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We have developed a theoretical formalism to calculate the orientational phase
diagram of ortho–para (or odd-J/even-J) mixtures of homonuclear diatomic
molecules in the low-pressure solid phases. In particular, our formalism al-
lows for the explicit disorder present in such mixtrues. While the formalism
is general, here we apply it to the quantum anisotropic planar rotor model,
a two-dimensional model of coupled rotors. Our calculated phase diagram,
separating phases of disorder and short-range order is reentrant, when an
equilibrium mixture of odd-J/even-J species is considered. A reentrant phase
diagram separating states of disorder and long-range order is known to exist
in all-J species in both two and three dimensions. The phase diagram we
find for the thermal mixture of odd-J/even-J species exhibits reentrance over
a wider range of coupling constants than the corresponding all-J species. We
also investigate systems where the odd-J fraction is fixed as a function of
temperature. We find that even 1% odd-J mixture exhibits a phase diagram
different from the pure even-J case, indicating that the even-J molecules play
important role in orientational ordering.

1. INTRODUCTION

Understanding the orientational glass transition in mixtures of ortho–
para hydrogen and its isotopes in two and three dimensions is a problem of
long-standing theoretical and experimental interest.1–13 It has been known
for a long time, mainly from NMR measurements, that at low pressures and
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ortho fractions of x < 0.53 1,2,4 solid H2 gradually enters a phase of short-
range order. This phenomenon can be understood from the symmetry of the
orbitals of ortho and para species, respectively. In the case of H2 ortho (para)
molecules are antisymmetric (symmetric) with respect to intramolecular ex-
change (rotation by π), therefore the ortho-species has a stronger tendency
to order. The antisymmetry (symmetry) corresponds to odd (even) angu-
lar momentum states (J). Solid para-H2 exhibits orientational ordering
at ∼ 110 GPa, whereas ortho-H2 is thought to be always ordered at zero
temperature.14,15 A random mixture of ortho–para (odd-J/even-J) species
thus introduces orientational frustration, which in the absence of ortho–para
interconversion can lead to short-range ordered (orientational glass) state.

The pressure dependence of the phase diagram is complicated by the
increasing rate of ortho–para interconversion.16 In extremely high pressure
phases (>150 GPa in H2) ortho–para interconversion is some orders of mag-
nitude faster than that at zero pressure. In the phases at pressures lower
than 150 GPa, the effects of ortho–para distinction is a subject of debate.17

In mixed systems there is also evidence for an orientationally frustrated
phase between the orientationally ordered and disordered phases (phase II′

in Ref. 3).
The theoretical modeling of mixed ortho–para systems is generally based

on random-site models, and quantum effects are taken into account impicitly,
for example by substituting an empty site (or a J = 0 state) for the species
symmetric in π.1,8–10 In this case the temperature dependence is inaccurate,
since states of higher angular momentum can be expected to mix with the
ground state for both odd-J and even-J species.

In this study we develop a formalism in which quantum effects are ex-
plicitly taken into account. While the system under scrutiny here is the
quantum anisotropic planar rotor (QAPR)18–20 model, the ideas are eas-
ily extendable to models of coupled rotors in three dimensions, and will be
carried out in future work. Furthermore, the qualitative features of the or-
dering phase transitions of the QAPR model are essentially the same as that
of models of coupled quadrupolar rotors: the charateristic reentrant phase
transition is found in the mean-field theory of both 2D18,26 and 3D22,23 mod-
els, and is also seen experimentally in the corresponding system.24 In QAPR,
computer simulation studies have also given evidence for reentrance.19,20 We
emphasize that the reentrant phase transition was found experimentally and
theoretically in all-J systems.

Our solution of QAPR is based on writing a separable trial Hamiltonian
and minimizing the trial free-energy.25 In the trial Hamiltonian we use, each
rotor present in the system is represented by a single parameter, allowing
for the explicit treatment of disorder in odd-J/even-J mixtures (in mean-
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field theory one parameter represents the average of all rotors). In order to
arrive at an expression easily solvable for a large lattice of rotors, we expand
it in the potential energy as was done by Šimánek.26 An advantage of our
formalism is that the disorder due to the symmetry properties of the different
molecules is explicitly considered.

In the following section we describe QAPR. Subsequently, we describe
our formalism that includes explicit ortho–para disorder. In section 4. we
give the mean-field equations. In section 5. results of our formalism and
mean-field theory are presented and compared. In section 6. we conclude our
work.

2. THE QAPR MODEL

The quantum anisotropic planar rotor (QAPR) model31,18 is the quantum
generalization of the classical APR model,28–30,32 which was originally de-
veloped to study the orientational ordering of nitrogen on a graphite sur-
face. Nitrogen on graphite is known to order classically into a “herring-
bone” structure. In APR and QAPR a set of uniaxial rotors on a two-
dimensional triangular lattice are coupled via the anisotropic part of the
electrostatic quadrupole–quadrupole potential. Both the classical28–30,32 and
the quantum31,18–20 models have been studied extensively.

