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Abstract

We use a pair of coupled continuum equations to generate a rough surface which models

molecular beam epitaxy. Using these equations, we generate a rough Fe surface on Ag substrate.

We then use the Recursion method coupled with the tight binding linear muffin tin orbital

method (TB-LMTO) for the density of states and magnetic moments of different atoms having

curvature on the rough surface. We also calculate the magnetic moments of atoms of different

layers below the surface atoms. We observe that the magnetic moments of atoms on the rough

surface varies with the local curvature but for the atoms of sub-surface layers, the dependence

is not prominent.
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1 Introduction

Magnetic and non-magnetic overlayers prepared by various vapour deposition techniques on

substrates invariably lead to the formation of rough surfaces. Considerable work has gone into

the description and quantification of surface roughness [1]. Experimentally one can access such

descriptions, for example, through glancing angle X-ray scattering experiments [2, 3, 4, 5, 6, 7].

We observed earlier that [8] the local magnetic moment in a solid is strongly influenced by

the immediate environment, so it varies randomly across the rough surface. Atomic binding

energy of systems occur due to the collective behaviour of interacting itinerant electrons. The

study of the effect of extended defects, like surfaces and interfaces on itinerant electron binding

energy, takes us a step further. The surface co-ordination number of an atom differs quite a bit

as compared to that of the bulk solids [9]. When a surface is formed, the environment of the

atoms at the surface is different from the bulk. Atoms at the surface have fewer neighbours as

compared to the bulk and consequently their bonding to the solid is weaker.

We shall generate a rough surface and then obtain the local density of states at various

positions on the surface using a local spin density approximation based on the electronic structure

technique. The exact method for generating the rough surface is not important to our results,

except for the fact that it will fix the degree of roughness of the resulting profile. We have chosen

the coupled stochastic equations model suggested by [10] and in a modified form by [11], since

we have some understanding of the roughness produced in [10]. Moreover, the model has, we

believe, built in it many of the physical mechanisms involved in the deposition process. These

include:

(i) a randomly fluctuating incoming flux,

(ii) a shape rearrangement to minimize the chemical potential which leads to a surface diffusive

current proportional to the gradient of the local chemical potential and

(iii) an evaporation-accretion process arising out of finite substrate temperatures.

Our proposal for the study of surface magnetization roughness will not change qualitatively if

we use any other model for generating the rough surface. For the electronic structure technique

we have used the tight-binding linearized muffin-tin orbitals method proposed by Andersen [12,

13] coupled with the recursion method of [14, 15].

Both these methods have been described in great detail in the referenced papers. We shall

indicate here the main results we have used for our analysis. The “second order” Hamiltonian

generated self-consistently within the TB-LMTO has the form,

H(σ,i) = E(σ,i)
ν + h(σ,i) − h(σ,i) o(σ,i) h(σ,i) (1)
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where,

h(σ,i) =
∑

RL

(

C
(σ,i)
RL − E

(σ,i)
ν,L

)

PRL +
∑

RL

∑

R′L′

∆
1/2(σ,i)
RL S

(i)
RL,R′L′ ∆

1/2(σ,i)
R′L′ TRLα,R′L′α′

• R labels the position of a given atom and i indicates which layer below the surface R sits.

L = ℓ,m are composite angular momentum indices, σ is the spin index (either ↑ or ↓).

• C
(σ,i)
RL , o

(σ,i)
RL and ∆

1/2(σ,i)
RL are the potential parameters of the TB-LMTO method.

• S
(i)
RL,R′L′ is the short-ranged screened structure matrix, which depends only on the geom-

etry of the underlying lattice. This may be different at the surface because of surface

dilatation.

• PRL and TR′L′ are the projection and transfer operators in Hilbert space H spanned by

tight-binding basis {| RL〉}

Using this Hamiltonian, the recursion method provides the Green functions:

G
(σ,i)
RL,RL(E) = 〈R,L|

(

EI − H(σ,i)
)−1

|R,L〉

=
1

E − α1 −
β2

1

E − α2 −
β2

2

. . . β2
N−1

E − αN − T (E)

(2)

T (E) is the appropriate terminator obtained from the initial part of the continued fraction. The

terminator preserves the herglotz analytic properties of the approximated Green function. The

imaginary part of the Green function gives us density of states.

