EXOTIC CIRCLES OF A REMARKABLE GROUP OF PIECEWISE GENERALIZED (NON LINEAR) CIRCLE HOMEOMORPHISMS

Abdelhamid Adouani

Bizerte Preparatory Engineering Institute, 7021 Zarzouna, Tunisia

and

Habib Marzougui

Department of Mathematics, Faculty of Sciences of Bizerte, 7021 Zarzouna, Tunisia

and

The Abdus Salam International Centre for Theoretical Physics, Trieste, Italy.

Abstract

Let G be a subgroup of $\text{Homeo}_+(S^1)$. An exotic circle of G is a subgroup of G which is conjugate to $SO(2)$ in $\text{Homeo}_+(S^1)$ but not conjugate to $SO(2)$ in G. The existence of exotic circles shows that the subgroup G is far from being a Lie group. Let $r \geq 1$ be an integer, $r = +\infty$ or $r = \omega$. In this paper, we prove that the subgroup $P^r(S^1)$ of $\text{Homeo}_+(S^1)$ consisting of piecewise class P^r homeomorphisms of the circle has no exotic circles. However, we show that there exist exotic circles of a particular subgroup (denoted $P^1(S^1)$) of $P^r(S^1)$ and we determine the conjugacy classes of all exotic circles in $P^1(S^1)$. In particular, for the group $PL_+(S^1)$ consisting of piecewise linear homeomorphisms we give a simple proof of Minakawa’s Theorems in [7], [6].

MIRAMARE – TRIESTE

August 2007
1. Introduction

Let \(\text{Homeo}_+(S^1) \) denote the group of orientation-preserving homeomorphisms of the circle and \(SO(2) \) denote the group of rotations of \(S^1 \). Let \(G \) be a subgroup of \(\text{Homeo}_+(S^1) \). A topological circle of \(G \) is a subgroup of \(G \) which is conjugate to \(SO(2) \) in \(\text{Homeo}_+(S^1) \). An exotic circle of \(G \) is a topological circle of \(G \) which is not conjugate to \(SO(2) \) in \(G \). The existence of exotic circles shows that the topological subgroup \(G \) is very far from being a Lie group (cf. [6], [8]). The following Corollary is a consequence of Theorem 4 of Montgomery and Zippin (cf. [8], Theorem 4, p. 212):

Corollary 1.1. (cf. [6]) For every integer \(r \geq 1 \), \(r = \infty \), or \(r = \omega \), \(\text{Diff}_+^1(S^1) \) has no exotic circles.

To consider general groups of piecewise circle homeomorphisms, we prove the following more precise result. Let \(\text{Diff}_+^{1+BV}(S^1) \) denote the group of \(C^1 \)-diffeomorphisms which derivative of bounded variation on \(S^1 \). Then:

Corollary 1.2. \(\text{Diff}_+^{1+BV}(S^1) \) has no exotic circle.

The proof uses the following classical result.

Theorem 1.3. ([10]) If \(g \) is a measurable function defined on the interval \((0,1) \), and if, for every \(\tau \in (0,1) \), \(g(t+\tau) - g(t) \) is of bounded variation on the interval \((0,1-\tau) \) then \(g \) is of bounded variation on \((0,1) \).

Proof of Corollary 1.2. Let \(S = h \circ SO(2) \circ h^{-1} \) be a topological circle of \(\text{Diff}_+^{1+BV}(S^1) \) where \(h \in \text{Homeo}_+(S^1) \). We let \(f = h \circ R_\alpha \circ h^{-1} \), \(\alpha \in S^1 \). By Corollary 1.1, \(h \in \text{Diff}_+^1(S^1) \).

Hence, \(Dh > 0 \) and \((Df \circ h) Dh = Dh \circ R_\alpha \). So, \(\log Dh \circ R_\alpha - \log Dh = \log Df \circ h \). We let \(g = \log Dh \). We identify \(f, g \), and \(h \) to their lifts on \([0,1]\). So, \(g \) is a measurable function on \([0,1]\) and satisfies \(g(x+\alpha) - g(x) = \log Df \circ h \). Since \(Df \) is of bounded variation on \([0,1]\), and \(h \in \text{Homeo}_+(S^1) \), by Theorem 1.3, \(g \) is of bounded variation on \([0,1]\). Therefore, \(Dh \) is of bounded variation and \(h \in \text{Diff}_+^{1+BV}(S^1) \).

