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Abstract

Inflationary scenarios in string theory often involve a large number of light scalar fields, whose

presence can enrich the post-inflationary evolution of primordial fluctuations generated during

the inflationary epoch. We provide a simple example of such post-inflationary processing within

an explicit string-inflationary construction, using a Kähler modulus as the inflaton within the

framework of LARGE Volume Type-IIB string flux compactifications. We argue that inflationary

models within this broad category often have a selection of scalars that are light enough to be

cosmologically relevant, whose contributions to the primordial fluctuation spectrum can compete

with those generated in the standard way by the inflaton. These models consequently often

predict nongaussianity at a level, fNL ≃ O(10), potentially observable by the Planck satellite,

with a bi-spectrum maximized by triangles with squeezed shape in a string realization of the

curvaton scenario. We argue that the observation of such a signal would robustly prefer string

cosmologies such as these that predict a multi-field dynamics during the very early universe.
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1 Introduction

Standard Hot Big Bang cosmology provides a good description of the great wealth of large-scale

observations [1] that have recently revolutionized our understanding of cosmology, but it only does

so if the universe is started off with a particular kind of initial conditions. Cosmic inflation [2] was

initially proposed as an elegant way of obtaining these conditions as the outcome of still-earlier

dynamics. But this initial promise was subsequently reinforced by the observation that curvature

perturbations generated by quantum fluctuations of the inflaton field can get imprinted on the

temperature distribution of the Cosmic Microwave Background (CMB) in the much later universe,

in good agreement with the almost-scale-invariant and Gaussian spectrum that is observed.

Obtaining the desired inflationary expansion within a realistic picture of the at-present ill-

understood dynamics appropriate to the very high energies required proved to be much harder

than expected, however. The last decade has seen some progress, sparked by the understanding of

modulus stabilization within string theory. This allows the construction of calculable inflationary

configurations within string theory, with the role of the inflaton played either by an open-string

degree of freedom — such as the relative positions of BPS branes [3], or of a brane and an-

tibrane [4], or Wilson lines [5] — or a field from the closed-string sector — such as a geometrical

modulus [6] (see [7, 8] for reviews).

Nowadays, various string inflationary models are under reasonably good theoretical control,

and developed to a level that can be compared meaningfully to cosmological data. In particular,

because mechanisms now exist to stabilize moduli, it is possible to understand the cosmological

evolution of all of the relevant fields, and therefore to be sure that the motion of fields other

than the inflaton do not ruin the simplest single-field inflationary predictions for the evolution

of curvature perturbations. It is largely the removal of this potential theoretical error that now

makes the predictions of string inflationary scenarios sufficiently reliable for comparisons with

observations.

One feature common to the string inflationary models explored so far is the effective ab-

sence in them of isocurvature fluctuations in the predictions for CMB observables. This despite

the fact that most scenarios involve more than one potentially cosmologically active scalar field

during the inflationary epoch. Indeed models are usually designed this way, with all of the non-

inflaton moduli sitting in their local minima as the inflaton rolls. Such constructions greatly

simplify the calculation of late-time perturbations, because they predict only adiabatic fluctua-

tions, which can be evolved forward to the present time with minimal sensitivity to the details of

the poorly-understood cosmological history between inflation and now. It is because of this that

the implications of these models are usually well-captured, ex post facto, by simple single-field

inflationary models [8, 9].

An unfortunate consequence of the focus for convenience on such models is the misconception

that string inflation must agree in its predictions with single-field models, including in particular a
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prediction of vanishingly small nongaussianity. This prediction is sometimes held up as a potential

observational way to discriminate [10] between string inflation and alternatives to inflation within

string theory [11].

In order to investigate the robustness of such predictions, in this paper we take the first steps

towards exploring other mechanisms for generating primordial fluctuations within a concrete

string inflationary model based on a LARGE Volume (LV) scenario. (For other discussions of

nongaussianities in string inspired scenarios see [12].) We find we are able to construct such

string inflationary frameworks by making nontrivial use of the presence of the large number of

scalar fields that are generically present during and after the inflationary epoch. If these fields

are sufficiently light during inflation they can acquire significant isocurvature fluctuations which

post-inflationary evolution can robustly convert into adiabatic perturbations, swamping those

contributions coming from the inflaton field itself. Although somewhat more history-dependent

than is the standard mechanism, the subsequent evolution of the resulting adiabatic fluctuations

remains plausibly independent of the details of cosmic evolution provided only that the universe

comes to thermal equilibrium shortly after adiabatic perturbations with the desired features are

produced.

Our search for models uses two generic mechanisms for achieving post-inflationary isocurvature

to adiabatic conversion: the curvaton mechanism [13, 14, 15]; and the modulation mechanism

[16, 17, 18, 19] scenarios. In particular, the main models we present can be regarded as explicit

realizations of the curvaton mechanism within a string-inflationary framework. The idea that

such modulus dependent effects could contribute to curvature perturbations is not in itself new.

What we accomplish in this work is to achieve it for the first time in a fully calculable string

set-up, where the required properties are subject to a myriad of constraints imposed by the

underlying UV consistency. The precision of this kind of setup is a necessary preliminary for

asking more detailed questions about reheating and the ultimate transfer of energy from the

inflaton to observable degrees of freedom (d.o.f.). Similar studies for brane-antibrane inflation

allowed the identification of cosmic strings as a potential late-epoch signature [20], as well as the

utility of warping for channeling energy into the observed low-energy sector [21]. Recent studies

of reheating at the end of closed string inflation similarly reveal the need to set severe constraints

on the hidden sector dynamics in order to allow an efficient reheating of the visible sector [22].

Because the observed primordial fluctuations are not directly generated by the inflaton their

properties in general depend differently on the various underlying parameters, and are in par-

ticular not tied to the slow-roll parameters in the way familiar from single-field models. This

could ultimately allow string inflationary models for which the string scale is not in conflict with

the demands of particle physics during the present epoch (such as the supersymmetry breaking

scale) [23], although we do not yet have an explicit example which does so.

The most interesting such difference is the generic prediction of a sizeable level of nongaus-

sianity, fNL ≃ O(10); a level detectable by the Planck satellite. The underlying imprinting of
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the adiabatic fluctuations takes place in the post-inflationary epoch. It is characterized by a

non-linear relation between scalar and curvature fluctuations, that generates nongaussianities of

local form. The corresponding bi-spectrum, consequently, is robustly predicted to be dominated

by triplets of momenta that form long, thin triangles: the so-called squeezed limit.1

In the models studied here the size of the nongaussianity is a consequence of the properties of

the geometry of the extra dimensions in string theory. But if such nongaussianity should really

be observed with these properties, they will not tell us about microscopic physics in this much

detail. What they most likely would tell us is that the epoch of fluctuation generation and its

aftermath are described by some sort of multi-field system similar to the ones we describe.

We perform our search for these mechanisms within the LARGE Volume (LV) scenario of

modulus stabilization for Type IIB string vacua [25]. These models are convenient for this purpose

for several reasons. First, they predict the existence of a suite of moduli, whose masses naturally

come with a hierarchical suppression in different ways by powers of the extra-dimensional volume,

V = Vol/ℓ6s, in string units [26, 27, 28, 29]. In particular, Kähler moduli for small cycles tend

to arise with masses of order Mp/V while those for large cycles tend to get masses of the order

Mp/V3/2 or smaller. Second, the couplings of these moduli to observable fields at late times

can be plausibly estimated provided these fields are assumed to reside on a brane (or branes)

that wrap the cycles whose volumes are measured by the various moduli [22, 27, 30]. Finally,

inflationary mechanisms are already known using these models, with the inflaton being either a

small cycle [31] or a large one [32].

To construct our models we splice the frameworks developed in [31] and [32], using a modulus

of a small (blow-up) cycle as the inflaton, keeping the modulus for a larger cycle as the (curvaton)

field that acquires isocurvature fluctuations. This construction exploits the fact that these moduli

like to be light relative to the inflaton, and so would plausibly have extra-Hubble fluctuations

imprinted on their profiles. Moreover, after inflation its decay rate to radiation has the right

value to convert isocurvature modes into adiabatic fluctuations, with the correct amplitude (and

a sizeable level of nongaussianity). The spirit of our construction is to provide an existence

proof for mechanisms of this type within a well-developed, modern string set-up, in which issues

associated with moduli dynamics and stabilization can be analysed. Although at first sight the

model may seem contrived, it actually uses the minimal amount of ingredients that are needed

in order to exhibit the effects we are interested in.

The paper is organized as follows. In §2, we briefly review the field content and framework of

the LV compactifications. §3 then describes the inflationary setup in these models, which mini-

mally involve 4 moduli: V = V(τ1, τ2, τ3, τ4). These are: a curvaton field, τ1; the volume modulus,

τ2 together with a blow-up mode, τ3, that provides the standard LV stabilization mechanism for

the volume V; and an inflaton τ4.
2 These have the desired hierarchy of masses if the fluxes are

1For a recent comprehensive review on nongaussianities see [24].
2We apologize for the slightly opaque notation, which is designed to follow ref. [32] as closely as possible.
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adjusted so that the volumes are stabilized with the hierarchy τ2 > τ1 ≫ τ4 > τ3. Because of the

LV ‘magic’ this can be done using hierarchies among the input fluxes that are at most O(10). §4
then gives the V-dependence of the couplings of these fields to observable d.o.f., which we take to

be localized on a brane wrapping either the curvaton cycle or one of the small blow-up cycles. The

curvaton mechanism in this framework is explored in §5, where it is shown that the V-dependence

of the masses and couplings can be such as to produce acceptable adiabatic fluctuations. §6 then

explores several choices for underlying parameters to get a feel for the range that is possible for

observables. One of the models presented in this section predicts fNL ≃ 56. Our conclusions are

briefly summarized in §7.