The QAPR Hamiltonian can be written as

H = −B

N∑

i=1

∂2

∂φ2
i

+ K
∑

〈i,j〉

cos(2φi + 2φj − 4Φij), (1)

where N is the number of rotors, φi is the coordinate of rotor i, B is the
rotational constant, and K is the coupling constant. The summation 〈i, j〉
indicates sums over interacting pairs, in this study we assume nearest neigh-
bor coupling. The phase angle Φij is the angle which the line between rotors
i and j makes with some arbitrary axis. The exact form of the herringbone
order parameter are given elsewhere.18–20,31 In this study we will set the
energy scale to be the rotational constant B.

3. FORMALISM WITH EXPLICIT
ODD-J / EVEN-J DISORDER

Our aim is to calculate the phase diagram for the system described by
Hamiltonian given in (1) in the case where a given molecule or rotor can have
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only even or odd angular momentum states. To this end we introduce a trial
Hamiltonian of the form

Ht = −
N∑

i=1

B
∂2

∂φ2
i

+ K
∑

i

cos(2φi)
∑

j

(i) γj cos(4Φij) , (2)

where the γi are a set of parameters to be optimized. The summation
∑

j
(i)

indicates summing over nearest neighbors of rotor i.
The trial Hamitonian in (2) is separable in φi . Thus we can write

Ht =
∑

i

Ht,i, (3)

where the trial Hamiltonian for a particular rotor i can be written as

Ht,i = −B
∂2

∂φ2
i

+ K cos(2φi)
∑

j

(i) γj cos(4Φij) . (4)

In order to derive a set of equations for the parameters γi we use the
well-known identity:25

F ≤ Ft + 〈S − St〉t , (5)

where F (S) is the free energy (action) of the true QAPR system, Ft(St) is
the free energy (action) of the system described by the trial Hamiltonian in
(2), and 〈〉t indicates evaluating the thermal average using the trial Hamilto-
nian. The trial free energy to be minimized is the right-hand side of (5).
Minimization in the parameters γi leads to a set of coupled equations for γi

γi =
〈
cos(2φi)

〉
t,i

. (6)

Note that a particular γi is coupled to its nearest neighbors, {γj}
(i). Further-

more, in evaluating the average on the right hand side of (6), it is possible
to restrict the symmetry of the states over which the average for a particular
γi is performed. Thus we are able to explicitly implement the disorder in
odd-J/even-J mixtures.

In order to further simplify (6), we expand to first order in the potential
energy (as was done by Šimánek26), and obtain the simple matrix equations

γi = KΦ̃i

∑

j

(i)γj cos(4Φij) , (7)

where Φ̃i is the phase correlator defined as

Φ̃i =

∫ β

0
dτ

〈
cos

(
2φi(0)

)
cos

(
2φi(τ)

)〉
f,i

, (8)
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where 〈〉f,i indicates averaging over the free rotor Hamiltonian of rotor i.
Note the index i is kept because the phase correlator, being the integral of
the imaginary time correlation function of the free rotor, is dependent on
whether rotor i is odd-J or even-J . Equation (7) can be written in the form

γi =
∑

j

Γijγj , (9)

where Γij = KΦi cos(4Φij) if rotor i and j are nearest neighbors, and zero
otherwise.

By solving (9) one can determine the phase diagram of an odd-J/even-J
mixture. One solution of (9) is the trivial one (with all γi = 0), indicating
a disordered state. At a given temperature T , we solve for the smallest K

that gives an eigenvalue of Γij that is unity. The K thus obtained separates
(Kc) the phase of complete disorder and a phase characterized by a set of
γ’s that are, in general, finite. While the magnitude of {γi} is not known in
our formalism, we can calculate normalized correlation functions in order to
characterize the nature of the ordered state.

The expansion in the potential (7) implicitly assumes a continuous phase
transition. A first-order phase transition would lead to an instability in (9)
expected to give the same Kc with different ordering characteristics.

In our calculations, where the formalism developed in this section was
used, we generated 20 configurations with the required odd-J/even-J ratio
and have determined the phase diagram for each one separately. The results
shown below are averages over the twenty configurations.

4. MEAN-FIELD THEORY

For purposes of comparison we also present results based on standard
mean-field theory. In the following theories, the phase diagram for an order–
disorder transition is determined. For systems that are purely even, odd,
or thermally distributed, the mean-field expression for the phase-diagram
obtained by Šimánek26 reads as

γ = KnΦ̃γ , (10)

where n denotes the number of nearest neighbors, Φ̃ is the phase correlator
as defined in (8). The phase correlator is restricted in angular momentum
states in the case of purely even or odd systems. Note that one solution of
(10) is γ = 0, i.e. the disordered state. The order–disorder transition occurs
for combinations of K,T where a non-trivial solution of (10) is found.
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Fig. 1. Mean-field phase diagrams for the quantum anisotropic planar rotor model.