Let \(PL_+(S^1) \) denote the subgroup of \(\text{Homeo}_+(S^1) \) consisting of piecewise linear homeomorphisms. Minakawa [6],[7] showed that \(PL_+(S^1) \) has exotic circles and obtained the conjugacy classes of all exotic circles of \(PL_+(S^1) \):

Minakawa’s Theorem ([6],[7]). Let \(\sigma \in \mathbb{R}_+^* > 0 \), \(\sigma \neq 1 \) and denote by \(h_\sigma \) the homeomorphism of \(S^1 \) defined by

\[
h_\sigma(x) = \frac{\sigma^x - 1}{\sigma - 1}, \quad x \in [0,1[.
\]

Then the topological circles \(S_\sigma = h_\sigma \circ SO(2) \circ h_\sigma^{-1} \) are exotic circles of \(PL_+(S^1) \) and every exotic circle of \(PL_+(S^1) \) is conjugate in \(PL_+(S^1) \) to one of the \(S_\sigma \).
In this paper, we consider the general case: piecewise class \(P C^r \) (\(r \geq 1, r = +\infty \) or \(r = \omega \)) homeomorphisms of the circle with break point singularities, that is maps \(f \) that are \(C^r \) except at some singular points in which the successive derivatives until the order \(r \) on the left and on the right exist. These piecewise classes \(P C^r \) homeomorphisms of the circle form a group noted \(\mathcal{P}^r(S^1) \) which contains \(PL_+(S^1) \) (cf. [1]). The aim of this paper is to show that \(\mathcal{P}^r(S^1) \) has no exotic circles, and that, there exist exotic circles of a subgroup (denoted \(\mathcal{P}^1_1(S^1) \)) of \(\mathcal{P}^r(S^1) \). Moreover, we determine the conjugacy classes of all exotic circles in \(\mathcal{P}^r_1(S^1) \). In the case of \(PL_+(S^1) \), we give a simple proof of the classification of all exotic circles of \(PL_+(S^1) \) up to PL conjugacy obtained by Minakawa in [7], [6].

2. CLASS \(P C^r \) HOMEOMORPHISMS OF THE CIRCLE

Denote by \(S^1 = \mathbb{R}/\mathbb{Z} \) the circle and \(p : \mathbb{R} \rightarrow S^1 \) the canonical projection. Let \(f \) be an orientation preserving homeomorphism of \(S^1 \). The homeomorphism \(f \) admits a lift \(\tilde{f} : \mathbb{R} \rightarrow \mathbb{R} \) that is an increasing homeomorphism of \(\mathbb{R} \) such that \(p \circ \tilde{f} = f \circ p \). Conversely, the projection of such a homeomorphism of \(\mathbb{R} \) is an orientation preserving homeomorphism of \(S^1 \). Let \(x \in S^1 \). We call orbit of \(x \) by \(f \) the subset \(O_f(x) = \{ f^n(x) : n \in \mathbb{Z} \} \).

Historically, the dynamic study of circle homeomorphisms was initiated by H. Poincaré ([9], 1886). He introduced the rotation number of a homeomorphism \(f \) of \(S^1 \) as \(\rho(f) = \lim_{n \rightarrow +\infty} \frac{f^n(x) - x}{n} (mod 1) \).

Poincaré showed that this limit exists and does not depends on \(x \) and the lift \(\tilde{f} \) of \(f \).

We say that \(f \) is semi-conjugate to the rotation \(R_{\rho(f)} \) if there exists an orientation preserving surjective continuous map \(h : S^1 \rightarrow S^1 \) of degree one such that \(h \circ f = R_{\rho(f)} \circ h \).

Poincaré’s theorem. Let \(f \) be a homeomorphism of \(S^1 \) with rotation number \(\rho(f) \) irrational. Then \(f \) is semi-conjugate to the rotation \(R_{\rho(f)} \).

A natural question is whether the semi-conjugation \(h \) could be improved to be a conjugation, that is \(h \) to be an homeomorphism. In this case, we say that \(f \) is topologically conjugate to the rotation \(R_{\rho(f)} \). In this direction, A. Denjoy ([2]) proved the following:

Denjoy’s theorem([2]). Every \(C^2 \)-diffeomorphism \(f \) of \(S^1 \) with irrational rotation number \(\rho(f) \) is topologically conjugate to the rotation \(R_{\rho(f)} \).

Other classes of circle homeomorphisms commonly referred to as the class \(P \) homeomorphisms are known to satisfy the conclusion of Denjoy’s theorem (see [4]; [3], chapter VI).

