Small Energy Compactness for Approximation
Harmonic Mappings

Li Jiayu
Academy of Mathematics and Systems Sciences, Chinese Academy of Sciences, Beijing 100080, People’s Republic of China
and
The Abdus Salam International Centre for Theoretical Physics, Trieste, Italy

and

Zhu Xiangrong
The Abdus Salam International Centre for Theoretical Physics, Trieste, Italy.

Abstract

In this paper, we consider an elliptic system

$$\triangle u = -\Omega \cdot \nabla u + f$$

where $u \in W^{1,2}(\mathbb{R}^2, \mathbb{R}^K)$ and $f \in L\ln^+ L$, and Ω belongs to $L^2(\mathbb{R}^2, M_K(R) \otimes \mathbb{R}^2)$ which is antisymmetry. In the first part we prove a compactness theorem for the systems.

As a corollary, we can obtain the compactness theorem for a sequence of mappings from a Riemannian surface with tension fields bounded in $L\ln^+ L$.

In the second part we prove the energy identity for a sequence of mappings from a surface to a sphere with tension fields bounded in $L\ln^+ L$. At last we construct a blow-up sequence of mappings from B_1 to S^2 with tension fields bounded in $L\ln^+ L$ but there exists neck with positive length during blowing up.

MIRAMARE – TRIESTE

November 2009

1jyli@ictp.it
2zxr@zju.edu.cn
1 Introduction and main results

At first we recall the definitions of some function spaces. Let
\[f^*(t) = \inf \{ s : |\{ x : |f(x)| > s \}| \leq t \} \]
be the non-increasing rearrangement function of \(f \). The Lorentz space \(L^{2,1} \) is defined by
\[\{ f : \| f \|_{L^{2,1}} = \int_0^\infty f^*(t)t^{-\frac{1}{2}}dt < \infty \} \]
The space \(L \ln^+ L \) (Zygmund class) is defined by
\[\{ f : \| f \|_{L \ln^+ L} = \int_0^\infty f^*(t) \ln(2 + \frac{1}{t})dt < \infty \} \]
It is well-known that the \(L \ln^+ L \)-norm of \(f \) is equivalent to
\[\int |f(x)| \ln(2 + |f(x)|)dx. \]
Let \(B_1 \) be the unit disc in \(R^2 \). We say that \(f \) belongs to the local Hardy space \(H^1(B_1) \) if
\[(f - \frac{\int_{B_1} f(y)dy}{|B_1|})\chi_{B_1} \in H^1(R^2) \]
where \(H^1(R^2) \) is the usually Hardy space on \(R^2 \), \(|B_1| \) is the volume of \(B_1 \) and
\[\| f \|_{H^1(B_1)} = \|(f - \frac{\int_{B_1} f(y)dy}{|B_1|})\chi_{B_1} \|_{H^1} + \| f \|_{L^1(B_1)}. \]
It is well-known (see [17]) that \(L \ln^+ L(B_1) \subset H^1(B_1) \), i.e.
\[\| f \|_{H^1(B_1)} \leq C\| f \|_{L \ln^+ L(B_1)}. \]
Consider the elliptic systems on \(R^2 \),
\[\triangle u^i = -\Omega^i_j \cdot \nabla u^j + f^i, i, j = 1, ..., K \]
where \(\Omega^i_j \in L^2(R^2, R^2) \) and \(\Omega^i_j = -\Omega^j_i \).
Some important systems can be written in this form. In [13] this elliptic system has been studied and important results and applications have been obtained.

Here we consider the case that \(f \in L \ln^+ L(B_1) \). Our first main result is the following compactness theorem.

Theorem 1.1 Assume that a sequence of mappings \(u_n \in W^{1,2}(B_1, R^K) \) solves the following systems
\[\triangle u_n = -\Omega \cdot \nabla u_n + f_n. \]
Suppose that
\[\| u_n \|_{W^{1,2}(B_1)} + \| f_n \|_{L \ln^+ L(B_1)} \leq \Lambda \]
and \(\{ \Omega_n \} \) is precompact in \(L^1(B_{\frac{r}{2}}) \), i.e. there is no "oscillation".

There exists a positive constant \(\epsilon_K \) which depends only on \(K \) such that if

\[
\int_{B_1} |\Omega_n|^2 \, dx \leq \epsilon_K^2,
\]

then there exists a subsequence of \(u_n \) (still denoted by \(u_n \)) and \(u \) such that

\[
\lim_{n \to \infty} \| u_n - u \|_{W^{1,2}(B_{\frac{r}{2}})} = 0.
\]

As an application we can obtain the following compactness theorem for the mappings from a compact Riemannian surface to a compact Riemannian manifold with tension fields bounded in \(L \ln^+ L \).

Theorem 1.2 Let \(N \) be a compact Riemannian manifold. Assume that a sequence of mappings \(u_n \in W^{1,2}(B_1, N) \) satisfies

\[
\| u_n \|_{W^{1,2}(B_1)} + \| \tau(u_n) \|_{L \ln^+ L(B_1)} \leq \Lambda.
\]

There exists a positive constant \(\epsilon_N \) which depends only on the target manifold such that if \(E(u_n, B_1) \leq \epsilon_N^2 \) then there exists a subsequence of \(u_n \) (still denoted by \(u_n \)) and \(u \) such that

\[
\lim_{n \to \infty} \| u_n - u \|_{W^{1,2}(B_{\frac{r}{2}})} = 0.
\]

Remark 1: If \(\tau(u_n) \) are bounded in \(L^p \) for some \(p > 1 \), this result was proved in [2].

Remark 2: By this theorem, if the strong convergence fails to hold, then we can get a nontrivial harmonic sphere by suitable rescaling. So as a direct corollary, if the target manifold doesn’t admit any harmonic sphere, then the strong convergence holds for the mappings with tension fields bounded in \(L \ln^+ L \).

For a sequence of mappings with tension fields bounded in \(L^2 \) or a heat flow from a surface, the energy identity and neckless has been proved in [2, 7, 11, 12, 16]. In [6] we extended these results for mappings with tension fields bounded in \(L^\frac{6}{5} \).

