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Abstract

The (G′/G)-expansion method is applied to the one-dimensional Navier-Stokes equations that usually

model blood flow in large vessels. A nonlinear stress-strain condition is applied and different types of trav-

elling waves solutions are found. The shape of the pressure of blood waves and their biological implications

are discussed.
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The importance of nonlinear evolution equations is now established, this because these equations arise

in various areas of science and engineering, especially in fluid mechanics, solid state physics, biophysics

and so on. As a key problem, finding their analytical solutions is of a great interest and this is actually

performed through various powerful and exact methods such as the homogeneous balance method [1], the

ansatz method [2, 3], the Jacobi elliptic function expansion method [4], the extended tanh method [5], the

tanh-coth method and the sech methods[6, 7], just to name a few. Recently, a new method, known as

the (G′/G)-expansion method, has been proposed by Wang et al. [8]. It is actually widely applied to real

problems. In so doing, as in the case of many problems of life sciences, the phenomenon of blood flow in

vessels is quite complex and is not yet fully understood. Furthermore, because of its pulsatile character and

due to physiological constraints, blood flow is expected to display different behaviors in terms of nonlinear

waves and solitons as substantially developed since the pioneering works of Hashimuze [9] and Yomosa [10].

These authors showed in fact that the dynamics of blood waves are governed by the KdV or the modified

KdV equations. Regardless the fact that these equations have been successfully used to explain some natural

behaviors of blood flows [9, 10, 11, 12], it remains obvious that they are only approximated from Navier-

Stokes and continuity equations. In this letter, we intend to avoid all approximations or expansions of the

corresponding equations in order to investigate blood waves in large vessels through the (G′/G)-expansion

method. As a consequence some features of the pressure of blood waves related to the founded solutions are

discussed.

We consider the fluid in the vessel to be Newtonian, viscous, homogeneous and incompressible. The

whole dynamics of blood flow in vessels is governed by the conservation of mass, momenta and forces

balance equation for radial motion of the wall [13, 14]

∂A

∂t
+

∂

∂z
(AW ) = 0, (1)

∂W

∂t
+ W

∂W

∂z
+

∂P

∂z
= 0, (2)

where z is the axial coordinate, t is time, W is the axial component of the fluid velocity, A is the cross-

sectional area of the vessel and P is the pressure inside the vessel.

For the modeling of the wall dynamics, the second law of Newton is used on a portion of the vessel wall

and the equation of the dynamics of wall takes the form [13, 14]

P =
2

1 + A

∂2A

∂t2
+ 2(A − 1)

(2 + a(A − 1))

(A + 1)2
, (3)

where a is the coefficient representing the nonlinear coefficient of the vessel wall. The variables

ź = L0z, t́ = T0t, ẃ = w0W, Ṕ − pe = p0P, and S = S0A (4)

are dimensionless, with the characteristic parameters are

L0 = (R0h0ρ0/2ρ)1/2, T0 = (ρ0R
2
0/E0)

1/2, w0 = L0/T0, S0 = πR2
0, and p0 = ρv2

0. (5)

R0 and h0 are the equilibrium values of radius R and thickness h of the wall. ρ and ρ0 are respectively, the

density of the fluid and the wall. E0 is the Young modulus, S and ẃ are the dimensional cross-section area
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of the vessel and the axial longitudinal flow velocity respectively. Combining the independent variables z

and t into one variable η = z − V t, Eqs.(1)-(3) become

−V Aη + (AW )η = 0, (6)

−V Wη + WWη + 2

(

V 2

(1 + A)
Aηη + (A − 1)

(2 + a(A − 1))

(A + 1)2

)

η

= 0. (7)

Integrating the above Eqs.(6) and (7) with respect to η yields

−V A + AW + K1 = 0, (8)

2V 2

(1 + A)
Aηη + 2(A − 1)

(2 + a(A − 1))

(A + 1)2
+

1

2
W 2

− V W + K2 = 0. (9)

For simplification, we consider the integration constant K2 to be zero, while the constant K1 is assumed to

be different from zero. From Eq. (8), it is possible to write W as a function of A. Replacing the latter into

Eq. (9) therefore leads to the equation

2V 2A2(1 + A)Aηη + 2A2(A − 1) [2 + a(A − 1)] +
1

2
(V A − K1)

2 + A2(V A − K1)

+
1

2
A2(V A − K1)

2
− V A(V A − K1) − 2V A2(V A − K1) − V A3(V A − K1) = 0.