2 The system under consideration

We start with a discussion of the system whose inflationary dynamics is of interest. We follow

throughout the conventions of [32].

2.1 The field content

The model requires us to choose a compactification based on a Calabi-Yau manifold having at

least the following 4 Kähler moduli, whose dynamics are of interest:

i) A fiber modulus, τ1, playing the role of curvaton field and wrapped by a stack ofD7-branes.3

The low-energy scalar potential first acquires a dependence on this field through string loop

contributions sourced by the D7-branes [28, 34], and for this reason it likes to remain light

during inflation.

ii) A base modulus, τ2, that mainly controls the overall extra-dimensional volume and which is

wrapped by a stack of D7-branes needed to generate the string loop potential for τ1.
3 This

modulus is heavy during inflation, and remains well-stabilized at its minimum throughout

inflation.

iii) A blow-up mode τ3, that is an ‘assisting field’ required to stabilize the volume V at its

minimum in the usual LV way (as in [31]). The potential depends on it through non-

perturbative contributions generated by a stack of D7-branes wrapping τ3 and supporting

a hidden sector that undergoes gaugino condensation.4 It is heavy during inflation, and its

VEV is proportional to the logarithm of the volume.

iv) A second blow-up mode, τ4, that plays the role of the inflaton field, as in [31]. Its non-

perturbative potential is again generated by gaugino condensation on the hidden sector

3These D7-branes can support either a visible or a hidden sector in a very model-dependent way.
4τ3 cannot support a visible sector due to the tension between non-perturbative effects and chirality [33].
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supported by a stack of D7-branes wrapping this cycle.5 During inflation its VEV is few

times the logarithm of the volume.

We finally point out that we shall present two explicit scenarios:

1. Visible sector wrapped around the curvaton cycle τ1 (and τ2 since these two cycles intersect

each other): this is the case with the minimal number of 4 Kähler moduli and, due to

the location of the visible sector on τ1, it maximizes the strength of the coupling of the

curvaton to visible d.o.f., so yielding the largest amount of nongaussianities. However, this

is a non-standard realization of the visible sector supported on a non-rigid 4-cycle which

tends to be stabilized large (giving rise to a tiny gauge coupling).

2. Visible sector wrapped around a blow-up mode τ5 which is heavy during inflation: in this

case we need to make the system a bit more involved including a fifth cycle which can

be stabilized small either in the geometric regime (by string loop effects as in [28]) or at

the quiver locus (by D-terms as in [35]). The advantage is that now we have a standard

realization of the visible sector on a rigid 4-cycle whose VEV reproduces the correct order

of magnitude of the gauge coupling. However now the geometric separation between τ1 and

τ5 reduces the strength of the coupling of the curvaton to visible d.o.f., so yielding a smaller

amount of nongaussianities.

The compactification

To have these four moduli we consider a Calabi-Yau three-fold with a K3 fibration structure

controlled by two moduli, τ1 and τ2, together with two additional blow-up modes, τ3 and τ4. We

assume the Calabi-Yau volume when expressed as a function of these moduli has the form [36]:

V = α

(

√
τ1τ2 −

4∑

i=3

γi τ
3/2
i

)

. (2.1)

The Kähler potential (including the leading α′ corrections) for the effective low-energy 4D super-

gravity in this case is (we work throughout in the 4D Einstein frame):

K ≃ K0 + δKα′ = −2 ln

[

V +
ξ̂

2

]

, (2.2)

where the α′ corrections are controlled by the quantity

ξ̂ ≡ ξ

g
3/2
s

= −ζ(3)χ(M)

2 g
3
2
s (2π)3

(2.3)

where χ(M) is the Euler number of the compact manifold. In applications we take the quantity

ξ to lie in the interval (0.1 , 1).

5The potential for τ4 cannot be generated by an instanton since after inflation it would lead τ4 to a regime,
〈τ4〉 < 1, where we cannot trust the effective field theory [22].
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In the superpotential we neglect non-perturbative contributions associated with the large

cycles, τ1 and τ2, relative to those of the small cycles,

W ≃W0 +A3e
−a3T3 +A4e

−a4T4 , (2.4)

since these are negligible relative to those explicitly written and are likely to be absent since

τ1 and τ2 are non-rigid cycles. The superpotential is characterized by the constant W0 and the

non-perturbative corrections are weighted by constants Ai. We choose the quantity W0 – as usual

in LV models – to be order one, and the parameters ai satisfy ai = 2π/N since they arise due to

gaugino condensation on D7 branes (with N being the rank of the associated gauge group).

Following the LV program, our interest is in the form of the resulting potential in a regime

where lnV ≃ O (τ3), so that terms in the α′ expansion compete with the leading non-perturbative

contributions from W [26]. However, for the inflationary analysis our interest is not in the local

LV minimum. Instead we seek nearby flat regions of the potential along which the potential is

shallow as a function of τ1 and τ4, with V and τ3 heavy enough to sit at their local minima.

Following the reasoning of refs. [31] and [32], we expect such a regime to arise in the region of

field space where the fields are hierarchically different: τ2 > τ1 ≫ τ4 > τ3, since in this region the

potential likes to become independent of τ1 and τ4, at least before string-loop contributions are

included.

We now use these expressions to compute the scalar potential and kinetic terms in the desired

regime.

2.2 The kinetic terms

In this section we investigate the field redefinitions needed to put the kinetic terms into canonical

form. The starting point in the regime of interest is the Kähler metric for the moduli, which is

given by the following symmetric matrix:

K0
ī =

1

4τ2
2











τ2
2

τ2
1

γ3τ
3/2
3 +γ4τ

3/2
4

τ
3/2
1

−3γ3

2

√
τ3

τ
3/2
1

τ2 −3γ4

2

√
τ4

τ
3/2
1

τ2

′′ 2 −3γ3

√
τ3√
τ1

−3γ4

√
τ4√
τ1

′′ ′′ 3αγ3

2
τ2
2

V√
τ3

9γ3γ4

2

√
τ3τ4
τ1

′′ ′′ ′′ 3αγ4

2
τ2
2

V√
τ4











, (2.5)

where (as in [32]) we systematically drop terms that are suppressed relative to the ones shown

by factors
√

τi/τ2 ∀ i = 3, 4.
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The kinetic Lagrangian to leading order therefore becomes6

− Lkin√−g =
1

4τ2
1

(∂τ1)
2 +

1

2τ2
2

(∂τ2)
2 +

4∑

i=3

3αγi

8V√τi
(∂τi)

2 +
4∑

i=3

γiτ
3/2
i

2τ2
2 τ

3/2
1

∂τ1∂τ2

−
4∑

i=1

3αγi
√
τi

2V

(
∂τ1
2τ1

+
∂τ2
τ2

)

∂τi +
9α2γ3γ4

4

√
τ3τ4
V2

∂τ3∂τ4

=
3

8τ2
1

(∂τ1)
2 +

1

2V2
(∂V)2 +

4∑

i=3

3αγi

8V√τi
(∂τi)

2 − 1

2τ1V
∂τ1∂V

−
4∑

i=3

3αγi
√
τi

2V2
∂V∂τi +

9α2γ3γ4

4

√
τ3τ4
V2

∂τ3∂τ4 , (2.6)

where the last equality trades τ2 for V, in the limit in which τ1, τ2 are much larger than τ3, τ4.

It is convenient to canonically normalize order by order in 1/V, and so we rewrite (2.6) as:

Lkin = LO(1)
kin + LO(V−1)

kin + LO(V−2)
kin , (2.7)

where the leading term is

−LO(1)
kin√−g =

3

8τ2
1

(∂τ1)
2 +

1

2V2
(∂V)2 − 1

2τ1V
∂τ1∂V , (2.8)

while the subleading terms are

−LO(V−1)
kin√−g =

4∑

i=3

3αγi

8V√τi
(∂τi)

2 −
4∑

i=3

3αγi
√
τi

2V2
∂V∂τi, (2.9)

at O(1/V) and

−LO(V−2)
kin√−g =

9α2γ3γ4

4

√
τ3τ4
V2

∂τ3∂τ4 , (2.10)

at O(V−2). At O(1) the transformation

τ1 = exp (aχ1 + bχ2), (2.11)

V = exp (cχ2) , (2.12)

puts expression (2.8) into canonical form

−LO(1)
kin√−g =

1

2

[

(∂χ1)
2 + (∂χ2)

2
]

, (2.13)

where the coefficients a, b and c are obtained from the condition that the matrix M =

(
a b
0 c

)

satisfies

MT ·
(

3
4 −1

2
−1

2 1

)

·M = I . (2.14)

6We use units with 8πMp = 1 unless otherwise stated.
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This has four solutions: (a, b, c), (a,−b,−c), (−a, b, c), (−a,−b,−c), where:

a =
2√
3
, b =

√

2

3
, c =

√

3

2
, (2.15)

and for concreteness we shall choose the first one will all plus signs. As is shown in [22], the fields

χ1 and χ2 turn out to also diagonalize the mass-squared matrix, M2
ij =

∑

k K
−1
ik Vkj in the limit

where string-loop corrections to the potential are neglected. Once string-loop corrections are

included a subdominant dependence of V on χ1 also arises that is not important for our purposes.