Definition 2.1. Let \(f \) be an orientation preserving homeomorphism of the circle. The homeomorphism \(f \) is called of class \(P \) if it is derivable except in finitely or countable points called break points of \(f \) in which \(f \) admits left and right derivatives (denoted, respectively, by \(Df_- \) and \(Df_+ \)) and such that the derivative \(Df : S^1 \rightarrow \mathbb{R}_+^* \) has the following properties:
- there exist two constants $0 < a < b < +\infty$ such that:
 \[a < Df(x) < b, \text{ for every } x \text{ where } Df \text{ exists}, a < Df_+(c) < b, \text{ and } a < Df_-(c) < b \text{ at the break point } c. \]
- \(\log Df \) has bounded variation on \(S^1 \)

Denote by
- \(\sigma_f(c) := \frac{Df(c)}{Df_+(c)} \) called the \(f \)-jump in \(c \).
- \(C(f) \) the set of break points of \(f \).
- \(\pi_s(f) \) the product of \(f \)-jumps in the break points of \(f \): \(\pi_s(f) = \prod_{c \in C(f)} \sigma_f(c) \).
- \(V = \text{Var} \log Df \) the total variation of \(\log Df \). We have
 \[V := \sum_{j=0}^p \text{Var}_{[c_j,c_{j+1}]} \log(Df) + |\log(\sigma_f(c_j))| < +\infty \]
where \(c_0, c_1, c_2, \ldots, c_p \) are the break points of \(f \) with \(c_{p+1} := c_0 \). In this case, \(V \) is the total variation of \(\log Df, \log Df_-, \log Df_+ \).

Among the simplest examples of class \(P \) homeomorphisms, there are:
- \(C^2 \)-diffeomorphisms,
- Piecewise linear (PL) homeomorphisms. An orientation preserving circle homeomorphism \(f \) is called \(\text{PL} \) if \(f \) is derivable except in many finitely break points \((c_i)_{1 \leq i \leq p} \) of \(S^1 \) such that the derivative \(Df \) is constant on each \([c_i, c_{i+1}] \).

Definition 2.2. We say that \(f \) has the \((D) \)-property (cf. [5], [7]) if the product of \(f \)-jumps on each orbit is equal to 1 i.e. \(\pi_s(f)(c) = \prod_{x \in C(f) \cap \mathcal{O}_f(c)} \sigma_f(x) = 1 \).

In particular, if \(f \) has the \((D) \)-property then \(\pi_s(f) = 1 \). Conversely, if \(\pi_s(f) = 1 \) and if all break points belong to a same orbit then \(f \) has the \((D) \)-property.

If \(f \) is a (PL) homeomorphism, always we have \(\pi_s(f) = 1 \). Therefore, a PL homeomorphism \(f \) satisfies the \((D) \)-property if all its break points are on the same orbit.

Proposition 2.3. Let \(f, g \) be two circle orientation preserving \(C^1 \)-homeomorphisms. Then \(\pi_s(g \circ f) = \pi_s(g)\pi_s(f) \).

Proof. Let \(c \in S^1 \). We have \(\sigma_{g \circ f}(c) = \sigma_g(f(c))\sigma_f(c) \). So,
\[
\pi_s(g \circ f) = \prod_{c \in C(g \circ f)} \sigma_{g \circ f}(c) = \prod_{c \in C(g \circ f)} \sigma_g(f(c))\sigma_f(c).
\]
Since \(C(g \circ f) \subset C(f) \cup f^{-1}(C(g)) \) and \(\sigma_{g \circ f}(c) = 1 \) for every \(c \in S^1 \setminus C(g \circ f) \),
\[
\pi_s(g \circ f) = \prod_{c \in C(f)} \sigma_g(f(c))\sigma_f(c) \prod_{c \in f^{-1}(C(g)) \setminus C(f)} \sigma_g(f(c))\sigma_f(c)
\]
\[
= \pi_s(f) \prod_{c \in C(f)} \sigma_g(f(c)) \prod_{c \in f^{-1}(C(g)) \setminus C(f)} \sigma_g(f(c))
\]
\[
= \pi_s(f) \prod_{c \in f^{-1}(C(g))} \sigma_g(f(c)) = \pi_s(f) \pi_s(g).
\]

\[\square\]

Corollary 2.4. (Invariance of \(\pi_s \) by piecewise \(C^1 \)-conjugation). Let \(f, g \) be two circle orientation preserving \(C^1 \)-homeomorphisms. If \(f \) and \(g \) are bi-piecewise \(C^1 \) conjugated then \(\pi_s(f) = \pi_s(g) \).