In the case that the target manifold is a sphere, in [8] they have some observations and claims for the general tension fields. In [6] we proved the energy identity and neckless for a sequence of mappings with tension fields bounded in \(L^p \) for some \(p > 1 \). With the help of Theorem 1.2 and some identities in [5] we can extend the energy identity in place of \(L^{\frac{6}{5}} \) by \(L \ln^+ L \). The energy identity is stated as

Theorem 1.3 Let \(M \) be a compact Riemannian surface. Suppose that \(u_n \) are maps from \(M \) to \(S^{K-1} \) with

\[
\| u_n \|_{W^{1,2}(M)} + \| \tau(u_n) \|_{L \ln^+ L(M)} \leq \Lambda.
\]
Assume that \(u_n \) tends to \(u \) weakly in \(W^{1,2}(M,S^{K-1}) \) but not strongly in \(W^{1,2}(M,S^{K-1}) \). Then there exists a finite set of harmonic spheres \(\psi_j : S^2(= R^2 \cup \{ \infty \}) \rightarrow S^{K-1} \) \((j = 1, \cdots, m) \) such that the energy identity holds, i.e.

\[
\lim_{n \to \infty} E(u_n) = E(u) + \sum_{j=1}^{m} E(\psi_j).
\]

In [10] Parker constructed a sequence of mappings from \(S^2 \) to \(S^2 \) with tension fields bounded in \(L^1 \) which satisfies the Palais-Smale condition, but the energy identity doesn’t hold.

In the last section we construct a sequence of mappings from \(B_1 \) to \(S^2 \) with tension fields bounded in \(L \ln^+ L \) but there exists neck with positive length during blowing up.

Throughout this paper, without illustration the letter \(C \) denotes a positive constant which depends only on \(\Lambda \) and the target manifold \(N \) and may vary in different cases. Furthermore, we do not always distinguish the sequence and its subsequence.

2 Some lemmas

In this section we prove some lemmas.

Lemma 2.1 ([5] P142 Theorem 3.3.10) For each \(m \geq 2 \), the space \(W^{1,1}(R^m) \) is continuously embedded in \(L^{\frac{m}{m-1}}(R^m) \).

As a corollary, when \(m = 2 \) we have

Lemma 2.2 The Riesz potential is bounded from the Hardy space \(H^1(R^2) \) to \(L^{2,1}(R^2) \), i.e.

\[
\| R_i * f \|_{L^{2,1}(R^2)} \leq C \| f \|_{H^1(R^2)}
\]

where \(R_i(x) = \frac{x_i}{|x|^2}, \ i = 1, 2. \)

Remark: The proof is contained in [5] (P141-P142, the proof of Theorem 3.3.8). For reader’s convenience we illustrate the proof here.

Let \(\Phi \) be the Newtonian potential of \(f \). Hélein ([5] P142) showed that \(\Phi \in W^{2,1}(R^2) \) and

\[
\| d\Phi \|_{L^{2,1}(R^2)} \leq C \| f \|_{H^1(R^2)}.
\]

As the Riesz potential of \(f \) is the partial derivative of \(\Phi \), i.e. \(R_i * f = \partial_i (N * f) = \partial_i \Phi \), we obtain the desired result.

In this paper we will use the following local form of Lemma 2.2.

Lemma 2.3 The Riesz potential is bounded from \(H^1(B_1) \) to \(L^{2,1}(B_1) \), i.e.

\[
\| R_i * f \|_{L^{2,1}(B_1)} \leq C \| f \|_{H^1(B_1)}.
\]
Proof: Let \overline{f} be the mean value of f over B_1. We obtain that

$$
\|R_i \ast f\|_{L^2,1(B_1)} \leq \|R_i \ast [(f - \overline{f}) \chi_{B_1}]\|_{L^2,1(B_1)} + \|R_i \ast (\overline{f} \chi_{B_1})\|_{L^2,1(B_1)} \\
\leq C(\|f - \overline{f}\|_{H^1(B_1)} + \|\overline{f}\|_{H^1(B_1)}) \\
\leq C\|f\|_{H^1(B_1)}.
$$

We also need the following result on the Hardy space $H^1(R^2)$.

Lemma 2.4 ([1]) If $f, g \in W^{1,2}(R^2)$, then $\nabla f \nabla^\perp g = \partial_1 f \partial_2 g - \partial_2 f \partial_1 g$ belongs to the Hardy space $H^1(R^2)$ and furthermore

$$
\|\nabla f \nabla^\perp g\|_{H^1} \leq C\|\nabla f\|_2\|\nabla g\|_2.
$$

The following lemma due to Rivi`ere is essential in our argument.

Lemma 2.5 ([13], Theorem 1.4) Let $M_K(R)$ be the space of square $K \times K$ real matrices. There exists ϵ_K such that for every $\Omega \in L^2(B_1, M_K(R) \otimes R^2)$ satisfying

$$
\Omega_i^j = -\Omega_j^i; \quad \int_{B_1} |\Omega|^2 dx < \epsilon_K^2,
$$

there exist two matrix functions $A \in L^\infty(B_1, M_K(R) \cap W^{1,2}(B_1, M_K(R))$ and $B \in W^{1,2}(B_1, M_K(R))$ satisfying

$$
\begin{cases}
\nabla A = A\Omega + \nabla^\perp B; \\
\int_{B_1} (|\nabla A|^2 + |\nabla B|^2) dx + \|\text{dist}(A, SO(K))\|_{L^\infty(B_1)}^2 \leq C_K\|\Omega\|_{L^2(B_1)}^2,
\end{cases}
$$

As an application of Lemma 2.5, we can prove that

Lemma 2.6 Let $u \in W^{1,2}(B_1, R^K)$ be a solution of the elliptic systems

$$
\Delta u = -\Omega \cdot \nabla u + f
$$

where $f \in L^\ln^+ L(B_1)$ and $\Omega \in L^2(B_1, M_K(R) \otimes R^2)$ is antisymmetry, that is, $\Omega_i^j = -\Omega_j^i$.

There exists a positive constant ϵ_K which depends only on K such that if

$$
\int_{B_1} |\Omega|^2 dx \leq \epsilon_K^2,
$$

we have the following estimate

$$
\|\nabla^2 u\|_{L^1(B_1)} \leq C(\|\nabla u\|_{L^2(B_1)} + \|f\|_{L^\ln^+ L(B_1)}).
$$

As a direct consequence of the fact that $W^{1,1}(B_1) \subset L^{2,1}(B_1)$, there holds

$$
\|\nabla u\|_{L^{2,1}(B_1)} \leq C(\|\nabla u\|_{L^2(B_1)} + \|\nabla^2 u\|_{L^1(B_1)}) \leq C(\|\nabla u\|_{L^2(B_1)} + \|f\|_{L^\ln^+ L(B_1)}).
$$
Proof: As \(\int_{B_1} |\Omega|^2 dx \) is small enough, by Lemma 2.5 we see that there exist \(A \in L^\infty(B_1, M_K(R)) \cap W^{1,2}(B_1, M_K(R)) \) and \(B \in W^{1,2}(B_1, M_K(R)) \) satisfying

\[
\begin{cases}
\nabla A = A\Omega + \nabla B; \\
\int_{B_1} (|\nabla A|^2 + |\nabla B|^2) dx + \|\text{dist}(A, SO(K))\|_{L^\infty(B_1)}^2 \leq C_K \|\Omega\|_{L^2(B_1)}^2.
\end{cases}
\]

As \(\|\text{dist}(A, SO(K))\|_{L^\infty(B_1)} \leq C_K \) is small, we can almost consider \(A \) as an identity matrix.