Next we diagonalize the next-order kinetic term, LO(V−1)
kin . The first term in (2.9) becomes

diagonal once we rescale the two small moduli as follows

τj =

(
3V

4αγj

)2/3

φ
4/3
j , ∀ j = 3, 4 (2.16)

where we use the notation φj with j = 3, 4 to distinguish these from the large fields, χ1 and χ2.

The second term in (2.9) is similarly diagonalized by mixing V with τj ∀ j = 3, 4. Explicitly,

introducing the following subleading corrections to (2.11) and (2.12):

τ1 = exp




2√
3
χ1 +

√

2

3
χ2 +

3

2

4∑

j=3

φ2
i



, (2.17)

V = exp





√

3

2
χ2 +

9

4

4∑

j=3

φ2
i



 , (2.18)

gives to this order

LO(1)
kin + LO(V−1)

kin =
1

2

2∑

i=1

(∂χi)
2 +

1

2

4∑

j=3

(∂φi)
2 . (2.19)

Notice that the last term in eqs. (2.17) and (2.18) is subleading because φj ∼ O(V−1/2) ≪ 1 for

j = 3, 4, while from (2.11) and (2.12), we have χi ∼ O(lnV), for i = 1, 2. We can now substitute

(2.18) in (2.16) to eliminate V and directly express τi in terms of φi, for i = 3, 4, obtaining

τi =

(
3

4αγi

) 2
3



exp





√

3

2
χ2 +

9

4

4∑

j=3

φ2
j









2
3

φ
4
3
i

≃
(

3

4αγi

) 2
3

exp

[√

2

3
χ2

] 

1 +
3

2

4∑

i6=j=3

φ2
j



φ
4
3
i , ∀ i = 3, 4 . (2.20)

Notice that passage from the first to the second line neglects subleading contributions controlled

by higher order powers of φi.

Finally, the off-diagonal term in LO(V−2)
kin is removed by modifying (2.20) slightly, into:

τi ≃
(

3

4αγi

)2
3

exp

[√

2

3
χ2

] 

1 − 3

4

4∑

i6=j=3

φ2
j



φ
4
3
i , ∀ i = 3, 4 , (2.21)

≃
(

3

4αγi

)2
3

V 2
3



1 − 9

4

4∑

i6=j=3

φ2
j



φ
4
3
i , ∀ i = 3, 4 . (2.22)
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The field redefinitions we have determined render canonical the form of the kinetic terms.

2.3 The potential

We next chase these field redefinitions through the definition of the scalar potential, again fol-

lowing the discussion of ref. [32].

The potential without loop corrections

After minimizing the axion directions, the scalar potential constructed using the Kähler potential

and superpotential of eqs. (2.2) and (2.4) (and neglecting subleading powers of large moduli) is

V =
gse

Kcs

8π

[
4∑

i=3

8 a2
iA

2
i

3αγi

(√
τi
V

)

e−2aiτi − 4

4∑

i=3

W0aiAi

( τi
V2

)

e−aiτi +
3β ξ̂W 2

0

4V3

]

. (2.23)

The overall factor of gse
Kcs/(8π) in front of the potential is a consequence of an overall normaliza-

tion of the superpotential, that is needed to express all quantities in the 4D Einstein frame [30],

as is explained in detail in Appendix A.7 The constant β appearing in the last, τ -independent,

term,

V0 ≡ 3gs β ξ̂ W
2
0

32π V3
, (2.24)

includes contributions due to the stabilization of the massive field τ2, and due to uplifting terms.

It is tuned in such a way that, at the minimum for τ4, the potential vanishes.

This potential completely stabilizes τ3, τ4 and the volume V, at the following values (where

we assume aiτi ≫ 1):

ai〈τi〉 =

(

ξ̂

2αJ

) 2
3

, 〈V〉 =

(
3αγi

4aiAi

)

W0

√

〈τi〉 eai〈τi〉, ∀ i = 3, 4, (2.25)

where J =
∑4

i=3 γi/a
3/2
i . What is noteworthy is that eq. (2.23) does not depend at all on the

fibre modulus, τ1 [32]. It does not do so because the dominant contribution to the potential of

large moduli such as these first arises at the string loop level [28], whose size we now estimate.

The potential with loop corrections

Each cycle wrapped by a stack of D7-branes receives 1-loop open string corrections [28, 34] which,

as pointed out in [32], spoil the flatness of the inflationary potential for τ4. However it is possible

to fine-tune the coefficient of the τ4-dependent loop correction in order to render it negligible (the

amount of fine-tuning needed has been estimated in [22]). Hence we shall focus only on the τ1

and τ2-dependent loop corrections which can be estimated using a procedure identical to [32]:

V = V0 +
gs a

2
4A

2
4

3π αγ4

(√
τ4
V

)

e−2a4τ4 − gs W0 a4A4

2π

( τ4
V2

)

e−a4τ4

+

(
A

τ2
1

− B

V√τ1
+
Cτ1
V2

)
gs W

2
0

8π V2
, (2.26)

7From now on we shall set eKcs = 1.
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where A, B, C are given by

A =
(
gsC

KK
1

)2
(2.27)

B = 4αCW
12 (2.28)

C = 2
(
αgs C

KK
2

)2
, (2.29)

where CKK
1 , CW

12 , and CWW
2 are constants that depend on the details of the string loop corrections

(see [32] for more details). In what follows we regard these constants as free to be fixed using

phenomenological requirements.

The minimum for τ1 is at:

〈τ1〉 ≃
(

−BV
2C

)2/3

if B < 0 or 〈τ1〉 ≃
(

4AV
B

)2/3

if B > 0 . (2.30)

In the following, for definiteness, we consider the case B > 0. It is important to notice that 〈τ1〉
does not depend on τ4, and so τ4 and τ1 can evolve independently in field space. String loop

corrections also shift the minimum for τ3, with respect to its value in eq. (2.25), but this small

correction does not modify the discussion that follows.

The canonically normalized potential

We next identify that part of the potential relevant to inflation. We set V and τ3 to their minima,

and follow the dependence of the rest of the potential on the remaining two fields. This adiabatic

approximation is valid in the large-V limit because the masses of these fields are parametrically

larger than those of the fields whose motion we consider.

Recall that the fields τ1 and τ4 are given in terms of their canonically normalized counterparts

by

τ1 = V2/3 exp

(
2√
3
〈χ1〉

)

e
2√
3

χ̂1 (2.31)

τ4 =

(
3V

4αγ4
φ2

4

)2/3 (

1 − 9

4
φ2

3

)

≃
(

3V
4αγ4

φ2
4

)2/3

(2.32)

where we define

χ1 = 〈χ1〉 + χ̂1 , (2.33)

and the approximate equality for τ4 neglects the subleading dependence on the modulus φ3.

Keeping in mind the factors of gs appearing in the constants A, B and C, we expect

32AC ≪ B2 , (2.34)

in weak coupling, and in this case one finds

〈χ1〉 = 1/
√

3 ln (qV), with q ≡ 4A/B . (2.35)
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With this information, the leading contribution to the inflationary potential breaks into a

sum of terms for the would-be inflaton and curvaton

V (φ4, χ̂1) = Vinf (φ4) + Vcur(χ̂1) (2.36)

where

Vinf (φ4) ≃ V0 −
gsW0a4A4

2π V2

(
3V

4αγ4

)2/3

φ
4/3
4 exp

{

−
[

a4

(
3V

4αγ4

)2/3

φ
4/3
4

]}

, (2.37)

and

Vcur(χ̂1) =
gsW

2
0

8π V10/3

[

C0 e
2√
3
χ̂1 − C1 e

− 1√
3

χ̂1 + C2 e
− 4√

3
χ̂1
]

, (2.38)

with (see [32])

C0 = C q2/3 (2.39)

C1 = B q−1/3 (2.40)

C2 = Aq−4/3 . (2.41)

We call χ1 the curvaton and φ4 the inflaton because the potential for χ1 is parametrically sup-

pressed by powers of 1/V relative to that for φ4, thereby ensuring that it is φ4 whose energy

dominates the cosmic expansion.

Since χ̂1 has been defined such that χ̂1 = 0 at the minimum of the potential, it follows that

the dependence of the constants on 〈χ1〉 ensures, within the limit (2.34), that they satisfy
(
∂Vcur

∂χ̂1

)

∣
∣ χ̂1=0

= 0 ⇒ C0 +
C1

2
− 2C2 = 0 . (2.42)

In the following we work in regimes with χ̂1 very small, for which the exponentials in eq. (2.38)

can be expanded up to quadratic order,

Vcur(χ̂1) ≃ Vcur,0 +
m2

χ1

2
χ̂2

1 with m2
χ1

=
gs W

2
0

12π V10/3
[4C0 − C1 + 16C2] ≡ gsCtW

2
0

8π V10/3
(2.43)

which defines the new constant

Ct ≡ 2

3
[4C0 − C1 + 16C2] . (2.44)

The constant piece, Vcur,0, is absorbable into a subdominant contribution to the constant V0 in

formula (2.37). We check in our later applications that this quadratic expansion of the potential

suffices in the regime of interest.