Definition 2.5. Let \(r \geq 1 \) be an integer, \(r = +\infty \), or \(r = \omega \). A class \(P \) circle homeomorphism is called of piecewise class \(P C_r \) if \(f \) is \(C^r \) except in a finitely many points called *singular points* and in which the successive derivatives of \(f \) until the order \(r \) on the left and on the right exist.

Denote by

- \(S(f) \) the set of singular points of \(f \).
- \(\mathcal{P}^r(S^1) \) the set of class \(P C^r \) circle homeomorphisms (\(r \geq 1 \) integer, \(r = +\infty \), or \(r = \omega \)).

One can check that \(\mathcal{P}^r(S^1) \) is a group.

Notice that if \(r = 1 \), \(S(f) = C(f) \).

The set \(S(f) \) of singular points is partitioned into finite subsets \(S_i(f) \) which are supported by disjoints orbits:

\[S(f) = \prod_{i=1}^{p} S_i(f) \]

where \(S_i(f) = S(f) \cap O_f(c_i), c_i \in S(f) \) and \(O_f(c_i)_{1 \leq i \leq p} \) are on distinct orbits.

Definition-Notation. The set \(M_i(f) = \{x_i, f(x_i), ..., f^{N(f,x_i)}(x_i)\} \) is called the *envelope* of \(S_i(f) \) (\(1 \leq i \leq p \)) where \(N(f,x_i) \in \mathbb{N}, x_i, f^{N(f,x_i)}(x_i) \in S(f) \) and

\[S(f) \cap M_i(f) = S(f) \cap O_f(x_i) = S_i(f). \]

Definition 2.6. Let \(r \geq 1 \) be an integer. Let \(f \in \mathcal{P}^r(S^1) \). We say that \(f \) has the \((D_r)\)-property if \(f^{N(f,x_i)+1} \) is \(C^r \) on \(x_i \) for \(i = 1, ..., p \).

Notice that if \(N(f,x_i) = 0 \) for some \(i \) then \(x_i \) is the unique singular point in its orbit and the \((D_r)\)-property is not satisfied.
Remark 1. In the case \(r = 1 \), the \((D_r)\)-property is equivalent to the \((D)\)-property. For every \(i = 1, \ldots, p \),

\[
\prod_{d \in M_i(f)} \sigma_f(d) = 1 = \prod_{d \in S_i(f)} \sigma_f(d).
\]

Indeed, \(f^{N(f, x_i)} \) is \(C^1 \) on \(x_i, \) \(i = 1, \ldots, p \) means that

\[
\sigma_{f^{N(f, x_i)}}(x_i) = 1 = \prod_{c \in S_i(f)} \sigma_f(c) = \prod_{j=0}^{N(f, x_i)} \sigma_f(f^j(x_i)),
\]

in other words: \(f \) satisfies the \((D)\)-property.

Proposition 2.7. ([1], Corollary 2.8). Let \(f, g \in \mathcal{P}^r(S^1) \) \((r \geq 1) \) be a real, \(r = +\infty \) or \(r = \omega \) with irrational rotation numbers that are rationally independent. If \(f \circ g = g \circ f \) then \(f \) and \(g \) have \((D_r)\)-property.

Theorem 2.8. ([1], Theorem 2.1) Let \(r \geq 1 \) be a real, \(r = +\infty \) or \(r = \omega \) and \(f \in \mathcal{P}^r(S^1) \) with irrational rotation number. Then the following properties are equivalent:

i) \(f \) is conjugated in \(\mathcal{P}^r(S^1) \) to a \(C^r \)-diffeomorphism,

ii) \(f \) has the \((D_r)\)-property,

iii) \(f \) is conjugated to a \(C^r \)-diffeomorphism by a piecewise polynomial homeomorphism \(K \in \mathcal{P}^r(S^1) \)

Proposition 2.9. ([1], Lemma 5.1) Let \(f \in \text{Diff}^+(S^1) \) with irrational rotation number and let \(g \in \mathcal{P}^r(S^1) \). If \(f \circ g = g \circ f \) then \(g \in \text{Diff}^+(S^1) \).

Our main results are the following:

Theorem 2.10. Let \(r \geq 1 \) be an integer, \(r = +\infty \) or \(r = \omega \). Then \(\mathcal{P}^r(S^1) \) has no exotic circles.