By Hodge decomposition we get that

\[
A\nabla u = \nabla D + \nabla^\perp E
\]

where \(D, E \in W^{1,2}(B_1) \) satisfy

\[
\int_{B_1} D(x) dx = \int_{B_1} E(x) dx = 0; \|D\|_{L^2(B_1)} + \|E\|_{L^2(B_1)} \leq C \|\nabla u\|_{L^2(B_1)}.
\]

Now we have

\[
\triangle D = \text{div}(A\nabla u) = \nabla A\nabla u + A\triangle u = (\nabla A - A\Omega)\nabla u + Af = \nabla^\perp B\nabla u + Af.
\]

Take \(\varphi \in C_0^\infty(B_1) \) and \(\varphi(x) = 1 \) for \(x \in B_1^+ \). We get

\[
\triangle(\varphi D) = \varphi \triangle D + 2\nabla D\nabla \varphi + D\triangle \varphi
\]

\[
= \varphi \nabla^\perp B\nabla u + \varphi Af + 2\nabla D\nabla \varphi + D\triangle \varphi
\]

\[
= \nabla^\perp(\varphi B)\nabla u + h
\]

where

\[
h = -B\nabla^\perp \varphi \nabla u + \varphi Af + 2\nabla D\nabla \varphi + D\triangle \varphi.
\]

It is easy to check that

\[
\|h\|_{L^{\infty}_{ln+}} \leq C(\|B\nabla^\perp \varphi \nabla u\|_2 + \|\varphi Af\|_{L^{\infty}_{ln+}} + \|\nabla D\nabla \varphi + D\triangle \varphi\|_2)
\]

\[
\leq C(\|B\|_{L^p(B_1)} \|\nabla u\|_{L^2(B_1)} + \|f\|_{L^{\infty}_{ln+} L(B_1)} + \|\nabla D\|_{L^2(B_1)} + \|D\|_{L^2(B_1)})
\]

\[
\leq C(\|\nabla B\|_{L^2(B_1)} \|\nabla u\|_{L^2(B_1)} + \|f\|_{L^{\infty}_{ln+} L(B_1)} + \|\nabla D\|_{L^2(B_1)})
\]

\[
\leq C(\|\nabla u\|_{L^2(B_1)} + \|f\|_{L^{\infty}_{ln+} L(B_1)}).
\]

By Theorem 3.2.9 in [5] (or the standard Calderón-Zygmund singular integral theory) and Lemma 2.4 we have

\[
\|\nabla^2 D\|_{L^1(B_1^+)} \leq \|\nabla^2(\varphi D)\|_1 \leq \|\triangle(\varphi D)\|_{H^1(B_1)}
\]

\[
\leq C(\|\nabla^\perp(\varphi B)\nabla u\|_{H^1} + \|h\|_{H^1(B_1)})
\]

\[
\leq C(\|\nabla(\varphi B)\|_2 \|\nabla u\|_{L^2(B_1)} + \|h\|_{L^{\infty}_{ln+}})
\]

\[
\leq C(\|\nabla B\|_{L^2(B_1)} \|\nabla u\|_{L^2(B_1)} + \|h\|_{L^{\infty}_{ln+}})
\]

\[
\leq C(\|\nabla u\|_{L^2(B_1)} + \|f\|_{L^{\infty}_{ln+} L(B_1)}).
\]
On the other hand we have
\[\Delta E = \text{curl}(A \nabla u) = \nabla^\perp A \nabla u. \]
A similar argument as above for \(D \) shows that
\[\| \nabla^2 E \|_{L^1(B_2^+)} \leq C \| \nabla u \|_{L^2(B_1)}. \]
So we proved this lemma.

The following lemma is well known.

Lemma 2.7 (Rellich’s compactness Theorem) If the sequence \(\{f_n\} \) is bounded in \(W^{1,1}(B_1) \), then \(\{f_n\} \) is precompact in \(L^p(B_1) \) when \(1 \leq p < 2 \).

The following result was essentially proved in [3] (P12, also see [9]).

Lemma 2.8 If the sequence \(\{f_n\} \) is bounded in \(W^{1,1}(R^2) \) and satisfies
\[f_n \to f \text{ strongly in } L^1; f_n \to f \text{ weakly in } L^2. \]
Then there exist at most countable points \(x_j \) and \(a_j > 0 \) such that
\[f_n^2 \rightharpoonup f^2 + \sum_j a_j \delta_{x_j} \text{ in the sense of measure}. \]

Proof: The proof is completely the same as that of Theorem 9 in [3] (P12).

Set \(g_n = f_n - f \), as \(\nabla g_n \) is bounded in \(L^1 \), we see that there exists a finite nonnegative Borel measure \(\mu \) such that
\[|\nabla g_n| \rightharpoonup \mu \text{ in the sense of measure.} \]
Also we can assume that
\[g_n^2 \rightharpoonup \nu \geq 0 \text{ in the sense of measure.} \]

Take \(\phi \in C_0^\infty(R^2) \), the Sobolev embedding \(W^{1,1}(R^2) \subset L^2(R^2) \) shows that
\[\left(\int (\phi g_n)^2 dx \right)^{1/2} \leq C \int |\nabla (\phi g_n)| dx. \]
Letting \(n \to \infty \), by the fact that \(g_n \to 0 \) in \(L^1 \) we obtain that
\[\left(\int \phi^2 d\nu \right)^{1/2} \leq C \int |\phi| d\mu. \]
By approximation, for any ball \(B(x, r) \) there holds
\[\nu(B(x, r)) \leq C \mu(B(x, r))^2. \]
(3)
Since \(\mu \) is finite, the inequality (3) implies that for any Borel set \(E \),
\[\nu(E) = \int_E D_\mu \nu d\mu \]
where
\[D_\mu \nu(x) = \lim_{r \to 0} \frac{\nu(B(x, r))}{\mu(B(x, r))}, \text{ for } \mu - a.e. \ x \in \mathbb{R}^2. \]

See Federer [4], P152-P169.