Field masses

For inflationary applications our interest is whether the masses of the various fields are larger

or smaller than the Hubble scale. Considering that the inflaton potential is of order Vinf ∝
V−2e−a4τ4 ∼ O(V−3), our benchmark during inflation is H ∼M2

p V−3/2. Relative to this consider

the following masses, evaluated at the potential’s minimum:

12



• If all the fields sit at their minima, the mass spectrum is (we temporarily reintroduce the

dependence on the Planck mass):

m2
φi

∼ gs

4π

(
W0

V

)2

M2
p , ∀ i = 3, 4 (2.45)

m2
χ2

∼ gsW
2
0

4π V3
M2

p , m2
χ1

∼ gsW
2
0

4π V3√τ1
M2

p ∼ gsCtW
2
0

4π V10/3
M2

p . (2.46)

• If the inflation and curvaton fields, φ4 and χ1, are moved away from their minima then their

masses are potentially modified. Inspection of the above formulae shows that the χ1 mass

remains of the same order in 1/V as it is at its minimum, eq. (2.46), while the φ4 mass

changes and becomes smaller for larger φ4. Considering the regime a4τ4 > (2 + n) lnV,

with n > 0 one finds

m2
φ4

≃ gsW
2
0

4π V3+n
M2

p , (2.47)

so the inflaton mass is reduced relative to eq. (2.45) as its field moves away from its

minimum (as in ref. [31]).

We see from these estimates that for large V, the fields χ2 and φ3 have masses that are much

larger than H, while χ1 and φ4 have masses that are smaller, justifying the picture wherein V
(which is mostly given by χ2) and τ3 (which is mostly φ3) can be set to their minima while both

χ1 and φ4 remain light enough to have cosmic fluctuations imprinted on them. Since it is the

potential for φ4 that is the largest, this is the field whose evolution dictates the end of inflation

and so earns the name inflaton.

3 Dynamics during inflation

We next discuss the properties of slow-roll inflation in the above regime, together with a discussion

of whether χ1 has the properties required for it to realize the curvaton scenario in this system.

We find these two fields combine the results of [31] and [32].

We start with the hypothesis that the massive moduli χ2 and φ3 are already at their minima,

while φ4 and χ1 need not be. We then consider the evolution of the moduli χ1 and φ4. As we

pointed out before, the analysis is comparatively simple because these two fields evolve almost

independently: see the potential in eqs. (2.37) and (2.38). If the field φ4 acquires a large value,

the dominant term in the inflaton potential is V0. Within this regime, both φ4 and χ1 are lighter

than the Hubble parameter. The former plays the role of inflaton field, while the latter is the

candidate curvaton.

In this section we recap how φ4 drives inflation, and how the field χ1 acquires a scale inde-

pendent spectrum of isocurvature fluctuations, of calculable amplitude, during this inflationary

epoch. The next sections discuss how to convert the isocurvature fluctuations of χ1 into adiabatic

perturbations after inflation ends.
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3.1 Dynamics of the inflaton field φ4

In the scenario just described it is φ4 that drives inflation, as in the model of [31]. The inflationary

potential is

Vinf (φ4) =
3gs β ξ̂W

2
0

32π V3
− gsW0a4A4

2π V2

(
3V

4αγ4

)2/3

φ
4/3
4 exp

{

−
[

a4

(
3V

4αγ4

)2/3

φ
4/3
4

]}

, (3.1)

showing again that the scale of inflation is mainly controlled by the value of the volume, being

given by V0 in eq. (2.24).

The corresponding slow-roll parameters, expressed in terms of the field τ4, become

ǫ =
512V3

27 γ4 α ξ̂2β2W 2
0

a2
4A

2
4

√
τ4 (1 − a4τ4)

2 e−2a4 τ4 (3.2)

η = − 16a4A4 V2

9α ξ̂ γ4 βW0
√
τ4

(
1 − 9a4τ4 + 4a2

4τ
2
4

)
e−a4τ4 , (3.3)

so in the limit of large volume, in order to have ǫ and η small one must choose, at horizon exit,

a4τ4 ≃ (2 + n) lnV , (3.4)

with n > 0. The number of e-foldings is given by the integral

Ne =

∫ φ4

φend
4

Vinf

V ′
inf

dφ̃ =
−27β ξ̂W0 γ4

256V2 a4A4

∫ τ4

τend
4

ea4τ4

√
τ4 (1 − a4τ4)

dτ4 ≥ 60 (3.5)

In our case, the field range for τ4 during inflation is quite limited: from eq. (3.4) we find

2 lnV ≤ a4τ4 ≤ (2 + n) lnV (3.6)

with n > 0. Using this information, the number of e-foldings can be re-expressed as

Ne =
−27β ξ̂W0 γ4

256V2 a
3/2
4 A4

∫ (2+n)
a4

logV

2
a4

logV

ey√
y (1 − y)

dy ≥ 60 (3.7)

Because we seek the dominant contribution elsewhere, we demand that the inflaton contribu-

tion to the power spectrum of curvature perturbations is much lower than the amplitude measured

by the COBE satellite. This gives the following constraint:

V
3/2
inf

M3
p V

′
inf

≪ 5.2 × 10−4 . (3.8)

Substituting the potential, and using eq. (3.4) at horizon exit in the limit a4τ4 ≫ 1, we find

( gs

8π

) 34 α γ4 (β ξ̂)3W 2
0

46 a
3/2
4 [(2 + n) lnV]5/2

(
W0

A4

)2

V2(n−1) ≪ 2.7 × 10−7 , (3.9)

which uses expression (3.4) for the inflaton field at horizon exit.

A successful model must satisfy both of the constraints (3.7) and (3.9). This imposes condi-

tions on some of the parameters of the model, which must be supplemented by the constraints

derived in the following sections coming from the successful realization of the curvaton mech-

anism. We discuss in §6 explicit scenarios that satisfy all the conditions to have a successful

curvaton model.
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3.2 Dynamics of the curvaton field χ1

The curvaton field,8 χ1, is lighter than the Hubble parameter during inflation, since at large

volume

m2
χ1

≃ gs CtW
2
0

4π V 10
3

≪ H2
⋆ ≃ 3gs β ξ̂ W

2
0

32π V3
, (3.10)

where the ‘⋆’ indicates a quantity evaluated at horizon exit. During inflation the field χ1 slowly

rolls classically towards its minimum at zero, but because it is so light it also undergoes quantum

fluctuations that in some circumstances can dominate the classical motion.

We now estimate when fluctuations dominate, following [37]. In one Hubble time H−1
⋆ , the

light field χ1 can fluctuate by an amount δχ1 ∼ H⋆/2π. On the other hand, during the same

time interval a classical slow roll would change the field value by ∆χ1 ∼ −V ′
cur/(3H⋆)∆t⋆ =

−V ′
cur/(3H

2
⋆ ). Fluctuations dominate classical evolution9 when δχ1 ∼ ∆χ1, which occurs when

χ1 = χQ, given by

V ′
cur(χQ) ≃ H3

⋆ . (3.11)

During inflation quantum fluctuations cause the field χ1 to lie in the interval 0 ≤ χ1 ≤ χQ with

uniform probability. Then, its typical value is of order χ1 ∼ χQ.

In the present case, approximating the curvaton potential as quadratic, as in eq. (2.43), one

finds

χQ ≃
( gs

8π

)1/2 (βξ̂)3/2W0

3Ct V7/6
, (3.12)

and so χQ ≫ H⋆. But because χQ is suppressed by 1/V7/6 these fluctuations are nevertheless

very small at large volume. A posteriori, it is these powers of 1/V that justify the expansion of

the curvaton potential up to second order in χ1.

We now estimate in more detail the amplitude of the power spectrum for the curvaton fluc-

tuations, following [39]. The classical evolution equation for the curvaton field is

χ̈1 + 3Hχ̇1 + V ′
cur = 0 . (3.13)

Making the first order expansion δV ′
cur ≃ V ′′

cur δχ1, one finds the following equation for the

inhomogeneous curvaton fluctuation at superhorizon scales

δ̈χ1 + 3H ˙δχ1 + V ′′
cur δχ1 = 0 . (3.14)

Since, for a quadratic potential, δχ1 and χ1 satisfy the same equation, their ratio does not evolve

in time. This means that this ratio keeps the same value it has at horizon exit:
(
δχ1

χ1

)

=

(
δχ1

χ1

)

⋆

. (3.15)

8From now on we drop the hat from the field χ̂1 parameterizing the displacement from the minimum, in eq.
(2.33).

9This estimate has been debated in the literature, in particular the value of the power of H in the right hand
side of (3.11). See for example [38]. In this work, we follow the prescription of [37], but our approach can be
adapted to different possibilities. We thank Sami Nurmi for discussions on this point.
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Then the power spectrum of fractional field perturbations reads

P1/2
δχ1/χ1

=
H⋆

2π χ⋆
≃ 4Ct

3π β ξ̂ V1/3
(3.16)

where in the last approximate equality we suppose χ⋆ ≃ χQ (see the previous discussion).

In the next section we discuss how to convert these isocurvature fluctuations into adiabatic

curvature fluctuations when the curvaton decays after inflation and reheating have already taken

place.

4 Moduli Couplings to Visible Sector Fields

An important feature of the LV framework is that it is possible to directly compute the couplings

between the moduli (among which the inflaton and the curvaton) and all the other visible or

hidden d.o.f. localized on D7-branes wrapped on internal 4-cycles [22, 27, 30]. This is a necessary

ingredient for calculating the inflaton and curvaton decay rates into visible d.o.f. allowing us to

understand reheating at the end of inflation [22], and to determine whether a curvaton mechanism

can be successfully developed.

