72 and N¼ 96 is about 0.01 eV.
Convergence with respect to supercell size can, thus, be said to have been fully
achieved with N¼ 72; however, the N¼ 48 and N¼ 64 supercells yield formation
energies close to the converged value as well. Our calculated value for the
monovacancy formation energy in hcp titanium is thus 1.97 eV. This value is not in
good agreement with either the experimental value reported by Shestopal [41], which
is 1.55 eV, or the more recent positron annihilation measurements [42], which give
1.27 eV. With regards to previous theoretical studies, we have compared our result
with ab initio data obtained using the full-potential linearised muffin-tin orbital
(FP-LMTO) method [34], the full potential Green’s function method [6], and the
GGA calculation of Trinkle et al. [43]. They reported 2.14, 2.13 and 2.03 eV,
respectively. However, our calculated value of E f

1v in hcp Ti is consistent with the
following correlation stated for metals [34], i.e. Hf (eV)¼ 10�3Tm (K), where Tm is
the melting temperature. With Tm¼ 1948K for titanium [44], E f

1v� 1.95 eV.
Surface energy corrections to GGA vacancy formation energy values in metals

Table 2. Elastic constants (GPa) of hcp Ti, as calculated in the present work and compared
with experimental values at 4K. The experimental values are taken from [37].

C11 C12 C13 C33 C44 B0 (GPa)

Present work (GGA) 194 69 80 175 41 114
Experiment 176 87 68 191 51 110
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have been shown to reduce the discrepancy with experiments by increasing the
theoretical value [45]. Thus, applying such corrections to our vacancy formation
energy value for titanium, i.e. 1.97 eV, may not to lead to better agreement with
experiments. This suggests that the calculations still need to be further improved.
The formation volume, � f

nv calculated according to the procedure described earlier,
and using supercells containing N¼ 16, 36, 48, 72 atomic sites are also reported in
Table 3. The calculated value can be said to have converged for N¼ 48, since the
difference with the value obtained with N¼ 36 is negligible. Thus, � f

1v¼ 0.64�0 is
our calculated monovacancy formation volume. This is in good agreement with the
value calculated in [34], i.e. � f

1v ¼0.60�0. It should be noted that there is no reliable
experimental value for the titanium monovacancy formation volume.

Supercells containing 64 atomic sites have been used to investigate the Dv1 and
Dv2, while N¼ 72 was used for the Dv3 configuration. The divacancy binding energies
for the Dv1 and Dv2 configurations were calculated using the vacancy formation
energy obtained for the N¼ 64 supercell size, i.e. 1.92 eV, while the binding energy
for the Dv3 configuration was calculated using the formation energy for the N¼ 72
supercell, that is, 1.98 eV. From Table 4, we note that the binding energies for the Dv1

and Dv2 divacancy configurations are both positive, i.e. EB
2v¼ 0.10 eV and 0.12 eV,

respectively. This suggests that each of the two divacancy configurations is
stable compared to two isolated single vacancies. In contrast, the Dv3

divacancy configuration has a strong negative binding energy of �0.32 eV, implying
strong repulsion between the vacancies, and is thus likely to be a metastable
configuration.

With regard to the structural relaxation of the atoms around a monovacancy,
atoms surrounding the vacancy in the basal plane undergo inward relaxation of
about 5.46� 10�3 a, where a¼ 2.930 Å is the calculated basal lattice constant of
titanium. The nearest neighbour atoms, i.e. those above and below the basal plane,
undergo a relaxation of 7.96� 10�3 a towards the vacancy. It should be noted that
structural relaxations in the hcp structure are generally believed to be small [34].
Furthermore, in hexagonal metals with a c/a ratio less than the ideal value of 1.633,
such as titanium, the three atoms above and below the basal plane are at slightly

Table 3. Monovacancy formation energy E f
1v and formation volume � f

1v for different
supercell sizes. Available experimental results are also shown for comparison. There is no
reliable experimental result for monovacancy formation volume.