Let \(\mathcal{P}^r_1(S^1) \) denote the subgroup of \(\mathcal{P}^r(S^1) \) consisting of class \(P \) \(C^r \) circle homeomorphisms \(f \) with \(\pi_s(f) = 1 \). Then:

Theorem 2.11. Let \(r \geq 1 \) be an integer, \(r = +\infty \) or \(r = \omega \), \(\sigma \in \mathbb{R}_+^* \) > 0, \(\sigma \neq 1 \) and let \(h_\sigma \in \mathcal{P}^r(S^1) \) with one break point \(c \) such that \(\sigma_{h_\sigma}(c) = \sigma \). Then:

i) \(S_\sigma = h_\sigma \circ \text{SO}(2) \circ h_\sigma^{-1} \subset \mathcal{P}^r_1(S^1) \) is an exotic circle of \(\mathcal{P}^r_1(S^1) \).

ii) Two exotic circles \(S_1 = h_1 \circ \text{SO}(2) \circ h_1^{-1}, \ S_2 = h_2 \circ \text{SO}(2) \circ h_2^{-1} \) of \(\mathcal{P}^r_1(S^1) \) are conjugated in \(\mathcal{P}^r_1(S^1) \) if and only if \(\pi_s(h_1) = \pi_s(h_2) \).

iii) Every exotic circle of \(\mathcal{P}^r_1(S^1) \) is conjugate in \(\mathcal{P}^r_1(S^1) \) to one of the \(S_\sigma \).
3. No Exotic Circle of $\mathcal{P}^r(S^1)$

Lemma 3.1. Let $S = h \circ SO(2) \circ h^{-1}$ be a topological circle of $\mathcal{P}^r(S^1)$, $h \in \text{Homeo}_+(S^1)$. Then every element of S with irrational rotation number has the (D_r)-property.

Proof. Let $f \in S$ with irrational rotation number $\alpha \in S^1$, that is $f = h \circ R_\alpha \circ h^{-1} \in \mathcal{P}^r(S^1)$. Let $g = h \circ R_\beta \circ h^{-1}$ with β irrational such that α, β are rationally independent. Since $f \circ g = g \circ f$, by Proposition 2.7, f and g have the (D_r)-property. \qed

Proof of Theorem 2.10.

Let $S = h \circ SO(2) \circ h^{-1} \subset \mathcal{P}^r(S^1)$ where $h \in \text{Homeo}_+(S^1)$. Take $f \in S$ with irrational rotation number $\beta \in S^1$. By Lemma 3.1, f has the (D_r)-property. Hence, by Theorem 2.8, there exists a polynomials homeomorphism $K \in \mathcal{P}^r(S^1)$ such that $F = K \circ f \circ K^{-1} \in \text{Diff}^r_+(S^1)$. Now for every $g = h \circ R_\alpha \circ h^{-1} \in S$, $G = K \circ g \circ K^{-1} = (K \circ h) \circ R_\alpha \circ (K \circ h)^{-1} \in \mathcal{P}^r(S^1)$.

Since $G \circ F = F \circ G$, by Proposition 2.9, $G \in \text{Diff}^r_+(S^1)$. It follows by Corollary 1.1, that $K \circ h = u \in \text{Diff}^r_+(S^1)$. Hence, if $r \geq 2$, $r = +\infty$ or $r = \omega$, $h = K^{-1} \circ u \in \mathcal{P}^r(S^1)$.

If $r = 1$ then $G \in \mathcal{P}^1(S^1) \cap \text{Diff}^1_+(S^1)$, so, $G \in \text{Diff}^1_{BV}(S^1)$. By Corollary 1.2, we have $K \circ h = u \in \text{Diff}^1_{BV}(S^1)$. Hence $h = K^{-1} \circ u \in \mathcal{P}^1(S^1)$. This completes the proof. \qed

4. Existence of Exotic Circles of $\mathcal{P}^r_1(S^1)$

In this section, $r \geq 1$ is an integer, $r = +\infty$ or $r = \omega$. Let us consider the set

$$\mathcal{P}^r_1(S^1) = \{f \in \mathcal{P}^r(S^1) : \pi_s(f) = 1\}.$$

Lemma 4.1. $\mathcal{P}^r_1(S^1)$ is a subgroup of $\mathcal{P}^r(S^1)$.