In the case of the curvaton, we have to focus only on its decay rate to visible gauge bosons. In

fact χ1 is so light that it cannot decay to any supersymmetric particle or even to the Higgs since

this receives a large SUSY breaking contribution to its mass. Thus χ1 can only decay to gauge

bosons g and fermions ψ which are massless before the EW phase transition. However it has been

shown in [22] that since the fermions are massless, there is no direct decay χ1 → ψψ, but only

a 3-body decay χ1 → ψψg which is suppressed with respect to the 2-body decay χ1 → gg by a

phase space factor. In addition χ1 cannot decay to light hidden d.o.f. since the requirement of a

viable reheating forces to have for each hidden sector a pure N = 1 SYM theory that develops a

mass gap [22].

In order to analyse the coupling of moduli to the gauge bosons of the field theory living on a

stack of D7-branes, we proceed as follows. The D7s of interest wrap a 4-cycle whose volume is

given by τ (which can be any of our moduli): the couplings with the moduli can be worked out

from the moduli dependence of the tree-level gauge kinetic function 4π/g2 = τ (see [27]). In full

generality, the kinetic terms read:

Lgauge = − τ

Mp
FµνF

µν , (4.1)

and we must expand τ around its minimum τ → 〈τ〉 + τ̂ , and go to the canonically normalized

field strength Gµν defined by

Gµν = 2
√

〈τ〉Fµν . (4.2)

Doing so, we obtain:

Lgauge = −1

4
GµνG

µν − τ̂

4Mp〈τ〉
GµνG

µν . (4.3)
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4.1 First scenario

As explained in section 2.1 we imagine the observable sector to be localized on a stack of D7-

branes wrapped on the τ1 and τ2 cycle, and analyze the decay of the inflaton and curvaton fields

into visible gauge bosons. This set-up has the following advantages:

1. It represents the simplest example of multi-field curvaton scenario with the smallest number

of Kähler moduli which is 4;

2. The geometric localization of the visible sector on τ1 maximizes the strength of the coupling

of the curvaton to visible gauge bosons. As we shall see in section 5, this will yield the largest

amount of nongaussianities.

However there are also some shortcomings:

1. The K3 fiber is not a rigid cycle and so one has to worry about how to fix the D7-brane

deformation moduli that would give rise to unwanted matter in the adjoint representation.

Here we shall assume that these moduli can be fixed by the use of background fluxes.

2. There is a constraint on the volume of τ1 coming from constraints on the size that is expected

for the observed gauge coupling. Denoting the gauge coupling as g, using eq. (2.30), we

have
4π

g2
= τ1 ≃

(
4AV
B

)2/3

. (4.4)

Focusing for definiteness on a GUT theory,10 4π/g2 ≃ 25, we find constraints on the param-

eters that characterize the string loop contributions. Indeed, the previous relation implies

4A

B
=

125

V (4.5)

from which, using the definitions of A and B in eqs (2.27), (2.28), we obtain

(
CKK

1

)2
=

125α

g2
s

CW
12

V (4.6)

As we see in the following, when discussing explicit examples, this condition is relatively easy

to satisfy. We do not have to choose unnaturally large hierarchies between the parameters

CKK
1 and CW

12 .

As studied in [43], at the end of inflation, due to the steepness of the potential, the inflaton τ4

stops oscillating just after two or three oscillations due to an extremely efficient non-perturbative

particle production of τ4 fluctuations. Expanding the canonical normalization (2.22) around the

global minimum (τi = 〈τi〉 + τ̂i ∀i) we find [22]:11

τ̂4 ∼ O(V−1/3)χ̂1 + O(1)χ̂2 + O(V−1/2)φ̂3 + O(V1/2)φ̂4, (4.7)

10Assuming that the gauge bosons on τ2 decouple from the EFT getting an O(Ms) mass.
11The subleading dependence on χ̂1 is introduced once string loop corrections are included.
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realising that the Universe is mostly filled with φ̂4-particles plus some χ̂2 and fewer χ̂1 and φ̂3-

particles. Therefore the energy density of the Universe is dominated by φ̂4 whose decay to visible

d.o.f. is responsible for reheating.

The following table summarizes the moduli couplings to visible gauge bosons living on τ1

(denoting the corresponding field strength as F
(1)
µν ):

χ̂1 χ̂2 φ̂i, ∀ i = 3, 4

F
(1)
µν F (1) µν 2√

3 Mp

√
2
3

1
Mp

3 (lnV)
3
4

2 ai V1/2 Mp

Table 1: Couplings between moduli and gauge bosons for a field theory on the τ1 cycle.

Because the light curvaton field mixes through its kinetic terms with both τ1 and V, one

might hope to use the χ1-dependence of couplings and masses to use the modulation mechanism

[18, 16] to generate the primordial fluctuations. Although in the present instance the couplings

do not depend on the fluctuations of χ1, the masses of the fields do. However, it turns out that

in all cases we investigated the amplitude of modulation-generated fluctuations is too small to

have interesting cosmological consequences. It is for this reason that we focus on the curvaton

mechanism in the following.

We can now derive the total decay rate of a generic modulus ϕ into gauge bosons g:

Γϕ→gg =
Ng λ

2m3
ϕ

64π
, (4.8)

where λ is the coupling listed in Table 1 and Ng is the total number of gauge bosons: for

definiteness we choose Ng = 12 as in the MSSM. We obtain, for our set of fields,

Γχ̂1→gg =
1

4π

m3
χ1

M2
p

≃ Mp

V5
, (4.9)

Γχ̂2→gg =
1

8π

m3
χ2

M2
p

≃ Mp

V9/2
, (4.10)

Γφ̂j→gg =
27 (lnV)

3
2

64π

m3
φj

VM2
p

≃ Mp

V4
, ∀ j = 3, 4. (4.11)

where we have emphasized, in the extreme right, the dominant volume dependence. Notice that

the curvaton decay rate is suppressed with respect to the inflaton decay rate, in the limit of

large volume. This observation plays an important role in the viability of the mechanism. The

reheating temperature in the approximation of sudden thermalization turns out to be [22]:

TRH ≃
(

Γφ̂4→gg Mp

)1/2
≃ Mp

V2
. (4.12)

4.2 Second scenario

In this section we briefly present a different brane set-up with the visible sector localized on a

small blow-up cycle, showing that it is possible to build a curvaton scenario with a standard
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realization of the visible sector on a rigid del-Pezzo 4-cycle without any constraint on the overall

volume to keep the gauge coupling from getting too small (given that the VEV of blow-up moduli

does not depend on V). However, the blow-up mode supporting the visible sector cannot be either

τ3 or τ4 due to the tension between chirality and non-perturbative effects [33]. Hence we need to

introduce a fifth modulus τ5 with the following three possible brane set-ups [22]:

1. Visible sector built with a stack of D7-branes wrapped around τ5 which is stabilized in the

geometric regime (for example by string loop effects as in [28]). In this case the inflaton τ4

is not wrapped by the visible sector. The inflaton and curvaton total decay rates to gauge

bosons scale as:

Γχ̂1→gg ≃ Mp

V17/3
, Γφ̂4→gg ≃ Mp

V4
, ⇒ TRH ≃ Mp

V2
. (4.13)

2. Visible sector built with a stack of D7-branes wrapped around a combination of τ4 and τ5

with chiral intersections only on τ5 so that the non-perturbative corrections in τ4 are not

destroyed. In this case the inflaton τ4 is wrapped by the visible sector. The inflaton and

curvaton total decay rates to gauge bosons scale as:

Γχ̂1→gg ≃ Mp

V17/3
, Γφ̂4→gg ≃ Mp

V2
, ⇒ TRH ≃ Mp

V . (4.14)

3. Visible sector built via fractional branes at the quiver locus τ5 → 0 (τ5 can shrink to zero

size by D-terms as in [35]). The inflaton and curvaton total decay rates to gauge bosons

scale as:

Γχ̂1→gg ≃ Mp

V20/3
, Γφ̂4→gg ≃ Mp

V5
, ⇒ TRH ≃ Mp

V5/2
. (4.15)

It is interesting to notice that, due to the geometric separation between τ1 and τ5, the coupling

of the curvaton to visible gauge bosons is weaker than in the first scenario. This yields a lower

level of nongaussianities since, as we shall see in section 5, fNL ∝ Γ
1/2
χ1 .

5 Dynamics after inflation: the curvaton mechanism

In this section, we summarize the curvaton mechanism for converting isocurvature fluctuations

into adiabatic, curvature fluctuations in the above inflationary model. Moreover, we estimate

the resulting level of nongaussianity produced in this process focusing on the first scenario with

the visible sector localized on τ1. However it is easy to re-formulate our analysis for the second

scenario.

5.1 Amplitude of adiabatic fluctuations

In our scenario, at the end of inflation the energy density of the Universe is dominated by the

energy in the inflaton field, φ4. Because of the V dependence of the decay rates found above,

the small moduli, φi, have the largest decay rate – see eq. (4.11) – and so these moduli are also
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the first of the moduli to decay. This decay converts the inflaton energy density into radiation,

after which its energy density falls with the scale factor like ργ ∝ a−4. Since this is the dominant

component of the energy, after this point the Hubble parameter falls like a−2.