Supercell sizes, N (present work)

16 36 48 64 72 96
Published
theory Experiment

E f
1v(eV) 2.070 1.957 1.920 1.920 1.980 1.970 2.13a 1.27d

2.14b 1.55e

2.03c

�
f
1v 0.54�0 0.67�0 0.64�0 0.64�0 0.64�0 0.64�0 0.60�0

b

a[6]; b[34]; c[42]; d[40]; e[41].
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closer distances than those in the basal plane [46]. The observed displacement pattern
of the atoms is, therefore, expected.

4.2. Self-interstitials

The interstitial formation energies for both constant volume and fully relaxed
configurations are reported in Table 5. Only stable interstitial configurations, as well
as the relaxation volumes for the fully relaxed configurations are shown. The effect
of full relaxation is not very significant. As expected, the formation energies of fully
relaxed configurations are less than that of constant volume calculations. However,
the maximum energy difference between the configurations is only about 0.3 and
0.15 eV for N¼ 37 and N¼ 65, respectively. Also, relaxation does not affect the
relative stability of the configurations in the two supercell sizes. In addition, in all the
interstitial configurations, the relaxation volumes are only slightly greater than one
atomic volume, in agreement with similar empirical studies in hcp metals [47], and
specifically, in hcp zirconium [12]. Comparison between N¼ 37 and N¼ 65 atom

Table 5. Formation energies and relaxation volumes for various interstitial configurations in
hcp titanium. The asterisk (*) in the table indicates that a supercell of size N¼ 97 was required
to reach acceptable convergence for the BS interstitial configuration. The T configuration
decays to S, while both BT and BC decay to the BO configuration.

Configurations O C S BO BS

Formation energy (eV)
N¼ 37
Relaxed 2.22 2.50 2.51 2.32 2.62
Unrelaxed 2.26 2.50 2.76 2.36 2.92

N¼ 65
Relaxed 2.13 2.53 2.48 2.25 2.39 (2.45*)
Unrelaxed 2.28 2.68 2.62 2.39 2.57

Relaxation volume (�)
N¼ 37 1.17 1.30 1.22 1.15 1.19
N¼ 65 1.35 1.26 1.30 1.13 1.25

Table 4. Divacancy formation energy (E f
2v), binding energy (EB

2v) and formation
volume �

f
2v. For the Dv1 and Dv2 configurations, N¼ 64 supercell was used with

the vacancy formation energy, E f
1v¼ 1.92 eV, while N¼ 72 supercell was used for

the Dv3 configuration with E f
1v¼ 1.98 eV.

Divacancy E f
2v(eV) EB

2v(eV) �
f
2v

In-plane (Dv1) 3.74 0.10 1.248�0

Out of plane (Dv2) 3.72 0.12 1.314�0

Basal to basal (Dv3) 4.28 �0.32 1.346�0

Philosophical Magazine 1639

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
A
b
d
u
s
 
S
a
l
a
m
 
I
n
t
e
r
n
a
t
i
o
n
a
l
 
C
e
n
t
r
e
 
f
o
r
 
T
h
e
o
r
e
t
i
c
a
l
 
P
h
y
s
i
c
s
]
 
A
t
:
 
1
1
:
2
5
 
1
2
 
J
a
n
u
a
r
y
 
2
0
1
1



supercell results for the fully relaxed configurations shows that the interstitial
formation energies do not change significantly between these two supercell sizes for
all the studied configurations, except BS. The differences are 0.03 eV for S and C
configurations, and less than 0.1 eV for the O configuration. In the case of the BS
configuration, it was observed that the difference in the calculated formation energy
between the two supercell sizes is 0.23 eV. Hence, we have used a supercell of size
N¼ 96 to ascertain the convergence of the formation energy to 2.45 eV. With the
exception of the BS configuration, therefore, the formation energies for all the
interstitial configurations can be said to have converged for a supercell of 64 atoms.
The O and BO configurations have the lowest formation energies consistent with
results obtained in GGA calculations in hcp Zr [12], while the C configuration has
the largest formation energy. The overall spread in energies is not large, ranging
between 2.13 and 2.53 eV for the fully relaxed 64-atom supercell. In addition,
compared to similar studies on body-centred cubic (bcc) transition metals (TM) [48],
the interstitial formation energies are low. However, a close look at those calculated
for transition metal groups 5B and 6B in [48] shows a substantial decrease in
formation energy across the period, and an increase, down the group. For example,
from Cr to V, Mo to Nb, and W to Ta, the formation energies are substantially
reduced for all the interstitial configurations reported. A similar trend is observed for
W!Mo!Cr and Ta!Nb!V. If the energy values reported in [18] for
octahedral (2.84 eV), crowdion (3.08 eV) and dumbbell (3.01 eV) interstitial config-
urations in zirconium are taken into consideration, there is indeed a substantial
decrease in formation energy from Nb to Zr. We may, therefore, expect a similar
pattern of results, from V to Ti, or even from Zr to Ti.