(10)

As already mentioned previously, we assume that the solution of ODE (10) may be expressed by a polynomial

in
(

G′

G

)

as follows

A(η) =
M
∑

m=0

αm

(

G′

G

)m

, (11)

where G = G(η) satisfies the second order ODE in the form

G
′′

(η) + λG
′

(η) + µG(η) = 0, (12)

αm, λ and µ are constants to be determined later. The unwritten part in Eq. (13) is also a polynomial

in
(

G′

G

)

, the degree of which is generally equal to or less than M − 1, and the positive integer M can be

determined by considering the homogeneous balance between the highest order derivatives and nonlinear

terms appearing in the equation to be solved. In the particular case of Eq. (10), the corresponding balance

between the terms A3Aηη , A2Aηη, A4, A3, and A2 leads to M = 2. This indubitably brings us to assume

the solution to be of the form

A(η) = α0 + α1

(

G
′

G

)

+ α2

(

G
′

G

)2

. (13)

In what follows, we consider the coupled equations as given by Eqs. (8) and (9). It will therefore be useful

to assume the same solution order for Eq. (8) that will be taken as

W (η) = β0 + β1

(

G
′

G

)

+ β2

(

G
′

G

)2

, (14)
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where βm are to be determined. By using Eq.(12), from Eq.(13) we have

Aηη = 6α2

(

G
′

G

)4

+ (2α1 + 10α2λ)

(

G
′

G

)3

+
(

8α2µ + 3α1λ + 4α2λ
2
)

(

G
′

G

)2

+
(

6α2µλ + 2α1µ + α1λ
2
)

(

G
′

G

)

+ 2α2µ
2 + α1µλ.

(15)

On substituting Eqs.(13)-(15) into Eqs. (8) and (9) and solving with respect to the powers of (G
′

/G) and

setting each corresponding coefficient to zero, the algebraic equations for V, α0, α1, α2, β0, β1, β2, λ, µ and

K1 are obtained. Solving the later with the Maple software gives us

α0 = α0, β0 = β0, V =
β0α0 + K1

α0

, β1 =K1

α1

α0

, β2 = − K1

α2

α0

. (16)

α1 =
−3λα2

0

µ
×

f1(α0, β0) + K1f2(α0, β0)

f3(α0, β0) + K1f4(α0, β0) + K2
1
f5(α0, β0)

, (17)

where

f1(α0, β0) = β2
0α0 + 3β2

0α2
0 − 4aα0 + 4aα2

0 + 8α0 + 3β2
0α3

0 + 4aα3
0 − 8α3

0 + β2
0α4

0 − 4aα4
0,

f2(α0, β0) = 6β0α
2
0 + 6β0α0 + 2β0 + 2β0α

3
0,

f3(α0, β0) = −β2
0α3

0 − 12aα3
0 + 8µβ2

0α3
0 + 16α3

0 − 8λ2α3
0β

2
0 + 16µβ2

0α4
0 − 16λ2α4

0β
2
0

+ 4aα5
0 − β2

0α5
0 + 8aα4

0 − 2β2
0α4

0 + 8µβ2
0α5

0 − 8λ2α5
0β

2
0 ,

f4(α0, β0) = 16µα2
0β0 − 32λ2α3

0β0 + 32µα3
0β0 − 16λ2α4

0β0 + 16µα4
0β0 − 2β0α

4
0 − 16λ2α2

0β0 − 2β0α
2
0 − 4β0α

3
0,

f5(α0, β0) = −8λ2α3
0 + 8µα3

0 − 2α3
0 − 6α2

0 − 6α0 − 2 − 8λ2α0 + 8µα0 − 16λ2α2
0 + 16µα2

0,

and

α2 =
−0.25α1

µα0

×

g1(α0, α1, β0) + K1g2(α0, α1, β0) + K2
1g3(α0, α1, β0)

g4(α0, α1, β0) + K1g5(α0, α1, β0) + K2
1
g6(α0, α1, β0)

, (18)

where

g1(α0, α1, β0) = −β2
0α3

0 − 4aα3
0 + 4µβ2

0α3
0 + 4α3

0 + 2λ2α3
0β

2
0 + 4µβ2

0α4
0 + 2λ2α4

0β
2
0 + 4aα4

0 − β2
0α4

0 + 2µα1λβ2
0α3

0,

g2(α0, α1, β0) = −2β0α
2
0 − 2β0α

3
0 + 4λ2α2

0β0 + 8µα2
0β0 + 4µα1λβ0α

2
0 + 4λ2α3

0β0 + 8µα3
0β0,

g3(α0, α1, β0) = −1 + 4µα0 + 2λ2α0 + 2λ2α2
0 + 4µα2

0 − α2
0 − 2α0 + 2α0µα1λ,

g4(α0, α1, β0) = 3β2
0α2

0λ + α1µβ2
0α2

0 + 3β2
0α3

0λ,

g5(α0, α1, β0) = 6λα0β0 + 2α1µβ0α0 + 6λα2
0β0),

g6(α0, α1, β0) = 3λ + 3λα0 + α1µ.