As \(\mu \) is finite, there are at most countable points \(x_j \) such that
\[\mu_j = \mu(\{x_j\}) > 0. \]

If \(\mu(\{x\}) = 0 \), by (3) we get that
\[D_\mu \nu(x) = \lim_{r \to 0} \frac{\nu(B(x, r))}{\mu(B(x, r))} \leq C \lim_{r \to 0} \mu(B(x, r)) = C \mu(\{x\}) = 0. \]

Denote \(a_j = D_\mu \nu(x_j) \), from (4) it follows that
\[\nu = \sum_j a_j \delta_{x_j}. \]

In the sense of measure, there holds
\[\nu = \lim_{n \to \infty} g_n^2 = \lim_{n \to \infty} (f_n^2 + f^2 - 2f_n \cdot f) = \lim_{n \to \infty} (f_n^2 - f^2). \]

So we proved this lemma.

3 Proof of Theorem 1.1 and Theorem 1.2

Lemma 2.6 shows that the sequence \(u_n \) is bounded in \(W^{2,1}(B_{\frac{3}{2}}) \), so we can find \(u \) such that
\[u_n \rightharpoonup u \text{ strongly in } W^{1,1}(B_{\frac{3}{2}}); u_n \rightharpoonup u \text{ weakly in } W^{1,2}(B_{\frac{3}{2}}). \]

Lemma 2.8 implies that there exist at most countable points \(x_i \) and \(a_i > 0 \) such that
\[|\nabla u_n|^2 \to |\nabla u|^2 + \sum_i a_i \delta_{x_i} \text{ in } M(B_{\frac{3}{2}}). \]

Denote \(\mu = \sum_i a_i \delta_{x_i} \). If \(\mu(B_{\frac{3}{2}}) = 0 \), then by the fact \(\nabla u_n \to \nabla u \) weakly in \(L^2(B_{\frac{3}{2}}) \) and
\[\lim_{n \to \infty} \|\nabla u_n\|_{L^2(B_{\frac{3}{2}})}^2 = \|\nabla u\|_{L^2(B_{\frac{3}{2}})}^2 \]
there holds
\[\lim_{n \to \infty} \|\nabla u_n - \nabla u\|_{L^2(B_{\frac{3}{2}})} = 0. \]

So if Theorem 1.1 wasn’t true, then there would exist a point \(x_0 \in B_{\frac{3}{2}} \) such that
\[\mu(\{x_0\}) = a > 0. \]

By Lemma 2.5, we see that, for any \(n \), there exist \(A_n \in \mathcal{L}^{\infty}(B_1, M_K(R)) \cap W^{1,2}(B_1, M_K(R)) \) and \(B_n \in W^{1,2}(B_1, M_K(R)) \) satisfying
\[
\begin{align*}
\nabla A_n &= A_n \Omega_n + \nabla^\perp B_n; \\
\int_{B_1} (|\nabla A_n|^2 + |\nabla B_n|^2) dx + \|\text{dist}(A_n, SO(K))\|_{L^\infty(B_1)}^2 &\leq C_K \|\Omega_n\|_{L^2(B_1)}.
\end{align*}
\]
As $\|dist(A_n, SO(K))\|_{L^\infty(B_1)} \leq C_K \epsilon_K$ is small, we can almost consider A_n as an identity matrix.

By Lemma 2.6 we can check that

$$\|\nabla (A_n \nabla u_n)\|_{L^1(B_{3 \over 4})} \leq \|\nabla A_n \nabla u_n\|_{L^1(B_{3 \over 4})} + \|A_n \nabla^2 u_n\|_{L^1(B_{3 \over 4})} \leq \|\nabla A_n\|_{L^2(B_1)} \|\nabla u_n\|_{L^2(B_1)} + C \|\nabla^2 u_n\|_{L^1(B_{3 \over 4})} \leq C(\Omega_n) \|\nabla u_n\|_{L^2(B_1)} + \|\nabla u_n\|_{L^2(B_1)} + \|f_n\|_{L^1(B_1)} \leq C.$$

As $W^{1,1}(B_1)$ compactly embedded in $L^1(B_1)$, passing to a subsequence there exists a $v_1 \in L^1(B_{3 \over 4})$ such that

$$\lim_{n \to \infty} \|2 A_n \nabla u_n - v_1\|_{L^1(B_{3 \over 4})} = 0 \tag{6}$$

and

$$\|v_1\|_{L^2(B_{3 \over 4})} \leq 2 \liminf_{n \to \infty} \|A_n \nabla u_n\|_{L^2(B_{3 \over 4})} \leq C.$$

Similarly, we can find a $v_2 \in L^2(B_{3 \over 4})$ such that

$$\lim_{n \to \infty} \|A_n u_n - v_2\|_{L^2(B_{3 \over 4})} = 0 \tag{7}$$

and furthermore

$$\|v_2\|_{L^\infty(B_{3 \over 4})} \leq \lim_{n \to \infty} \|A_n u_n\|_{L^\infty(B_{3 \over 4})} \leq C.$$

By the assumption we can choose a subsequence of Ω_n such that

$$\lim_{n \to \infty} \|\Omega_n - \Omega\|_{L^1(B_{3 \over 4})} = 0. \tag{8}$$

Let r be small enough so that

$$\int_{B(x_0, 2r)} |\nabla u_n|^2 dx < 2a = 2 \mu(\{x_0\})$$

for any n.

Take $\varphi_r \in C_0^\infty(B(x_0, 2r))$ with $\varphi_r(x) = 1$ for $x \in B(x_0, r)$. For simplicity, assume that $\int_{B(x_0, 2r)} u_n dx = 0$, we get

$$div(A_n \nabla (\varphi_r u_n))$$

$$= \nabla A_n \nabla (\varphi_r u_n) + A_n \Delta (\varphi_r u_n)$$

$$= \nabla A_n \nabla (\varphi_r u_n) - A_n \varphi_r \nabla u_n + A_n (\varphi_r f_n + 2 \nabla u_n \varphi_r + u_n \Delta \varphi_r)$$

$$= (\nabla A_n - A_n \nabla) (\varphi_r u_n) + A_n (\nabla u_n \varphi_r + 2 \nabla u_n \varphi_r + f_n + u_n \Delta \varphi_r)$$

$$= \nabla^T B_n \nabla (\varphi_r u_n) + \varphi_r A_n f_n + h_{n,r} \tag{9}$$

where

$$h_{n,r} = A_n (\nabla u_n + 2 \varphi_r \nabla \varphi_r + u_n \Delta \varphi_r).$$
Set \(h_r = (v_2 \Omega + v_1) \nabla \varphi_r + v_2 \triangle \varphi_r \), by (6), (7) and (8) we have
\[
\lim_{n \to \infty} \| h_{n,r} - h_r \|_1
\leq C r^{-2} \lim_{n \to \infty} (\| A_n (\Omega_n u_n + 2 \nabla u_n) - v_2 \Omega - v_1 \|_{L^1(B(x_0,2r))} + \| A_n u_n - v_2 \|_{L^1(B(x_0,2r))})
\leq C r^{-2} \lim_{n \to \infty} (\| A_n u_n - v_2 \|_{L^1(B_{3r})} + \| v_2 (\Omega_n - \Omega) \|_{L^1(B_{3r})})
+ 2 A_n \nabla u_n - v_1 \|_{L^1(B_{3r})} + \| A_n u_n - v_2 \|_{L^1(B_{3r})})
\leq C r^{-2} \lim_{n \to \infty} (\| A_n u_n - v_2 \|_{L^2(B_{3r})} \| \Omega_n \|_{L^2(B_1)} + \| \Omega_n - \Omega \|_{L^1(B_{3r})})
= 0. \tag{10}
\]