Proof. Let us consider the map $\pi_s : \mathcal{P}^r(S^1) \longrightarrow \mathbb{R}^*; f \longmapsto \pi_s(f)$. Since $\pi_s(g \circ f) = \pi_s(g)\pi_s(f)$ by Proposition 2.3, π_s is a group’s homomorphism. Its kernel $\text{Ker} \pi_s = \mathcal{P}^r_1(S^1)$ is then a subgroup of $\mathcal{P}^r(S^1)$. \qed

Lemma 4.2. Let $\sigma \in \mathbb{R}^*_+ \setminus \{1\}$ and $h_\sigma \in \mathcal{P}^r(S^1)$ with one break point c such that $\sigma_{h_\sigma}(c) = \sigma$. Then $S_\sigma = h_\sigma \circ SO(2) \circ h_\sigma^{-1}$ is an exotic circle of $\mathcal{P}^r_1(S^1)$.

Proof. Letting $f = h_\sigma \circ R_\alpha \circ h_\sigma^{-1} \in S_\sigma$. Then $f \in \mathcal{P}^r(S^1)$ and has exactly two break points c_1 and $c_2 = f(c_1)$ and the product of f-jumps: $\pi_s(f) = \sigma f(c_1)\sigma f(c_2) = 1$, hence $f \in \mathcal{P}^r_1(S^1)$. Therefore, $S_\sigma \subset \mathcal{P}^r_1(S^1)$. Since $\pi_s(h_\sigma) = \sigma_{h_\sigma}(c) = \sigma \neq 1$, $h_\sigma \notin \mathcal{P}^r_1(S^1)$. This completes the proof. \qed

Proof of Theorem 2.11. Assertion i) follows from Lemma 4.2.

Assertion ii): Let $S_1 = h_1 \circ SO(2) \circ h_1^{-1}$ and $S_2 = h_2 \circ SO(2) \circ h_2^{-1}$ be two exotic circles of $\mathcal{P}^r_1(S^1)$. 7
Suppose that $\pi_s(h_1) = \pi_s(h_2)$. Then $S_2 = L \circ S_1 \circ L^{-1}$ where $L = h_2 \circ h^{-1}_1$. Since S_1 and S_1 are topological circles of $P^r(S^1)$, so, by Theorem 2.10, $L \in P^r(S^1)$. Moreover, by Proposition 2.3,

$$\pi_s(L) = \frac{\pi_s(h_1)}{\pi_s(h_2)} = 1.$$

Hence, $L \in P^r_1(S^1)$ and then S_1 and S_2 are conjugated in $P^r_1(S^1)$.

Conversely, suppose that S_1 and S_2 are conjugated in $P^r_1(S^1)$, that is $S_2 = L \circ S_1 \circ L^{-1}$ where $L \in P^r_1(S^1)$. Let $\alpha \in S^1$ be irrational. We have

$$L \circ h_1 \circ R_\alpha \circ h^{-1}_1 \circ L^{-1} = h_2 \circ R_\alpha \circ h^{-1}_2,$$

hence,

$$h^{-1}_1 \circ L^{-1} \circ h_2 \circ R_\alpha = R_\alpha \circ h^{-1}_1 \circ L^{-1} \circ h_2.$$

Since α is irrational, $h^{-1}_1 \circ L^{-1} \circ h_2$ must belong to $SO(2)$, so $h^{-1}_1 \circ L^{-1} \circ h_2 = R_\beta$ for some $\beta \in S^1$. Thus, we have

$$L = h_2 \circ R_\beta \circ h^{-1}_1 = T \circ h_2 \circ h^{-1}_1$$

where $T = h_2 \circ R_\beta \circ h^{-1}_2 \in S_2$. Since $L, T \in P^r_1(S^1)$, $h_2 \circ h^{-1}_1 \in P^r_1(S^1)$, so $\pi_s(h_2 \circ h^{-1}_1) = 1$, that is $\pi_s(h_1) = \pi_s(h_2)$.

Assertion iii): Let $S = h \circ SO(2) \circ h^{-1}$ be an exotic circle of $P^r_1(S^1)$. By Theorem 2.10, $h \in P^r(S^1)$ but $h \notin P^r_1(S^1)$. Hence $\pi_s(h) = \sigma \neq 1$. Since $\pi_s(h_\sigma) = \sigma h_\sigma(c) = \sigma = \pi_s(h)$, S is conjugated in $P^r_1(S^1)$ to S_σ by Assertion ii). This completes the proof. \square

5. The PL case

In this section, we consider the group $PL_+(S^1)$ and we give a new proof of Minakawa classification of all exotic circles of $PL(S^1)$.