The general solutions of Eqs.(1) and (2) are written as follows

A(η) = α0 + α1

(

G
′

G

)

+ α2

(

G
′

G

)2

, and W (η) = β0 + K1

α1

α0

(

G
′

G

)

− K1

α2

α0

(

G
′

G

)2

, (19)

where η = z −

(

β0α0+K1

α0

)

t.
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The ODE (12) may then be solved exactly and admits the following solutions

G1(η) = C1e
r1η + C2e

r2η, when λ2
− 4µ > 0

G2(η) = [C1 cos(bη) + C2 sin(bη)]eση , when λ2
− 4µ < 0

G3(η) = (C1 + C2η)erη , when λ2
− 4µ = 0,

(20)

with

r1 =
−λ −

√

λ2
− 4µ

2
, r2 =

−λ +
√

λ2
− 4µ

2
, r = σ =

−λ

2
and b =

√

λ2
− 4µ

2
,

where C1 and C2 are arbitrary constants. We therefore get three categories of travelling wave solution that

propagate in the vessel [15]:

Case 1: Hyperbolic function travelling wave solutions

(i) If λ2
− 4µ > 0 and C1C2 > 0 then we have

A1(η) = α0 −
λ

4
(2α1 − λα2) + (α1 − λα2)

√

λ2
− 4µ

2
tanh(θ1) +

α2

4

(

λ2
− 4µ

)

tanh2(θ1), (21)

W1(η) = β0 −
λK1

4α0

(2α1 + λα2) + (α1 + λα2) K1

√

λ2
− 4µ

2α0

tanh(θ1) −
α2K1

4α0

(

λ2
− 4µ

)

tanh2(θ1). (22)

(ii) If λ2
− 4µ > 0 and C1C2 < 0 then we have

A2(η) = α0 −
λ

4
(2α1 − λα2) + (α1 − λα2)

√

λ2
− 4µ

2
coth(θ2) +

α2

4

(

λ2
− 4µ

)

coth2(θ2), (23)

W2(η) = β0 −
λK1

4α0

(2α1 + λα2) + (α1 + λα2) K1

√

λ2
− 4µ

2α0

coth(θ2) −
α2K1

4α0

(

λ2
− 4µ

)

coth2(θ2). (24)

Case 2: Trigonometric function travelling wave solutions

(iii) If λ2
− 4µ < 0 and C1C2 > 0 then we have

A3(η) = α0 −
λ

4
(2α1 − λα2) − (α1 − λα2)

√

λ2
− 4µ

2
tan(θ3) +

α2

4

(

λ2
− 4µ

)

tan2(θ3), (25)

W3(η) = β0 −
λK1

4α0

(2α1 + λα2) − (α1 + λα2)K1

√

λ2
− 4µ

2α0

tan(θ3) −
α2K1

4α0

(

λ2
− 4µ

)

tan2(θ3). (26)

(iv) If λ2
− 4µ < 0 and C1C2 < 0 then we have

A4(η) = α0 −
λ

4
(2α1 − λα2) − (α1 − λα2)

√

λ2
− 4µ

2
cot(θ4) +

α2

4

(

λ2
− 4µ

)

cot2(θ4), (27)
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W4(η) = β0 −
λK1

4α0

(2α1 + λα2) − (α1 + λα2)K1

√

λ2
− 4µ

2α0

cot(θ4) −
α2K1

4α0

(

λ2
− 4µ

)

cot2(θ4). (28)

Case 3: Rational functions solutions

(v) If λ2
− 4µ = 0, then we have

A5(η) = α0 −
λ

4
(2α1 − λα2) + (α1 − λα2)

C2

C1 + C2η
+

α2C
2
2

(C1 + C2η)2
, (29)

W5(η) = β0 −
λK1

4α0

(2α1 + λα2) + (α1 + λα2)
K1C2

α0 (C1 + C2η)
−

α2K1C
2
2

α0 (C1 + C2η)2
. (30)

where

θ1 =

√

λ2
− 4µ

2
η +

1

2
Ln

(

C2

C1

)

, θ2 =

√

λ2
− 4µ

2
η +

1

2
Ln

(

−C2

C1

)

,

θ3 =

√

4µ − λ2

2
η − arctan

(

C2

C1

)

, θ4 =

√

4µ − λ2

2
η + arctan

(

C1

C2

)