Let \(D_{n,r} \) be the Newtonian potential of \(\text{div}(A_n \nabla (\varphi_r u_n)) \) and \(E_{n,r} \) be the Newtonian potential of \(\text{curl}(A_n \nabla (\varphi_r u_n)) \). By (9) we obtain that
\[
\nabla D_{n,r} = R \ast (\nabla^\perp B_n \nabla (\varphi_r u_n) + \varphi_r A_n f_n + h_{n,r}).
\]
where \(R = \nabla N \) is the Riesz potential.

Similarly we get that
\[
\nabla E_{n,r} = R \ast (\nabla^\perp A_n \nabla (\varphi_r u_n)).
\]

We can see that \(A_n \nabla (\varphi_r u_n) - \nabla D_{n,r} - \nabla^\perp E_{n,r} \) is a harmonic function on \(R^2 \). On the other hand, it is easy to check that when \(|x| > 2\) there holds
\[
|\nabla D_{n,r}(x)| + |\nabla E_{n,r}(x)| \leq \frac{C}{|x|}.
\]
As there is no nonzero harmonic function which vanishes at \(\infty \) in \(R^2 \), there must be
\[
A_n \nabla (\varphi_r u_n) = \nabla D_{n,r} + \nabla^\perp E_{n,r}. \tag{11}
\]

Set
\[
g_{n,r} = \nabla N \ast (\nabla^\perp A_n \nabla (\varphi_r u_n) + \varphi_r A_n f_n) + \nabla^\perp N \ast (\nabla^\perp B_n \nabla (\varphi_r u_n)),
\]
then by (11) we get that for \(x \in B(x_0, r) \) there holds
\[
A_n \nabla u_n(x) = A_n \nabla (\varphi_r u_n)(x)
= \nabla D_{n,r} + \nabla^\perp E_{n,r}
= g_{n,r} + R \ast h_{n,r}. \tag{12}
\]
As the Riesz potential \(R \) is bounded from \(L^1(R^2) \) to \(L^{2,\infty}(R^2) \), by (10) we obtain that
\[
\lim_{n \to \infty} \| A_n \nabla u_n - g_{n,r} - R \ast h_r \|_{L^{2,\infty}(B(x_0, r))} \leq \lim_{n \to \infty} \| R \ast (h_{n,r} - h_r) \|_{L^{2,\infty}}
\leq C \lim_{n \to \infty} \| h_{n,r} - h_r \|_1
= 0. \tag{13}
\]
By Lemma 2.3 and Lemma 2.4 we have
\[\| \nabla N (\nabla^\perp A_n \nabla (\varphi_r u_n)) + \nabla^\perp N (\nabla^\perp B_n \nabla (\varphi_r u_n)) \|_{L^2,1} \]
\[\leq C (\| \nabla^\perp A_n \|_{L^2 (B_1)} + \| \nabla B_n \|_{L^2 (B_1)} \| \nabla (\varphi_r u_n) \|_2) \]
\[\leq C \| \Omega_n \|_{L^2 (B_1)} \| \nabla u_n \|_{L^2 (B(x_0,2r))} \]
\[\leq C \varepsilon K \sqrt{a}. \tag{14} \]

Similarly we can also get
\[\| R^\ast (\varphi_r A_n f_n) \|_{L^2,1(B_1)} \leq C \| \varphi_r A_n f_n \|_{H^1 (B_1)} \]
\[\leq C \| \varphi_r A_n f_n \|_{L^1 \ln L^2,1(B_1)} \]
\[\leq C \| f_n \|_{L^1 \ln L^2,1(B_1)} \]
\[\leq C. \tag{15} \]

On the other hand, we have
\[\| h_r \|_{L^2(B_1)} \leq C r^{-2} (\| |v_2\Omega| + |v_1| + |v_2| \|_{L^2(B_{\frac{3}{4}})}) \]
\[\leq C r^{-2} (\| \Omega \|_{L^2(B_1)} + \| v_1 \|_{L^2(B_{\frac{3}{4}})} + 1) \]
\[\leq C r^{-2}. \]

So we have
\[\| R^\ast h_r \|_{L^2,1(B_1)} \leq C \| h_r \|_{L^2(B_1)} \leq C r^{-2}. \tag{16} \]

From Lemma 2.6, (14), (15) and (16) it follows that
\[\| A_n \nabla u_n - g_{n,r} - R^\ast h_r \|_{L^2,1(B_1)} \leq C r^{-2}. \]

By (13) and the duality between $L^{2,1}$ and $L^{2,\infty}$ we have
\[\lim_{n \to \infty} \| A_n \nabla u_n - g_{n,r} - R^\ast h_r \|_{L^2(B(x_0,r))} \]
\[\leq \lim_{n \to \infty} \| A_n \nabla u_n - g_{n,r} - R^\ast h_r \|_{L^{2,1}(B_{\frac{3}{4}})} \| A_n \nabla u_n - g_{n,r} - R^\ast h_r \|_{L^{2,\infty}} \]
\[= 0. \tag{17} \]

It can be shown that
\[\| R^\ast (\varphi_r A_n f_n) \|_{L^2,\infty} \leq C \| \varphi_r A_n f_n \|_1 \]
\[\leq C \| f_n \|_{L^1(B(x_0,2r))} \]
\[\leq C (\ln \frac{1}{r^2})^{-1} \| f_n \|_{L^1 \ln L^2(B_1)} \]
\[\leq C (\ln \frac{1}{r})^{-1}. \tag{18} \]
With (15) we get that
\[\|R \ast (\varphi_r A_n f_n)\|_{L^2(B_1)} \leq 2 \|R \ast (\varphi_r A_n f_n)\|_{L^2,1(B_1)} \|R \ast (\varphi_r A_n f_n)\|_{L^2,\infty} \leq C(\ln \frac{1}{r})^{-1}. \]