Energy tied up in the curvaton field, on the other hand, need not fall this fast. For instance,

once H falls below the curvaton field’s mass this field starts to oscillate coherently around its

minimum, during which its energy density scales like non-relativistic matter: ρχ1 ∼ a−3. Since

this is much slower than the energy density of radiation the relative proportion of curvaton energy

to radiation energy can grow while the curvaton oscillates.

This continues until the curvaton field starts to decay, which happens once the Hubble pa-

rameter becomes comparable to the curvaton decay rate (that, recall, in our set-up is the most

suppressed: see eq. (4.9)). At this point the curvaton energy density also converts into radiation,

bringing with it any isocurvature fluctuations that had been stored in the curvaton field. This

converts the curvaton fluctuations into the adiabatic fluctuations of the radiation energy density.

The total size of the adiabatic fluctuations inherited by such a conversion depends on the size

of the curvaton energy density relative to the radiation at the point where the curvaton decays.

Denoting this fraction by Ω = ρcur/ργ , then in a sudden decay approximation, we find:

Ω ≃
[

1

6

(
χ⋆

Mp

)2 (mχ

Γχ1

) 1
2

] a

≃
[(

3

32

)2 g
1/2
s (βξ̂)3W0

C
5/2
t V2/3

]a

, (5.1)

with: {
a = 1 for radiation dominance ⇔ Ω ≪ 1,
a = 4/3 for curvaton dominance ⇔ Ω ≫ 1.

(5.2)

The last equality in (5.1) substitutes the value of the various quantities in the present scenario.

The resulting expression for the power spectrum of curvature fluctuations, in the limit12 in which

Ω ≪ 1, is [39]:

P
1
2
ζ =

2

3
ΩP

1
2

δχ1/χ1
≃ 1

128π

g
1/2
s (β ξ̂)2W0

C
3/2
t V

. (5.3)

Demanding this converted amplitude agree with the amplitude measured by COBE then gives

P
1
2
ζ = 4.8 × 10−5, which imposes the constraint

C
3
2
t ≃ 50

g
1/2
s (β ξ̂)2W0

V . (5.4)

5.2 Nongaussianities

Following [39], it is not difficult to provide an estimate for the amount of nongaussianity predicted

in this scenario. We focus on nongaussianities of local form

ζ = ζG +
3

5
fNL ζ

2
G , (5.5)

12It is easy to re-express each quantity in the curvaton dominance case.
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where ζG is a Gaussian curvature fluctuation. This Ansatz is particularly well-suited to the

present context, since there is a non-linear relation between scalar fluctuations, and curvature

perturbations produced after inflation ends. In writing eq (5.3), indeed, we implicitly express the

curvature fluctuation as a first order expansion in the fluctuation of χ1. The complete expression,

generalizing the linear order relation given in eq. (5.3), allows to exhibit the non-linear connection

between scalar and curvature fluctuations. Indeed, it reads

ζ =
Ω

3

δρχ1

ρχ1

. (5.6)

In our case, since we work with a quadratic potential, one finds that

δρχ1

ρχ1

= 2
δχ1

χ1
+

(δχ1)
2

χ2
1

(5.7)

Consequently, including this second order expansion in the definition of ζ of eq. (5.6), and

comparing with the Ansatz in (5.5), one can read the following expression for fNL:

fNL =
5

4Ω
≃ 140C

5/2
t g4

s V2/3

W0 β3 ξ3
= 105

(
βξW 2

0

) 1
3

g
1/6
s V

, (5.8)

where in the last step we use relation (5.4). This expression quantifies the amount of nongaussian-

ity in this set-up. Notice that the size of fNL is inversely proportional to the conversion factor Ω.

This is expected: if we decrease the efficiency of the conversion process, by decreasing Ω, we have

at the same time to increase the ration δχ1/χ1 in order to account for the observed amplitude

of fluctuations (see eqs. (5.3) and (5.6)-(5.7)). But in this case, the quadratic contribution in

δχ1/χ1, in formula eq. (5.7), becomes important in comparison with the linear term, implying

an increase of nongaussianity.

It is also possible to analyse nongaussianity beyond the parameter fNL, for example discussing

the parameters τNL and gNL that characterize the trispectrum. Expressions for these parameters,

in curvaton scenarios, have been provided in the literature: see for example [40] for a recent

review. For our curvaton model, with quadratic potential, small decay rate Ω and in the sudden

decay approximation, one finds

τNL =
36

25
f2

NL , gNL ≃ −10

3
fNL (5.9)

with fNL given in eq. (5.8). The expression for τNL is the typical one for models where only

one species contributes to the generation of curvature perturbations. The value of gNL, being

proportional to fNL, turns out to be too low for being detectable by Planck, given the already

stringent bounds on fNL from WMAP7 [41]. It would be interesting to extend the model above

such as to find set-ups in which τNL and gNL turn out to be large, or in which one obtains a

sizeable running of nongaussianity, as analysed in [42].
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5.3 Constraints from Big-Bang nucleosynthesis

Besides the requirements of providing the correct amplitude for curvature perturbations, Big-

Bang nucleosynthesis (BBN) imposes further constraints on the curvaton model. This since we

must ensure that the curvaton field decays by the time BBN takes place, at around TBBN ∼ 1

MeV. In order to satisfy this constraint, we impose the following inequality

Γχ̂1→gg > HBBN ∼ 10−24 GeV (5.10)

Using the expression for Γ given in (4.9), we obtain

Γχ̂1→gg ≃
(

g
3/2
s C

3/2
t W 3

0

32π5/2

)

Mp

V5
(5.11)

Now, recalling that Ct ≃ 2B q−
1
3 within the approximation we are considering, we get an upper

bound on the volume,

V < 5.5 × 107
(

g3/2
s B2A−1/2W 3

0

)1/5
. (5.12)

For standard values of the parameters, this imposes a bound on the volume of order V ≤ 108.

6 Explicit set-ups

The previous sections present the conditions that our system must satisfy in order to furnish a

realization of a curvaton scenario. In this section, we present two representative parameter choices

that satisfy all the constraints, to get a preliminary sense of how much observable quantities vary.

There is a simple first observation. The results of the previous sections suggest that once

volumes are too large (and so the inflationary Hubble scale becomes too low) then it becomes

difficult to obtain adequately large primordial fluctuations using the curvaton mechanism. Indeed,

eq. (5.3) cannot be satisfied for volumes that are too large without requiring other parameters

to acquire unnatural values. For typical values of the parameters a curvaton scenario has a

chance for volumes in the range 103 ≤ V ≤ 108. Also, eq. (5.8) shows that very large volumes

are usually associated with nongaussianities of small size. Obtaining a large fNL is therefore

easiest when choosing relatively small volumes. Because the underlying expansion is in powers of

α′/ℓ2s ∝ 1/V1/3 we never allow ourselves to consider volumes smaller than Vmin ≃ 103.

6.1 First example: small volume, large fNL

Consider the following representative choice of parameters:

V a4 ξ gs n W0 α A4 γ4

103 1
2 0.1 0.3 1

16 1 0.1 1 0.1

This example is characterized by not-too-large a volume, V = 103 in Planck units, and by

a relatively large string coupling, gs ≃ 0.3. Also a4 = 1/2 corresponds to a gauge group with
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large rank in the non-perturbative contribution to the inflaton superpotential. Plugging these

parameters in eqs. (3.7) and (3.9), we find a large number of e-foldings in this model (Ne ≃
170) and a very small inflaton contribution to the amplitude of adiabatic fluctuations (Pinf

ζ ≃
10−8 PCOBE

ζ ). Since the volume is relatively small, the scale of inflation is fairly high in this

example. Next, the conditions of having an acceptable size for the gauge coupling theory, discussed

in section 4, imposes the condition CW
12 = 10

(
CKK

1

)2
, which in turn implies Ct ≃ CW

12 . The

COBE normalization condition for the curvaton fluctuations (5.4) then fixes Ct ∼ 0.05.

The most important feature of this model is the high level of nongaussianity it predicts: using

the previous results we find

fNL ≃ 56 . (6.1)

This value can be slightly changed by tuning the choice of parameters, but the requirement of

satisfying all the constraints does not leave much freedom in this regard. Consequently the order

of magnitude for fNL is fairly robust in this scenario with not too large volume (V = 103) and

high rank gauge group (a4 = 1/2).

6.2 Second example: larger volume, smaller fNL

Choosing a different set of parameters shows how the results change as the volume grows. Consider

the following choice

V a4 ξ gs n W0 α A4 γ4

106 0.85 1 10−2 1
16 40 10−2 1 10−2

In this example, the volume is larger with respect to the previous example, the string coupling

small, and a4 ∼ 1. Plugging these parameters in eqs. (3.7) and (3.9), we find a sufficient number

of e-foldings in this model (Ne ≃ 67) and a small contribution of the inflaton sector to the COBE

amplitude of adiabatic fluctuations (Pinf
ζ ≃ 10−2 PCOBE

ζ ). After requiring to have an acceptable

gauge coupling, as discussed in section 4, and imposing COBE normalization condition (5.4), we

find that Ct ∼ 34. The amount of nongaussianity in this case is small:

fNL ≃ 2.5 , (6.2)

showing that the value of fNL strongly depends on the choice of underlying parameters. Differ-

ent models characterized by different volumes, although providing the same amplitude for the

spectrum of adiabatic fluctuations, nevertheless give very different values for fNL.

7 Conclusions

In this paper we use LARGE Volume string compactifications to construct a controlled string-

inflation model that does not use the inflaton to generate primordial fluctuations. Because the

23



dynamics cannot be captured by a simple single-field slow roll, it becomes possible to generate

observably large non-gaussianities. These tend to have the local form in the model examined

because they are generated well after inflation ends.