Based on the calculated formation energies, two configurations (O and BO) are
probably the most stable configurations in hexagonal phase titanium. The energy
differences between them are quite small, i.e. 0.12 eV. The small energy differences
are also suggestive of possible co-existence of these configurations. Configurations S,
C and BS appear to be less stable. Making a firm prediction of interstitial stability is
generally tricky, especially when relatively small supercell sizes, as used in this work,
are considered, since interstitials induce long-range stress fields. To make more
quantitative predictions, therefore, larger supercell may be needed to study the effect
of the elastic interaction of an interstitial with its periodically repeated images.
Nevertheless, a comparison of our results with similar ab initio studies conducted
using larger supercell sizes, in hexagonal closed packed Zr, shows good agreement in
term of the relative stability of the interstitial configurations. Willlaime [18]
concluded that, in hcp Zr, the most stable interstitial configurations are likely to be
O, S, BC and BO, while the C configuration appears to be less stable, in good
agreement with our observation for hcp Ti. Domain et al. [12] observed that five
configurations, i.e. O, BO, BC, S and C, are more stable than the BT configuration in
hcp Zr. The energy difference between these five configurations are, however, small,
suggesting their possible co-existence under irradiation. In addition, their relative
concentration may also depend on differences in vibrational entropy [17] or in
electronic formation entropy [9], resulting from temperature change.

The symmetry of the hcp lattice is such that the defects and the surrounding
atoms can undergo large relaxation from the initial configuration. The three
atoms forming the equilateral triangle around the BO are pushed equally outward
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by about 0.6 Å. The two interstitial atoms forming the BS configuration also appear
to be pushed apart, and are slightly displaced from the line passing through their
sites. The atoms forming the cage around the O interstitial are equally displaced
outward: the strain field is symmetric. The O atom itself indeed appears to have
maintained its initial input symmetry. Furthermore, both BT and BC configurations
decay to BO, and the T configuration decays to S.

Extensive reviews of theoretical models of intrinsic point defects in hexagonal
closed packed metals can be found in the article by Bacon [49]. In this review, it was
observed that all pair potentials that model an equilibrium hcp crystal result in c/a
value equal, or very close to the ideal value of 1.633. All the defect properties
modelled by these potentials are, therefore, not fully reliable, but rather serve as a
possible guide to what may actually occur. Many-body potentials have been
developed rapidly in the last decade, though their applications in defect studies of
hcp metals are not as extensive as for the cubic systems. These potentials normally
contain many-body terms, which depend on the distance between the atoms, and
many-body terms, which depend on the local atomic density when an atom is
embedded in the medium created by its neighbours. In addition, the potentials are
usually fitted to several physical parameters, such as the c/a ratio and the elastic
constants of the materials, but not to any data arising from interatomic interactions
at distances less than the normal equilibrium lattice spacing, such as those
encountered for interstitials. This leads to formation energies which are too large.
In addition, the many-body terms are isotropic and neglect directionality in the
bonding, which may be important for transition metals. Therefore, these potentials
offer only a simplified description of the real situation [50]. Ackland [51], using such
potentials in titanium, has predicted that only SIAs within the basal plane, that is BS,
BC and BO, are stable. Fernandez et al. [17], using the embedded atom potentials,
also predicted BS and BC to be the most stable. Mikhin et al. [52] suggest BO as the
most stable configuration, while Bacon [49] concluded that both basal and non-basal
SIAs are likely to be stable in metals with c/a� 1.633. In most hcp metals studied by
Igarashi et al. [53], using many-body potentials, the energetically most favourable
interstitial configuration is the crowdion associated with the site C. However, the
interstitial at the octahedral site O possesses, in these cases, only a marginally higher
energy. Therefore, both O and C may likely co-exist as common interstitial
configuration. Oh and Jonson [54], employing EAM potentials for Mg, Ti and Zr,
showed the site C as energetically most favourable and the site O having a slightly
higher energy. They also showed that sites S, T, BO and BC show higher energies or
are unstable. Pasianot et al. [55] also predicted BC and BO to be the most stable
configurations for Zr and Ti. Willaime et al. [56], using many body interatomic
potential for their calculations, predict that, in hcp Zr, both S and T configurations
are unstable, and both decay to C. In addition, their calculations also suggest that
BC and BT are also unstable and decay to BO, in agreement with our results. From
the experimental side, Huang’s X-ray diffuse scattering measurement on electron
irradiated single crystal hcp zirconium, at liquid helium temperature, suggests O, S
and T as the most stable configurations [12]. Also, internal friction measurements
[57,58] on neutron-irradiated Ti and Zr polycrystalline wires at 77K show peaks that
have been attributed to the C configuration [55]. This study concludes, from an
ab initio energetics point of view, that the O and BO interstitial configurations are
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more likely stable interstitial configurations in hexagonal closed packed titanium.
The small energy differences between these configurations make their possible
co-existence an equally likely possibility. In addition, we conclude that the T, BC and
BT are metastable: T decays to S, while both BC and BT decay to the BO
configuration.