(19)

It is clear that (14) and (19) imply that
\[\|g_{n,r}\|_{L^2(B_1)}^2 \leq C(\epsilon_K^2 a + (\ln \frac{1}{r})^{-1}). \]

For any \(\epsilon > 0 \), we can take \(t < r \) small enough so that
\[\int_{B(x_0,t)} |R \ast h_r|^2 dx < \epsilon a. \]

By (17) we can get
\[\|\nabla u_n\|_{L^2(B(x_0,t))}^2 \leq 2 \|A_n \nabla u_n\|_{L^2(B(x_0,t))}^2 \leq C(\|g_{n,r}\|_{L^2(B_1)}^2 + \|R \ast h_r\|_{L^2(B(x_0,t))}^2) \leq C(\epsilon_K^2 a + (\ln \frac{1}{r})^{-1} + \epsilon a). \]

Take \(r, \epsilon_N, \epsilon \) small enough, we can obtain that
\[a \leq \lim_{n \to \infty} \|\nabla u_n\|_{L^2(B(x_0,t))}^2 \leq \frac{a}{2} \]
which contracts to the fact \(a > 0 \), so we proved Theorem 1.1.

Now we prove Theorem 1.2. At first we rewrite the equation as
\[\Delta u_n = A(u_n) (du_n, du_n) + \tau(u_n) = -\sum_{l=1}^{K-m} \langle \nabla \nu_l, \nabla u_n \rangle \nu_l + \tau(u_n) \]
where \(\nu_l \) \((1 \leq l \leq K - m) \) is the orthogonal frame field for the normal bundle to \(N \). Here we didn’t distinguish \(\nu_l \) and \(\nu_l \circ u_n \). By the fact that \(\langle \nabla u_n, \nu_l \rangle = 0 \), we obtain that
\[\Delta u_n^i = -\sum_{l=1}^{K-m} \langle \nabla \nu_l, \nabla u_n \rangle \nu_l^j + \tau^j(u_n) = -\sum_{l=1}^{K-m} \sum_{j=1}^{K} (\nu_l^j \nabla \nu_l^i - \nu_l^j \nabla \nu_l^i) \nabla u_n^j + \tau^j(u_n). \]

Set \((\Omega_n)^i_j = \sum_{l=1}^{K-m} \nu_l^j \nabla \nu_l^i - \nu_l^j \nabla \nu_l^i \), there holds
\[(\Omega_n)^i_j = -(\Omega_n)^i_j; \quad |\Omega_n| \leq C|\nabla u_n|. \]

Now the equation can be rewritten as
\[\Delta u_n = -\Omega_n \nabla u_n + \tau(u_n). \]

(20)

As the energy of the map \(u_n \) is small enough in \(B_1 \), we see that \(\|\Omega_n\|_{L^2(B_1)} \leq C \epsilon_N \) is small enough. It is easy to see that
\[|\nabla \Omega_n| \leq C(|\nabla u_n|^2 + |\nabla^2 u_n|). \]

By Lemma 2.6 we know that \(\{\Omega_n\} \) is bounded in \(W^{1,1}(B_2) \). From Lemma 2.7 it follows that the set \(\{\Omega_n\} \) is precompact in \(L^1(B_2) \). So we can apply Theorem 1.1 to obtain Theorem 1.2.
4 Energy identity for the sphere

In this section, we only prove Theorem 1.3 for the case \(M = B_1 \). For a general Riemann surface the proof is of little difference.

By Theorem 1.2, we can see that \(u_n \) converges strongly to \(u \) away from a finite set of points. For simplicity, we assume that there is only one energy concentration point 0 and there is only one bubble. The general case can be derived by the induction argument in [2].

Suppose that the bubble \(\psi \) is the strong limit of \(u_n(r_n x) \) in \(W^{1,2}_{\text{loc}}(B_1, S^{K-1}) \). Then it is easy to see that the energy identity is equivalent to

\[
\lim_{\delta \to 0} \lim_{R \to \infty} \lim_{n \to \infty} E(u_n, B_\delta \setminus B_{r_n R}) = 0.
\]

For any \(\epsilon > 0 \), choose \(R > 0, \delta > 0 \) such that

\[
E(u, B_\delta) + E(\psi, B_R) < \epsilon^2.
\]

The standard blow-up analysis (see [2]) shows that there exists \(N_0 > 0 \) such that if \(n \geq N_0 \) then for any \(r_n R < t < \delta \)

\[
\int_{B_{2t} \setminus B_t} |\nabla u_n|^2 < \epsilon^2.
\]

Now we estimate the \(L^{2,\infty} \)-norm of \(\nabla u_n \) on the neck domain.

Lemma 4.1 Suppose that \(u \) is a map from the unit disk \(B_1 \) to \(N \) in \(W^{1,2}(B_1, N) \) with \(\tau(u) \in L \ln^+ L(B_1) \). Assume that \(\epsilon > 0 \) is small enough, if \(r, \delta > 0 \) satisfies that

\[
\int_{B_{2t} \setminus B_t} |\nabla u|^2 < \epsilon^2
\]

for any \(r < t < 4\delta \). Then we have

\[
\|\nabla u\|_{L^{2,\infty}(B_t \setminus B_{rt})} \leq C(\epsilon + (\ln \frac{1}{\delta})^{-1})
\]

where \(C \) only depends on \(\|\nabla u\|_2, \|\tau(u)\|_{L \ln^+ L} \) and the target manifold.

Proof: Suppose that \(\delta = 2^N r \), then for any \(1 \leq i \leq N + 2 \) there holds

\[
E(u, B_{2^i r} \setminus B_{2^{i-1} r}) < \epsilon^2.
\]

Take \(\psi \in C_0^\infty(B_2) \) satisfying that \(\psi = 1 \) in \(B_1 \). Set \(\theta_i(x) = \psi(\frac{x}{2^{i+2} r}) - \psi(\frac{x}{2^{i-1} r}) \) and \(\overline{u}_i = \int_{B_{2^{i+2} r} \setminus B_{2^{i-1} r}} u(x) dx \), then

\[
\Delta(\theta_i(u - \overline{u}_i)) = \theta_i \Delta u + 2 \nabla \theta_i \nabla u + (u - \overline{u}_i) \Delta \theta_i
\]

\[
= \theta_i A(u) + \theta_i \tau(u) + 2 \nabla \theta_i \nabla u + (u - \overline{u}_i) \Delta \theta_i.
\]
For \(x \in B_{2i+1} \setminus B_{2ir} \), there holds

\[
|\nabla u(x)| = |\nabla (\theta_i(u - \overline{u_i}))(x)| \\
= |R* (\theta_iA(u) + \theta_i\tau(u) + 2\nabla \theta_i u + (u - \overline{u_i})\Delta \theta_i)(x)| \\
\leq |R* (\theta_iA(u))(x)| + |R* (\theta_i\tau(u))(x)| + |R* (2\nabla \theta_i u + (u - \overline{u_i})\Delta \theta_i)(x)| \\
= I_1(x) + I_2(x) + I_3(x).
\]