The key ingredients for any such a scenario are twofold. There must be other fields, besides

the inflaton, with masses m ≪ H during the inflationary epoch in order to have isocurvature

fluctuations be generated over extra-Hubble distances. The second ingredient is a mechanism for

converting these isocurvature fluctuations into adiabatic fluctuations.

We find that both ingredients are possible in the LV scenario. The hierarchy of volume-

suppressed modulus masses enjoyed by this scenario allows some moduli to have masses that

are parametrically suppressed relative to the Hubble scale during inflation, thereby providing a

source of isocurvature fluctuations.

These states also plausibly have a hierarchy of decay rates into ordinary matter, assuming

that ordinary matter is localized on a brane that wraps one of the cycles whose moduli appear

in the low-energy theory. This allows the isocurvature mode to first accumulate as an overall

fraction of the total energy density, by oscillating after the inflaton has decayed to radiation. It

can then itself decay at much later times, converting its fluctuations into adiabatic perturbations.

The resulting picture provides a realization of the curvaton mechanism for string inflationary

models. The fraction of the energy density carried by the curvaton is suppressed by powers of

1/V, naturally leading this fraction to be a small (and nongaussianities to be comparatively large

– O(10) – if the amplitude is the one observed).

Ultimately, the reason such a construction is possible is because of the potentially large number

of fields that can be cosmologically active during LV inflation. Indeed, should local nongaussianity

be observed, this is probably what it would be telling us: the dynamics generating primordial

fluctuations likely involves several cosmologically active fields rather than just one.

Because additional light fields are present these models can be expected also to manifest

other nonstandard mechanisms for generating fluctuations, such as the modulation mechanism,

although we do not yet have explicit working examples of this type. A potential benefit of these

kinds of models might be the ability to lower the string scale while still obtaining acceptably large

primordial fluctuations, since this makes it easier to have a lower supersymmetry-breaking scale,

as seems to be preferred by particle phenomenology in the later universe. As ever, it would be

useful to know how common such models might be in the string landscape.

It is worth noticing that even though these scenarios require many moduli to work, this

is the generic case in string compactifications. The perspective taken in this article is that

simplicity arguments using the minimum number of fields are usually good starting points but

may not capture the dynamics of the generic case. Furthermore, contrary to most models of string

cosmology, we also consider phenomenological constraints, such as the location of the standard-

model brane, the value of the present-day gauge coupling, efficient reheating, and so on. We

believe this to be crucial because string theory asks to be more than just a model of inflation:
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string scenarios must therefore address all observable issues and not only a subset of them.

Even with these constraints, we find it encouraging that non-inflaton generation of primordial

perturbations appears possible, consistent with having the right amount of inflation required

by later cosmology, agreement with current CMB measurements, with potentially observable

features like nongaussianity for future experiments. The imminent start of Planck observations

makes these questions timely and worth pursuing.
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Appendix

A String versus Einstein frame

The correct prefactor of the scalar potential in 4D Einstein frame has been explicitly shown

in [30]. Given that the Kähler potential that reproduces the kinetic terms for the moduli in 4D

Einstein frame is known to be (with S = e−φ + iC0):

KE

M2
p

= −2 lnVE − ln(S + S̄) − ln

(

−i
∫

Ω ∧ Ω̄

)

, (A.1)

here we shall briefly review just the derivation of the prefactor of the superpotential starting from

the 10D type IIB supergravity action in string frame (showing only the relevant terms):

S
(s)
10D ⊃ 1

(2π)7α′4

∫

d10x

√

−g(s)
10

(

e−2φR(s)
10 − G3 · Ḡ3

2 · 3!

)

. (A.2)
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The action in Einstein frame is obtained via a Weyl rescaling of the metric of the form g
(s)
MN =

eφ/2g
(E)
MN :

S
(E)
10D ⊃ 2π

l8s

∫

d10x

√

−g(E)
10

(

R(E)
10 − G3 · Ḡ3

12Re S

)

, (A.3)

where ls = 2π
√
α′. The dimensional reduction of (A.3) from 10D to 4D then yields:

S
(E)
4D ⊃ 2π

l8s








∫

d4x

√

−g(E)
4 R(E)

4 V olE −

Vflux
︷ ︸︸ ︷
∫

d4x

√

−g(E)
4

(∫

d6x

√

g
(E)
6

G3 · Ḡ3

12Re S

)







, (A.4)

where V olE =
∫
d6x

√

g
(E)
6 ≡ VEl

6
s . Comparing the first term in (A.4) with the Einstein-Hilbert

action SEH = (M2
p /2)

∫
d4x
√

−g(E)R(E), we find:

M2
p =

4πVE

l2s
and Ms ≡

1

ls
=

Mp√
4πVE

. (A.5)

Writing the superpotential in 4D Einstein frame as:

WE =
p

l2s

∫

G3 ∧ Ω, (A.6)

the correct prefactor p can be found from requiring that Vflux is reproduced by:

V =

∫

d4x

√

−g(E)
4 eKE/M2

p

[

Kij̄
EDiWEDj̄WE − 3

M2
p

WEWE

]

, (A.7)

obtaining p = M3
p /(

√
4π). Therefore, including the leading order α′ corrections to KE and non-

perturbative corrections to WE , the F -term scalar potential in 4D Einstein frame can be derived

from:

KE

M2
p

= −2 ln

[

VE +
ξ

2

(
S + S̄

2

)3/2
]

− ln(S + S̄) − ln

(

−i
∫

Ω ∧ Ω̄

)

, (A.8)

WE =
M3

p√
4π

(

1

l2s

∫

G3 ∧ Ω +
∑

i

Ai e
−aiT

(E)
i

)

. (A.9)

Stabilising the dilaton 〈Re(S)〉 = g−1
s and the complex structure moduli via background fluxes

at tree-level, (A.8) and (A.9) reduce to:

KE

M2
p

= −2 ln

(

VE +
ξ

2g
3/2
s

)

+ ln
(gs

2

)

+Kcs, (A.10)

WE =
M3

p√
4π

(

W0 +
∑

i

Ai e
−aiT

(E)
i

)

, (A.11)

where:

Kcs = − ln

(

−i
∫

〈Ω ∧ Ω̄〉
)

, and W0 =
1

l2s

∫

〈G3 ∧ Ω〉. (A.12)
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Hence the prefactor of the scalar potential in 4D Einstein frame can be worked out from:

eKE/M2
p
|WE |2
M2

p

=⇒
(
gse

Kcs

8π

)

M4
p . (A.13)

The expressions for Ks and Ws in 4D string frame can be derived by transforming the scalar

potential (recalling that T
(E)
i = T

(s)
i /gs), and then working out the form of Ks and Ws that

reproduce such a potential. We obtain:

Ks

M2
p

= −2 ln

(

Vs +
ξ

2

)

+ ln
(gs

2

)

+Kcs, (A.14)

Ws =
g
3/2
s M3

p√
4π

(

W0 +
∑

i

Ai e
−aiT

(s)
i /gs

)

. (A.15)

Thus the prefactor of the scalar potential in 4D string frame can be worked out from:

eKs/M2
p
|Ws|2
M2

p

=⇒
(
g4
se

Kcs

8π

)

M4
p . (A.16)
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Reino and I. Zavala, JHEP 0209 (2002) 020 [hep-th/0207278]; J. P. Hsu, R. Kallosh and

S. Prokushkin, JCAP 0312 (2003) 009 [hep-th/0311077]; F. Koyama, Y. Tachikawa and

T. Watari, [hep-th/0311191]; J. P. Hsu and R. Kallosh, JHEP 0404 (2004) 042 [hep-

th/0402047]. K. Dasgupta, J. P. Hsu, R. Kallosh, A. Linde and M. Zagermann, JHEP 0408,

030 (2004) [hep-th/0405247]; P. Chen, K. Dasgupta, K. Narayan, M. Shmakova and M. Za-

germann, JHEP 0509, 009 (2005) [hep-th/0501185]; L. McAllister, JCAP 0602 (2006) 010

[hep-th/0502001]; M. Haack, R. Kallosh, A. Krause, A. D. Linde, D. Lust and M. Zager-

mann, Nucl. Phys. B 806 (2009) 103 [arXiv:0804.3961 [hep-th]]; C. P. Burgess, J. M. Cline

and M. Postma, JHEP 0903 (2009) 058 [arXiv:0811.1503 [hep-th]].

[4] C. P. Burgess, M. Majumdar, D. Nolte, F. Quevedo, G. Rajesh and R. J. Zhang, JHEP

0107 (2001) 047 [hep-th/0105204]; G. R. Dvali, Q. Shafi and S. Solganik, hep-th/0105203;

27



C. P. Burgess, P. Martineau, F. Quevedo, G. Rajesh and R. J. Zhang, JHEP 0203 (2002) 052

[arXiv:hep-th/0111025]. S. Kachru, R. Kallosh, A. Linde, J. Maldacena, L. McAllister and

S. P. Trivedi, JCAP 0310 (2003) 013 [hep-th/0308055]; H. Firouzjahi and S. H. H. Tye, Phys.

Lett. B 584 (2004) 147 [hep-th/0312020]; S.E. Shandera and S.H. Tye, [hep-th/0601099];

D. Baumann, A. Dymarsky, I. R. Klebanov and L. McAllister, JCAP 0801 (2008) 024

[arXiv:0706.0360 [hep-th]].