Lemma 5.1. Let $h \in Homeo_+(S^1)$. Then $S = h \circ SO(2) \circ h^{-1}$ is an exotic circle of $PL_+(S^1)$ if and only if there exists $\lambda \in \mathbb{R}^*$ and a subdivision $c_0, c_1, ..., c_{p-1}$ of S^1 such that

$$h(x) = \frac{\alpha_i}{\lambda} e^{\lambda x} + \beta_i, \ x \in [c_{i-1}, c_i]$$

where $\alpha_i \in \mathbb{R}_+^*$, $\beta_i \in \mathbb{R}$ are constants.

Proof. Suppose that S is an exotic circle of $PL_+(S^1)$. Since $PL_+(S^1) \subset P^\infty(S^1)$ then by Theorem 2.10, $h \in P^\infty(S^1)$. We let $f = h \circ R_\alpha \circ h^{-1}$ with $\alpha \in S^1$ irrational. The set $h^{-1}(S(f)) \cap R_\alpha^{-1}(S(f)) \cap S(h)$ is finite and partitioned S^1 into segments $[c_{i-1}, c_i]$, $1 \leq i \leq p$ ($c_p = c_0$). So, $f(h(x)) = k_i$, for every $x \in [c_{i-1}, c_i]$. Differentiating the relation $f \circ h = h \circ R_\alpha$, we obtain successively $k_i Dh(x) = Dh(R_\alpha(x))$ and $k_i D^2h(x) = D^2h(R_\alpha(x))$ for every $x \in [c_{i-1}, c_i]$. Hence

$$\frac{D^2h(x)}{Dh(x)} = \frac{D^2h(R_\alpha(x))}{Dh(R_\alpha(x))}.$$
Letting
\[\varphi(x) = \begin{cases} \frac{D^2 h(x)}{Dh(x)} & \text{if } x \in S^1 \backslash \{c_0, ..., c_{p-1}\} \\ \frac{D^2 h_i(c_i)}{Dh_i(c_i)} & \text{if } x = c_i \end{cases} \]
then we have \(\varphi \circ R_\alpha = \varphi \) on \(S^1 \). Since \(\varphi \in L^2(S^1) \) and \(R_\alpha \) is ergodic with respect to the Haar measure \(m \) (\(\alpha \) is irrational), \(\varphi \) is constant \(m \text{-a.e.} \); that is there exists a subset \(E \) in \(S^1 \) with \(m(E) = 0 \) such that \(\varphi(x) = \lambda \) for every \(x \in S^1 \backslash E \). Since \(h \notin PL_+(S^1) \), \(\lambda \neq 0 \). We have
\[\frac{D^2 h(x)}{Dh(x)} = \lambda \] for every \(x \in]c_{i-1}, c_i[\backslash E \). Since \(\frac{D^2 h}{Dh} \) is continuous on \(]c_{i-1}, c_i[\) and \(]c_{i-1}, c_i[\backslash E \) is dense in \(]c_{i-1}, c_i[\), \(\frac{D^2 h}{Dh} = \lambda \) on \(]c_{i-1}, c_i[\) for every \(i \). The resolution of the differential equation
\[D^2 h(x) = \lambda Dh(x), \ x \in]c_{i-1}, c_i[\] implies that there exist two constants \(\alpha_i \in \mathbb{R}^+, \beta_i \in \mathbb{R} \) such that
\[h(x) = \frac{\alpha_i}{\lambda} e^{\lambda x} + \beta_i, \ x \in]c_{i-1}, c_i[. \]
Conversely, we let \(h(x) = \frac{\alpha_i}{\lambda} e^{\lambda x} + \beta_i, \ x \in]c_{i-1}, c_i[\) where \(\alpha_i \in \mathbb{R}^+, \beta_i \in \mathbb{R} \) are constants. Then for every \(\delta \in S^1, \ x \in]c_{i-1}, c_i[\), we have
\[h \circ R_\delta \circ h^{-1}(x) = h \circ R_\delta\left(\frac{1}{\lambda} \log\left(\frac{\lambda}{\alpha_i}(x - \beta_i) \right) \right) \]
\[= h\left(\frac{1}{\lambda} \log\left(\frac{\lambda}{\alpha_i}(x - \beta_i) \right) + \delta \right) = \frac{\alpha_i}{\lambda} e^{\lambda(x - \beta_i)} + \beta_j. \]
Therefore, \(S \subset PL_+(S^1) \) and since \(h \notin PL_+(S^1), S \) is an exotic circle of \(PL_+(S^1) \). This completes the proof. \(\square \)