By Sobolev inequality it can be shown that when \(x \in B_{2i+1} \setminus B_{2ir} \), with \(i \geq 2 \),

\[
I_3(x) \leq \int \left| R(x - y)(2\nabla \theta_i u + (u - \overline{u_i})\Delta \theta_i)(y) \right| dy \\
\leq C \int_{(B_{2i+3r} \setminus B_{2i+2r}) \cup (B_{2i-1r} \setminus B_{2i-2r})} \frac{1}{|x - y|}(2^{-i}r^{-1}|\nabla u| + 2^{-2i}r^{-2}|u - \overline{u_i}|)(y) dy \\
\leq C \int_{B_{2i+3r} \setminus B_{2i-2r}} (2^i)^{-1}(2^i)^{-1}|\nabla u| + (2^i)^{-2}|u - \overline{u_i}|)(y) dy \\
\leq C(2^i)^{-2} \int_{B_{2i+3r} \setminus B_{2i-2r}} |\nabla u|(y) dy \\
\leq C\varepsilon \frac{1}{|x|}.
\]

As Riesz potential is bounded from \(L^1(R^2) \) to \(L^{2;\infty}(R^2) \), we get that for any \(a > 0 \),

\[
|\{I_1(x) + I_2(x) > a\}| \leq Ca^{-2}||I_1 + I_2||_{L^{2;\infty}(R^2)}^2 \\
\leq Ca^{-2}||\theta_i(|A(u)| + |\tau(u)|)||_1^2 \\
\leq Ca^{-2}(\int \theta_i(|\nabla u|^2 + |\tau(u)|)(x)dx)^2 \\
\leq Ca^{-2}(\int \theta_i|\nabla u(x)|^2 dx)^2 + (\int \theta_i|\tau(u)(x)|dx)^2).
\]

So there holds

\[
|\{x \in B_{2i} \setminus B_{4r} : |\nabla u(x)| > 2a\}| \\
= \sum_{i=2}^{N-1} |\{x \in B_{2i+1} \setminus B_{2ir} : |\nabla u(x)| > 2a\}| \\
\leq \sum_{i=2}^{N-1} |\{x \in B_{2i+1} \setminus B_{2ir} : I_1(x) + I_2(x) > a\}| \\
+ \sum_{i=2}^{N-1} |\{x \in B_{2i+1} \setminus B_{2ir} : I_3(x) > a\}| \\
\leq \sum_{i=2}^{N-1} |\{I_1(x) + I_2(x) > a\}| + |\{x \in B_1 : \frac{C\varepsilon}{|x|} > a\}| \\
\leq Ca^{-2}\sum_{i=2}^{N-1} (\varepsilon^2 \int \theta_i|\nabla u|^2(x)dx + (\int \theta_i|\tau(u)(x)|dx)^2) + \frac{C\varepsilon^2}{a^2} \\
\leq Ca^{-2}(\varepsilon^2 \int (\sum_{i=2}^{N-1} \theta_i)|\nabla u|^2(x)dx + (\int (\sum_{i=2}^{N-1} \theta_i)|\tau(u)(x)|dx)^2 + \varepsilon^2).
\]
\[\leq Ca^{-2}(\epsilon^2 E(u) + (\int_{B_{4\delta}} |\tau(u)(x)|dx)^2 + \epsilon^2) \]
\[\leq Ca^{-2}(\epsilon^2 + (\|\tau(u)\|_{L^\ln+L})^2) \]
\[\leq Ca^{-2}(\epsilon^2 + \ln^{-2} \frac{1}{\delta}). \]

So we proved this lemma.

Now we estimate the $L^2,1$-norm of ∇u_n on B_1. We recall some identities in ([5], P132-134). Embed S^{K-1} into R^K, then we have
\[\tau(u_n) = \Delta u_n + u_n|\nabla u_n|^2 = f_n. \]
Set
\[\beta^i_n = u^i_n du^j_n - u^j_n du^i_n, \]
then
\[\delta \beta^i_n = f^j_n u^i_n - f^i_n u^j_n, \]
and
\[\Delta \beta^i_n = d(f^j_n u^i_n - f^i_n u^j_n) + 2\delta (du^i_n \wedge du^j_n). \tag{23} \]
Consider
\[\left\{ \begin{array}{ll}
\Delta \Phi^i_n = 2du^i_n \wedge du^j_n & \text{in } B_1 \\
\Phi^i_n = 0 & \text{on } \partial B_1,
\end{array} \right. \]
and
\[\left\{ \begin{array}{ll}
\Delta \Psi^i_n = f^j_n u^i_n - f^i_n u^j_n & \text{in } B_1 \\
\Psi^i_n = 0 & \text{on } \partial B_1.
\end{array} \right. \]
Let
\[H^i_n = \beta^i_n - \delta \Phi^i_n - d\Psi^i_n. \]
By Theorem 3.3.8 in [5] (also see [15], Theorem 1.100), we have
\[\|\nabla \Phi^i_n\|_{L^2(B_1)} \leq C\|du^i_n \wedge du^j_n\|_{H^1} \leq C\|\nabla u_n\|_{L^2(B_1)}^2 \leq C; \]
\[\|\nabla \Psi^i_n\|_{L^2(B_1)} \leq C\|f^j_n u^i_n - f^i_n u^j_n\|_{H^1(B_1)} \leq C\|\tau(u_n)\|_{L^\ln+L} \leq C. \]
It is clear that H^i_n is a harmonic 1-form in B_1 and
\[\int_{B_1} |H_n|^2 dx \leq \int_{B_1} |\beta_n|^2 dx + \|\nabla \Phi_n\|_{L^2(B_1)}^2 + \|\nabla \Psi_n\|_{L^2(B_1)}^2 \]
\[\leq C(\int_{B_1} |\nabla u_n|^2 dx + \|\nabla \Phi_n\|_{L^2(B_1)}^2 + \|\nabla \Psi_n\|_{L^2(B_1)}^2) \]
\[\leq C. \]