[5] A. Avgoustidis, D. Cremades and F. Quevedo, Gen. Rel. Grav. 39 (2007) 1203 [hep-

th/0606031]; A. Avgoustidis and I. Zavala, JCAP 0901 (2009) 045 [arXiv:0810.5001 [hep-th]].

[6] J. J. Blanco-Pillado et al., JHEP 0411 (2004) 063 [hep-th/0406230]; Z. Lalak, G. G. Ross

and S. Sarkar, hep-th/0503178; B. Greene and A. Weltman, hep-th/0512135. J. J. Blanco-

Pillado et al., JHEP 0609 (2006) 002 [hep-th/0603129]; H. Y. Chen, L. Y. Hung and G. Shiu,

JHEP 0903 (2009) 083 [arXiv:0901.0267 [hep-th]].

[7] A. Linde, eConf C040802 (2004) L024 [J. Phys. Conf. Ser. 24 (2005) 151] [hep-th/0503195];

F. Quevedo, Class. Quant. Grav. 19 (2002) 5721, [hep-th/0210292]; F. Quevedo, AIP Conf.

Proc. 743 (2005) 341; S. H. Henry Tye, hep-th/0610221; J. M. Cline, hep-th/0612129;

R. Kallosh, hep-th/0702059; L. McAllister and E. Silverstein, Gen. Rel. Grav. 40 (2008) 565

[arXiv:0710.2951 [hep-th]]; D. Baumann, arXiv:0907.5424 [hep-th].

[8] C. P. Burgess, PoS P2GC (2006) 008 [Class. Quant. Grav. 24 (2007

POSCI,CARGESE2007,003.2007) S795] [arXiv:0708.2865 [hep-th]];

[9] Ph. Brax, S. C. Davis and M. Postma, JCAP 0802 (2008) 020 [arXiv:0712.0535 [hep-th]].

[10] E. I. Buchbinder, J. Khoury and B. A. Ovrut, Phys. Rev. Lett. 100 (2008) 171302

[arXiv:0710.5172 [hep-th]].

[11] M. Gasperini and G. Veneziano, Astropart. Phys. 1 (1993) 317 [hep-th/9211021]; C. An-

gelantonj, L. Amendola, M. Litterio and F. Occhionero, Phys. Rev. D 51 (1995) 1607

[astro-ph/9501008]; J. Khoury, B. A. Ovrut, P. J. Steinhardt and N. Turok, Phys. Rev.

D 64 (2001) 123522 [hep-th/0103239]; P. J. Steinhardt and N. Turok, Phys. Rev. D 65

(2002) 126003 [hep-th/0111098]; R. Kallosh, L. Kofman and A. D. Linde, Phys. Rev. D 64

(2001) 123523 [hep-th/0104073]; L. Kofman, A. Linde and V. F. Mukhanov, JHEP 0210

(2002) 057 [hep-th/0206088]; R. H. Brandenberger, A. Nayeri, S. P. Patil and C. Vafa, hep-

th/0608121; N. Kaloper, L. Kofman, A. Linde and V. Mukhanov, JCAP 0610 (2006) 006

[hep-th/0608200].

[12] H. Y. Chen, J. O. Gong and G. Shiu, JHEP 0809 (2008) 011 [arXiv:0807.1927 [hep-th]];

R. Flauger, L. McAllister, E. Pajer, A. Westphal and G. Xu, arXiv:0907.2916 [hep-th];

R. Flauger and E. Pajer, arXiv:1002.0833 [hep-th].

28



[13] D. H. Lyth and D. Wands, Phys. Lett. B 524 (2002) 5 [hep-ph/0110002];

[14] T. Moroi and T. Takahashi, Phys. Lett. B 522 (2001) 215 [Erratum-ibid. B 539 (2002) 303]

[hep-ph/0110096].

[15] K. Enqvist and M. S. Sloth, Nucl. Phys. B 626 (2002) 395 [hep-ph/0109214].

[16] G. Dvali, A. Gruzinov and M. Zaldarriaga, Phys. Rev. D 69 (2004) 023505 [astro-

ph/0303591].

[17] G. Dvali, A. Gruzinov and M. Zaldarriaga, Phys. Rev. D 69 (2004) 083505 [astro-

ph/0305548].

[18] L. Kofman, astro-ph/0303614.

[19] M. Zaldarriaga, Phys. Rev. D 69 (2004) 043508 [astro-ph/0306006].

[20] S. Sarangi and S. H. H. Tye, Phys. Lett. B 536 (2002) 185 [hep-th/0204074]; E. J. Copeland,

R. C. Myers and J. Polchinski, JHEP 0406 (2004) 013 [hep-th/0312067]; T. Matsuda, Phys.

Rev. D 70 (2004) 023502 [hep-ph/0403092]; H. Firouzjahi and S. H. Tye, JCAP 0503 (2005)

009 [hep-th/0501099].

[21] N. Barnaby, C. P. Burgess and J. M. Cline, JCAP 0504 (2005) 007 [hep-th/0412040];

A. R. Frey, A. Mazumdar and R. Myers, Phys. Rev. D 73 (2006) 026003 [hep-th/0508139];

L. Kofman and P. Yi, Phys. Rev. D 72 (2005) 106001 [hep-th/0507257]; D. Chialva, G. Shiu

and B. Underwood, JHEP 0601 (2006) 014 [hep-th/0508229]; X. Chen and S. H. Tye, hep-

th/0602136; P. Langfelder, hep-th/0602296.

[22] M. Cicoli, A. Mazumdar, arXiv:1005.xxxx [hep-th].

[23] C. P. Burgess, J. M. Cline, H. Stoica and F. Quevedo, JHEP 0409 (2004) 033 [hep-

th/0403119]; R. Kallosh and A. Linde, JHEP 0412 (2004) 004 [hep-th/0411011]; J. J. Blanco-

Pillado, R. Kallosh and A. Linde, JHEP 0605 (2006) 053 [hep-th/0511042]; R. Kallosh and

A. Linde, JHEP 0702 (2007) 002 [hep-th/0611183].

[24] M. Liguori, E. Sefusatti, J. R. Fergusson and E. P. S. Shellard, arXiv:1001.4707 [astro-

ph.CO].

[25] V. Balasubramanian, P. Berglund, J. P. Conlon and F. Quevedo, JHEP 0503 (2005) 007

[hep-th/0502058];

[26] J. P. Conlon, F. Quevedo and K. Suruliz, JHEP 0508 (2005) 007 [hep-th/0505076].

[27] J. P. Conlon and F. Quevedo, JCAP 0708 (2007) 019 [arXiv:0705.3460 [hep-ph]].

[28] M. Cicoli, J. P. Conlon and F. Quevedo, JHEP 0810 (2008) 105 [arXiv:0805.1029 [hep-th]].

29



[29] C.P. Burgess, Anshuman Maharana and F. Quevedo, [arXiv:1005.1199 [hep-th]].

[30] L. Anguelova, V. Calo and M. Cicoli, JCAP 0910 (2009) 025 [arXiv:0904.0051 [hep-th]].

[31] J. P. Conlon and F. Quevedo, JHEP 0601 (2006) 146 [hep-th/0509012]; J. Simon, R. Jimenez,

L. Verde, P. Berglund and V. Balasubramanian, astro-ph/0605371; J. R. Bond, L. Kofman,

S. Prokushkin and P. M. Vaudrevange, Phys. Rev. D 75 (2007) 123511 [hep-th/0612197].

[32] M. Cicoli, C. P. Burgess and F. Quevedo, JCAP 0903 (2009) 013 [arXiv:0808.0691 [hep-th]].

[33] R. Blumenhagen, S. Moster and E. Plauschinn, JHEP 0801 (2008) 058 [arXiv:0711.3389

[hep-th]].

[34] M. Berg, M. Haack and B. Kors, JHEP 0511, 030 (2005) [hep-th/0508043]; M. Berg,

M. Haack and E. Pajer, arXiv:0704.0737 [hep-th]; M. Cicoli, J. P. Conlon and F. Quevedo,

JHEP 0801 (2008) 052 [arXiv:0708.1873 [hep-th]].

[35] R. Blumenhagen, J. P. Conlon, S. Krippendorf, S. Moster and F. Quevedo, JHEP 0909

(2009) 007 [arXiv:0906.3297 [hep-th]].

[36] M. Cicoli, M. Kreuzer and C. Mayerhofer, in preparation.

[37] K. Dimopoulos, G. Lazarides, D. Lyth and R. Ruiz de Austri, Phys. Rev. D 68 (2003) 123515

[arXiv:hep-ph/0308015].

[38] Q. G. Huang, Phys. Lett. B 669 (2008) 260 [arXiv:0801.0467 [hep-th]].

[39] D. H. Lyth, C. Ungarelli and D. Wands, Phys. Rev. D 67 (2003) 023503 [astro-ph/0208055].

[40] D. Wands, arXiv:1004.0818 [astro-ph.CO].

[41] E. Komatsu et al., arXiv:1001.4538 [astro-ph.CO].

[42] C. T. Byrnes, S. Nurmi, G. Tasinato and D. Wands, JCAP 1002 (2010) 034 [arXiv:0911.2780

[astro-ph.CO]].

[43] N. Barnaby, J. R. Bond, Z. Huang and L. Kofman, JCAP 0912 (2009) 021 [arXiv:0909.0503

[hep-th]].

30