,

As a particular case, if we consider α1 = λα2, the solution (21) becomes

A6(η) = α0 − µα1 −
α1

4λ

(

λ2
− 4µ

)

sech2(θ1), (31)

which is the well-known solitary wave solution of the KdV equation obtained in [10, 16, 17]. In the same

way, the velocity (32) reduces to

W6(η) = β0 −
K1α1

λα0

(

µ − λ2
)

−

α1

α0

√

λ2
− 4µ tanh(θ1) +

α1K1

4α0λ

(

λ2
− 4µ

)

sech2(θ1) (32)

In what follows, we discuss some features of the nonlinear pressure using for example the solutions (21) and

(22). In fact, the elucidation of the pathology of many diseases related to blood flow, such as hypertension

and hypotension, requires investigations of the mechanisms responsible for the maintenance of blood pressure

in the normal system, and their possible failure within the context of these diseases. Some of the control

mechanisms display nonlinear features and therefore confirm the importance of the soliton-like shape of the

blood pressure. As a reminder, the pressure of blood waves as defined in this work is given by Eq.(3).

Writing the global expression of the pressure is a heavy task, but the second-order derivative is supposed to

bring about interesting features in the system. In so doing, the expression of ∂2A1

∂t2
is given by

∂2A1

∂t2
=

(

β0α0 + K1

α0

)2(λ2

4
− µ

)[

α2

16
(λ2

− 4µ) sech4(θ1)

−

1

2
(α1 − λα2)

√

λ2
− 4µ tanh(θ1) sech2(θ1) −

α2

4
(λ2

− 4µ) tanh2(θ1) sech2(θ1)

]

,

(33)

and the corresponding features of blood pressure are depicted in Figs.1 and 2.
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It has been accepted, during decades, that the blood pressure could be assimilated to a wave whose shape

evolves between a solitary and a shock-like waves. The same behavior of the blood pressure is observed

in Fig.1, where the obtained solution is apparently a pulse-like soliton. It is however known that under

physiological conditions, anatomic activities sometimes change, and cardiovascular control in particular,

consequently affecting the parameters of its dynamics. Accordingly, the pressure wave that propagates in

the vessel can adopt different configuration with important biological implications. In order to illustrate

such an aspect, we have plotted the blood pressure P1 for different values of parameters as illustrated in

Fig.2. The corresponding wave solution has some features of the ”kink-pulse” soliton. Furthermore, the

discussed solutions also suggest that the appropriate shape of the blood pressure wave should be combined

with a characteristic velocity. This was mainly revealed by the study of Blumgart et al. [18], who showed

that the velocity of blood from the harm to the heart gradually decreases due to spontaneous fluctuations

in the arm. We therefore qualitatively observed from Figs.1(a) and 2(a) that the pulse-like wave is faster

than the ”kink-pulse” solution.

To summarize, the heart sends blood pressure waves in vessels that are locally expanded. Such a complex

dynamics is governed by biofluid dynamics laws such as the conservation of mass, the momenta and forces

balance equation for radial motion of the wall. This is explicitly modelled by the well-known Navier-Stockes

equations from which few calculations and approximations lead to Kdv or modified KdV equations. Far to

perform any such simplifications and approximations, we have solved analytically the generic equations of

blood flow through the (G′/G)-expansion method, and particular attention has been paid to the pressure of

blood waves. Several travelling wave solutions have been obtained in terms of hyperbolic, trigonometric and

rational functions. Comparisons have been made between some obtained solutions and what is commonly

accepted in the literature. On the other hand, the obtained solutions have not been widely discussed, since

some of them are really new in this field and therefore deserve more attention in order to better bring out

their proper biological importance and implication. The method thus worked out will be applied to blood

flow models including cardiovascular diseases such as aneurism and many others.
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Figure 1: The panels display the features of the blood pressure according to the solutions A1 and W1. In panel (a) the pressure
is plotted in a moving frame for t=0 (blue line), t=10 (red dashed line) and t=20 (green dashed-dotted line). Panel (b) depicts
the 3D propagation of the blood pressure. values of parameters are: α0 = 0.005, β0 = 0.5, K1 = 0.002, a = 0.8, µ = 0.2,
λ = 1.8, and C1 = C2 = 1.
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Figure 2: The panels display the features of the blood pressure according to the solutions A1 and W1. In panel (a) the pressure
is plotted in a moving frame for t=0 (blue line), t=10 (red dashed line) and t=20 (green dashed-dotted line). Panel (b) depicts
the 3D propagation of the blood pressure. values of parameters are: α0 = 0.25, β0 = 0.5, K1 = 0.002, a = 0.8, µ = 0.2, λ = 1.8,
and C1 = C2 = 1.
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