By the basic property of the harmonic function, we know that
\[\|H_n\|_{C^0(B_{1/2})} \leq C \]
15
which implies that
\[\|\beta_n\|_{L^2(B_{\frac{1}{2}})} \leq \|H_n\|_{C^0(B_{\frac{1}{2}})} + \|\nabla \Phi_n\|_{L^2(B_1)} + \|\nabla \Psi_n\|_{L^2(B_1)} \leq C. \] (24)

By Lemma 4.1 we can get that
\[\|\nabla u_n\|_{L^2,\infty(B_{\frac{1}{2}})} \leq C(\epsilon + (\ln \frac{1}{\delta})^{-1}). \]

So using the duality between $L^{2,1}$ and $L^{2,\infty}$ one shows that
\[\|\beta_n\|^2_{L^2(B_{\frac{1}{2}} \setminus B_{\frac{1}{3n}} R)} \leq \|\beta_n\|_{L^2,\infty(B_{\frac{1}{2}} \setminus B_{\frac{1}{3n}} R)} \|\nabla u_n\|_{L^2,\infty(B_{\frac{1}{2}} \setminus B_{\frac{1}{3n}} R)} \leq C(\epsilon + (\ln \frac{1}{\delta})^{-1}). \]

On the other hand, as $u_n(B_1) \subset S^{K-1}$ we have the following equality
\[2|\nabla u_n|^2 = \sum_{i,j=1}^K |\beta_n^{ij}|^2. \]

So we can get that
\[\|\nabla u_n\|^2_{L^2(B_{\frac{1}{2}} \setminus B_{\frac{1}{3n}} R)} \leq C(\epsilon + (\ln \frac{1}{\delta})^{-1}) \]
which implies (21). Thus we proved Theorem 1.3.

5 An example

In this section we construct a sequence of mappings from B_1 to S^2 with tension fields bounded in $L \ln^+ L$ but there exists neck with positive length during blowing up.

Let π be the stereographic projection from R^2 to $S^2 \subset R^3$ which is a conformal harmonic mapping given by
\[\pi(r, \theta) = \left(\frac{2r \cos \theta}{1 + r^2}, \frac{2r \sin \theta}{1 + r^2}, \frac{1 - r^2}{1 + r^2} \right). \]

Set
\[f_n(t) = \begin{cases} 0, & t < e^{-2n}; \\ t^{-1} (\ln \frac{1}{t})^{-2}, & e^{-2n} \leq t \leq e^{-\frac{4n}{3}}; \\ -t^{-1} (\ln \frac{1}{t})^{-2}, & e^{-\frac{4n}{3}} < t \leq e^{-n}; \\ 0, & t \geq e^{-n}. \end{cases} \]

One can check that
\[\int |f_n(t)| \ln(2 + |t^{-1} f_n(t)|) dt = \int_{e^{-2n}}^{e^{-n}} t^{-1} (\ln \frac{1}{t})^{-2} \ln(2 + t^{-2} (\ln \frac{1}{t})^{-2}) dt \leq \int_{e^{-2n}}^{e^{-n}} t^{-1} (\ln \frac{1}{t})^{-2} \ln t^{-3} dt = 3 \int_{e^{-2n}}^{e^{-n}} t^{-1} (\ln \frac{1}{t})^{-1} dt = 3 \int_n^{2n} s^{-1} ds = 3 \ln 2. \] (25)
Take $\varphi \in C_0^\infty(B_1)$, $\varphi(x) \equiv 1$ in $B_{\frac{1}{2}}$. Set $h_n(r) = \int_{e^{-2n}}^{e^{-2n}t^{-1}} f_n(s) ds dt$ and

$$u_n(r, \theta) = \begin{cases} \pi(\frac{\varphi(e^{2n}r)}{e^{2n}r}, \theta), & r < e^{-2n}; \\ (\sin h_n(r), 0, \cos h_n(r)), & r \geq e^{-2n}. \end{cases}$$

It is easy to see that $u_n \rightharpoonup 0$ weakly in $W^{1,2}$ and there is only one bubble π which was produced by the sequence $u_n(e^{-2n})$. Now we check that $\tau(u_n)$ are bounded in $L \ln^+ L$.

Because $h_n'(r) = 0$ for $r > e^{-n}$ and the map $\pi(\frac{1}{dr}, \theta)$ is harmonic for any constant $a > 0$, one checks that when $|x| < \frac{e^{-2n}}{2}$ or $|x| > e^{-n}$, there holds $\tau(u_n)(x) = 0$. Also we can check that

$$|\tau(u_n)(x)| \leq C(\|\nabla u_n\|^2(x) + |\nabla^2 u_n|(x)) \leq C e^{2n}$$

for $\frac{e^{-2n}}{2} \leq |x| \leq e^{-2n}$.

In the case that $e^{-2n} < |x| \leq e^{-n}$, a simple computation shows that

$$|\tau(u_n)(r, \theta)| = |h_n''(r) + \frac{h_n'(r)}{r}| = |f(r)|.$$

By (25) we have

$$\int_{B_1} |\tau(u_n)(x)| \ln(2 + |\tau(u_n)(x)|)$$

$$\leq \int_{\frac{e^{-2n}}{2} \leq |x| \leq e^{-2n}} e^{2n} \ln(2 + e^{2n}) dx + \int_{e^{-2n} < |x| \leq e^{-n}} |\frac{f(|x|)}{|x|}| \ln(2 + |\frac{|x|}{|x|}|) dx$$

$$\leq 3 e^{-4n} n e^{2n} + \int_{e^{-2n}}^{e^{-n}} |f_n(t)| \ln(2 + |t^{-1} f_n(t)|) dt$$

$$\leq 3 e^{-2} + 3 \ln 2$$

$$\leq 6.$$

So it follows from Theorem 1.3 that the energy identity holds, i.e.

$$\lim_{n \to \infty} E(u_n) = E(\pi).$$

In fact we can obtain this equality easily by direct computations.

Now we prove that there exists neck with positive length. Some direct computations show that

$$\|u_n\|_{Qsc} \geq \int_{e^{-2n}}^{e^{-n}} h_n'(r) dr$$

$$= \int_{e^{-2n}}^{e^{-\frac{4n}{3}}} r^{-1}(\frac{1}{n} - (\ln \frac{1}{r})^{-1}) dr + \int_{e^{-2n}}^{e^{-\frac{4n}{3}}} r^{-1}(\ln \frac{1}{r})^{-1} - \frac{1}{2n} dr$$

$$= \int_{e^{-2n}}^{e^{-\frac{4n}{3}}} r^{-1}(\ln \frac{1}{r})^{-1} dr - \int_{e^{-2n}}^{e^{-\frac{4n}{3}}} r^{-1}(\ln \frac{1}{r})^{-1} dr$$

$$= \ln \frac{9}{8} > 0.$$
References