The minimum energy path (MEP), calculated using the nudged elastic method,
for the migration of a self-interstitial titanium atom from an octahedral position to
the nearest octahedral position, along the c direction, is shown in Figure 4. Once the
NEB has shown that the MEP is such that the self-interstitial atom, starting at the O
site, passes through the BO configuration at halfway, we used three intermediate
images between these two configurations to locate the saddle point and to determine
the migration energy barrier. The other half of the MEP path, that is, from BO to O
(i.e. image 6–9), has been obtained by symmetry considerations. The BO configu-
ration appears to be a local minimum. The local structures of the initial state
(image 1), the transition state (image 2) and the local minimum (image 5) are also
shown. The local minimum is about 0.11 eV higher in energy than the initial state
(image 1). The three nearest neighbour atoms forming an equilateral triangle around
the interstitial atom in image 5 are radially equally displaced. Images 6, 7, 8 and 9 are
mirrors of images 4, 3, 2, 1, respectively. In addition, one can also see that the
self-interstitial atom moves from O to the BO position via a configuration that lies
inbetween them. This configuration corresponds to image 2 in Figure 4, and
it appears to represent the first saddle point for the interstitial atom migration.
As earlier explained, the second saddle point corresponding to image 2 should be
the image 8. The NEB calculated migration energy barrier for diffusion is low,

Figure 4. Minimum-energy path (MEP) for self-interstititial O–BO–B migration in a 64 atom
titanium supercell. Shown on top of the MEP are the relaxed local structures of initial,
transition, and intermediate states. The structure of the final state coincides with the initial
one and is therefore not shown. Thick black arrows on the structures point to the positions of
self-interstitial atoms.
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i.e. approximately 0.20 eV. Finally, it should be emphasised that a better description
of Ti self-interstitial atom migration may be obtained by increasing the number of
images used in the NEB calculations. However, increasing the number of images is
not likely to significantly change the quantitative result on the migration energy
barrier, within the accuracy of calculations.

5. Conclusion

We have performed state-of-the-art ab initio simulations of intrinsic point defect
structures (vacancies and interstitials) in hcp titanium. The calculated monovacancy
formation energy is in good agreement with other computational studies. However,
agreement with the reported experimental data is not very good. Surface energy
corrections to the calculated monovacancy formation energy value are unlikely to
reduce the discrepancy with the experiment. This may indicate that the calculations
need to be further improved. The in-plane and off-plane divacancy configurations
have also been shown to be equally stable. The O and BO configurations have been
predicted to be the most likely stable interstitial configurations in hcp titanium. The
energy difference between the two configurations is small, suggesting their possible
co-existence. The migration barrier for the diffusion of self-interstitial titanium
atoms from an octahedral position to the nearest octahedral site, along the
c-direction, is calculated to be approximately 0.20 eV.
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