Remark 2. Let \(h_\sigma \in \text{Homeo}_+(S^1) \) as in Lemma 5.1 with one break point \(0 \) such that \(h_\sigma(0) = 0 \) and \(\sigma_{h_\sigma}(0) = \sigma \). Then
\[h_\sigma(x) = \frac{\sigma x - 1}{\sigma - 1}, \ x \in [0, 1[. \]
Indeed, by Lemma 5.1,
\[h_\sigma(x) = \frac{\alpha}{\lambda} e^{\lambda x} + \beta, \ x \in [0, 1[. \]
Since \(h_\sigma(0) = 0 \) and \(h_\sigma(1) = 1 \), we have \(\beta = \frac{1}{1 - e^\lambda} \) and \(\alpha = \frac{-\lambda}{1 - e^\lambda} \). Hence,
\[h_\sigma(x) = \frac{-1}{1 - e^\lambda} e^{\lambda x} + \frac{1}{1 - e^\lambda} = \frac{e^{\lambda x} - 1}{e^\lambda - 1}. \]
Or
\[\sigma_{h_\sigma}(0) = \frac{D(h_\sigma)_-(0)}{D(h_\sigma)_+(0)} = \frac{D(h_\sigma)_-(1)}{D(h_\sigma)_+(0)} = e^\lambda, \]
hence \(e^\lambda = \sigma \) and \(h_\sigma(x) = \frac{\sigma x - 1}{\sigma - 1} \).

Proof of Minakawa’s Theorem. Under the hypothesis of Minakawa’s Theorem, \(S_\sigma = h_\sigma \circ SO(2) \circ h_\sigma^{-1} \) is an exotic circle of \(PL_+(S^1) \) by Remark 2.
Now let \(S = h \circ SO(2) \circ h^{-1} \) be an exotic circle of \(PL_+(S^1) \). By Theorem 2.10, \(h \in \mathcal{P}^\infty(S^1) \). Letting \(\pi_s(h) = \sigma \), we have \(S = L \circ S_\sigma \circ L^{-1} \) where \(L = h \circ h_\sigma^{-1} \) and \(\pi_s(L) = 1 \). Let’s show that \(L \in PL_+(S^1) \):
By Lemma 5.1, there exists $\lambda \in \mathbb{R}^*$ and a subdivision $c_0, c_1, ..., c_{p−1}$ of S^1 such that $h(x) = \frac{1}{\log \sigma} e^{\lambda x} + \beta_i, \ x \in [c_{i−1}, c_i]$ where $\alpha_i \in \mathbb{R}^*_+, \beta_i \in \mathbb{R}$ are constants. One can suppose that $c_0 = 0$ by replacing h with $h \circ R_{c_0}$ since

$$S = h \circ SO(2) \circ h^{-1} = h \circ R_{c_0} \circ SO(2) \circ R_{c_0}^{-1} \circ h^{-1}.$$

For $i = 1, ..., p−1$, we have

$$\sigma_h(c_i) = \frac{Dh_-(c_i)}{Dh_+(c_i)} = \frac{\alpha_i e^{\lambda c_i}}{\alpha_{i+1} e^{\lambda c_i}} = \frac{\alpha_i}{\alpha_{i+1}},$$

and

$$\sigma_h(0) = \frac{D_-h(0)}{D_+h(0)} = \frac{D_-h(1)}{D_+h(0)} = \frac{\alpha_p e^{\lambda}}{\alpha_1}.$$

Hence,

$$\pi_s(h) = \sigma_h(0) \prod_{1 \leq i \leq p−1} \sigma_h(c_i)$$

$$= \frac{\alpha_p e^{\lambda}}{\alpha_1} \prod_{1 \leq i \leq p−1} \frac{\alpha_i}{\alpha_{i+1}} = \frac{\alpha_p e^{\lambda}}{\alpha_1} = e^{\lambda}$$

So, $\pi_s(h) = e^{\lambda} = \sigma$. Since $\lambda \neq 0$, $\sigma \neq 1$.

It follows that $h(x) = \frac{\alpha_i}{\log \sigma} x + \beta_i, \ x \in [c_{i−1}, c_i]$. On the other hand, we have $h_\sigma^{-1}(x) = \frac{1}{\log \sigma} \log((\sigma − 1)x + 1)$. We compute

$$h \circ h_\sigma^{-1}(x) = \frac{\alpha_i}{\log \sigma} ((\sigma − 1)x + 1) + \beta_i.$$

Moreover, $\frac{\alpha_i}{\log \sigma} (\sigma − 1) > 0$, hence $L \in PL_+(S^1)$. This completes the proof. \square

Acknowledgments. This work was done within the framework of the Associateship Scheme of the Abdus Salam International Centre for Theoretical Physics, Trieste, Italy.

References