The spheridized local charge density within an atomic sphere centered at R can be obtained

from

ρ(σ)(i)(rR) =
1

4π

∑

l

[

m
(0)
Rl φlσ + 2m

(1)
Rl φlσφ̇rR + m

(2)
Rl

(

φ̇σl(rR)2 + φσl(rR)φ̈σl(rR)
)]

where the energy moments are

m
(n)
Rl = −

1

π
Im

∫ EF

− inf
dEG

(σ,i)
RL,RL(E)(E − Eν,Rl)

n (3)

The φσl(rR) are the radial solutions of the Kohn-Sham equations within the atomic sphere

centered at R. The local Hartree and Exchange-correlation potentials are functionals of the local
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charge densities. For the expression for the exchange correlation we have used the Barth-Hedin

functional [16]. The magnetization density within that sphere is:

M (i)(rR) = ρ
(i)
↑ (rR) − ρ

(i)
↓ (rR) (4)

The charge and magnetization densities are then input into the self-consistency iterations

using the LSDA. The total energy includes contributions up to dipoles from the charge layer in

the empty spheres at the surface. After convergence, the magnetic moment in the atomic sphere

centered at R in the i-th layer from the surface is calculated from:

M (i)(rR) =

∫ sR

0
M (i)(rR)r2

RdrR (5)

2 The input parameters

The potential parameters used in equation (1) are layer dependent and different from those of the

bulk. To get the starting potential parameters we did a number of super-cell calculations. We

used a unit cell of tetragonal structure of 12-30 atomic spheres. The empty spheres containing

the charge but no atoms take care of the charge leakage. We take a unit cell by varying the

number of layers for Fe and empty spheres. Using these parameters we did a recursion calculation

and observed that density of states obtained in different layers of (100) plane match very well

with the result obtained from the LMTO(in Fig. 1).

3 Rough surface formation

We should reiterate at the outset that the procedure for the generation of a rough surface profile

is immaterial to the analysis of local magnetic moment distribution on a rough surface. However,

for the analysis of the nature of roughness in the moment distribution and its correlation with the

roughness in the profile requires us to choose a particular generation procedure. We shall choose

here the coupled stochastic equations similar to those proposed by Sanyal et al [10], modified

later by [11]. The coupled equations have been discussed quite extensively in the referenced

articles and the reader is referred to them for details.

Figure 2 displays the rough surface produced using the coupled equations. We should note

that, on the rough surface, translational symmetry is lost both perpendicular and along the

surface. The roughness of such surfaces has been traditionally measured by the scaling exponent

α of the height-height two-point correlation function

S(r − r′, t − t′) = ≪ h(r, t)h(r′, t′) ≫ − ≪ h(r, t) ≫≪ h(r′, t′) ≫

≃ |r − r′|2α for the saturated surface |t − t′| > tc

The height-height correlation function for the rough surface is presented in Fig. 3.
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Figure 1: The layer resolved density of states of a bulk Fe [top left], surface layer[top right],
sub-surface S-1 [bottom left] and sub-surface S-2 [bottom right] on a [100] plane. Both the
K-space and recursion method are used. The vertical line shows the bulk Fe Fermi energy

4 Computation details and results

We have used a real space cluster of 6402-11011 atoms (depending on the position of the starting

site on the surface of 50 X 50 atoms) which remains within the 16th shell from the starting site.

We generated 30 pairs of recursion coefficients accurately. We performed our calculation in

around 50 points of different parts of the roughsurface having different curvature and as well as

the subsurface atoms to determine the density of states and magnetic moments. The density of

state of bulk Fe and some points on the rough surface is presented in Fig 4.

The average magnetic moment of atoms of different curvature is given in Table 1 . In all

calculations, we observe an oscillatory convergence of magnetic moments from the surface to the

bulk value.

The average magnetic moment at the negative curvature is larger, as expected, but it is

observed that in the sub-surface layer the domination of curvature on magnetic moment is not
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Figure 2: A part of the rough surface produced using coupled equations of [11].

Curvature Layer

S S-1 S-2 S-3 S-10

-4 3.13 2.23 2.40 2.29 2.26
-2 3.05 2.22 2.39 2.28 2.26
0 2.99 2.18 2.39 2.28 2.26
2 2.97 2.21 2.38 2.28 2.26
4 2.89 2.21 2.38 2.28 2.26

Table 1: The layer projected average magnetic moment of atoms on different surface points and
subsurface points of a rough surface.

prominent.
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Figure 3: Height-height correlation function C(r) plotted against r. Using the equation C(r) =
〈(hi − 〈h〉)2〉1/2. As C(r) ∼ rα , we obtain a roughness exponent, α = 0.68.
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Figure 4: Density of states of Bulk Fe (A) and some other points with different curvature (B-D)
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