A mean-field theory for a mixture of even and odd rotors (with fraction of
odd rotors Po) can be obtained by writing the phase correlator as a weighted
average of odd and even ones as

Φ̃ = [PoΦ̃o + (1 − Po)Φ̃e] , (11)

and solving (10).

5. RESULTS

In Figure 1 we present the mean-field results for the K vs T phase
diagram of QAPR. The thick lines represent the purely odd-J , even-J , and
all-J rotors. The thin lines represent the mean-field results for various ra-
tios of odd-J/even-J . In the thermally equilibrated mean-field result one
sees the reentrant phase diagram as has been shown by various methods
previously.18–20,22,23 The purely odd-J system is always ordered at zero tem-
perature, the purely even-J one has a phase transition at J = 1 and exhibits
no reentrance. It is not surprising that the mean-field treatment of various
ratios of odd-J/even-J rotors exhibits an ordered ground state, since in this
case odd rotors are coupled as in the purely odd case, albeit with a smal-
ler effective mean-field coupling constant. As the odd fraction is increased,
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Fig. 2. Phase diagrams for the quantum anisotropic planar rotor model calculated
with explicit ortho–para disorder.

the phase diagram approaches that of the purely odd system. Since the
normalized correlation functions in mean-field theory are trivially unity, the
phase diagrams presented in Fig. 1 separate phases of complete disorder and
long-range order.

In Figure 2 the phase diagram for the same systems as in Fig. 1 calcu-
lated using the formalism developed in Section 3. are shown. In the case of
pure odd-J or pure even-J systems, the phase diagrams correspond exactly
to mean-field theory. The 1%, 10%, and 50% systems show phase diagrams
similar to the ones obtained from mean-field theory, except that ordering
occurs at lower pressures for a given temperature (an explicit comparison
for 1% and 10% is given in Fig. 3). We have also calculated the correlation
functions of the order parameter (not shown) and have found that the order
is short range. The correlation lengths increase along the phase diagram with
increasing temperature. The fact that at 1% odd-J fraction the ground state
is always ordered is not as straightforward as in the mean-field case. This
result indicates that short-range ordering is not caused solely by the odd-J
rotors present, but is mediated by even-J rotors, most likely by mixing with
angular momentum states J > 0.

In Figure 4 we compare the phase diagrams for thermal equilibrium
distribution of odd-J/even-J rotors calculated using explicit disorder with
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Fig. 3. Comparison of the mean-field phase diagrams with the ones calculated with
explicit ortho–para disorder for 1% and 10% odd-J .

the mean-field result for the all-J system. (A mean-field treatment with
thermal equilibrium distribution would correspond to an all-J system.) Both
phase diagrams are reentrant. The one with explicit disorder is more strongly
reentrant than the all-J one, as can be expected from the results shown in
Fig. 3. From the correlation functions along the phase boundary (Fig. 5) it
can be concluded that at low temperatures the order is short range. The
correlation length increases along the phase boundary with temperature.

The results presented here would be strongly dependent on the time-
scales of ortho–para interconversion.16,17 While this issue is a subject of de-
bate, we can state the following. What is essential is the difference between
the time-scales of rotation and ortho–para interconversion. If the interconver-
sion is significantly slower than molecular rotation, the formalism including
explicit disorder is expected to be valid. When the interconversion time-scales
approach the time-scales of molecular rotation, the standard mean-field the-
ory is expected to be valid. Thus reentrance would be present in both cases.
Also experiments conducted at thermal equilibrium ortho–para ratios (and,
in general, at fixed ortho–para ratios could give insight into the nature and
relative time-scales of the interconversion.
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Fig. 4. Mean-field and explicit ortho–para disorder phase diagrams at thermal
equilibrium.

Fig. 5. Normalized correlation functions of the order-parameter as a function of
temperature along the reentrant phase diagram.
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As stated before, however, in the pressure ranges corresponding to the
range of coupling constants presented here, the ortho–para interconversion
is expected to be an order of magnitude slower than molecular rotation. In
light of this, our calculations would correspond to a strongly reentrant phase
diagram (diamonds in Fig. 4), possibly exhibiting a dynamic equilibrium
phase of short-range order.

6. CONCLUSION

We have developed a formalism to study the phase diagram of coupled
homonuclear diatomic molecules. In particular, our formalism is useful in
studying the nature of ortho–para (or odd-J/even-J) mixtures, since the
disorder due to the molecules being either odd-J or even-J is implemented
explicitly, allowing for the study of short-range ordered states. Our model
system is the QAPR model, a model of coupled rotors in two-dimensions.
We found that short-range order occurs at coupling constants much lower
than in case where standard mean-field theory predicts the occurrence of
long-range order. Even very low concentrations (1%) give rise to a phase
transition from disorder into short-range order, indicating that mediation by
molecules of even angular momentum symmetry cannot be neglected. For
systems at thermal equlibrium our formalism predicts a strongly reentrant
phase transition. The reentrance is stronger than in the case of all-J systems
(found experimentally in HD24).
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