United Nations Educational, Scientific and Cultural Organization
and
International Atomic Energy Agency
THE ABDUS SALAM INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS

DIFFERENTIAL OPERATORS ASSOCIATED TO THE CAUCHY-RIEMANN OPERATOR IN A QUATERNION ALGEBRA

Nguyen Thanh Van
Faculty of Mathematics, Mechanics and Informatics,
Ha Noi University of Science, Ha Noi, Viet Nam
and
The Abdus Salam International Centre for Theoretical Physics, Trieste, Italy.

Abstract

This paper deals with the initial value problem of the type

\[
\frac{\partial w}{\partial t} = L(t, x, w, \frac{\partial w}{\partial x_i})
\]

(1)

\[w(0, x) = \varphi(x)
\]

(2)

where \(t \) is the time, \(L \) is a linear first order operator (matrix-type) in a Quaternion algebra and \(\varphi \) is a regular function. The article proves necessary and sufficient conditions on the coefficients of operator \(L \) under which \(L \) is associated to the Cauchy-Riemann operator of Quaternion algebra.

This criterion makes it possible to construct the operator \(L \) for which the initial problem (1),(2) is solvable for an arbitrary initial regular function \(\varphi \) and the solution is also regular for each \(t \).

MIRAMARE – TRIESTE

December 2006
1. Preliminaries and notations

Let \mathcal{H} be a Quaternion algebra with the basis is formed by e_0, e_1, e_2, e_3 where $e_0 = 1, e_3 = e_1 e_2 = e_{12}$.

Suppose that Ω is a bounded domain of \mathbb{R}^3. A function f defines in Ω and takes values in the Quaternion algebra \mathcal{H} which can be presented as

$$f = \sum_{j=0}^{3} f_j e_j,$$

where $f_j(x)$ are real-valued functions.

We introduce the Cauchy-Riemann operator

$$\mu = \sum_{k=0}^{2} e_k \frac{\partial}{\partial x_k}.$$

Definition 1. A function $f \in C^1(\Omega, \mathcal{H})$ is said to be regular in Ω if f satisfies

$$\mu f = 0.$$

Remark 1. If $f \in C^2(\Omega, \mathcal{H})$ is a regular function, then f is harmonic in Ω.

2. Necessary and sufficient conditions for associated pairs

Suppose that $f = \sum_{j=0}^{3} f_j e_j$ be a twice continuously differentiable function with respect to the space-like x_0, x_1, x_2. Now assume f is regular. This means that $\mu f = 0$. It is easy to verify that the condition $\mu f = 0$ is equivalent to

$$\sum_{i=0}^{2} A_i \frac{\partial f}{\partial x_i} = 0,$$

where

$$A_0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \quad A_1 = \begin{bmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \end{bmatrix}, \quad A_2 = \begin{bmatrix} 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{bmatrix}.$$

$$\frac{\partial f}{\partial x_i} = \begin{bmatrix} \frac{\partial f_0}{\partial x_i} \\ \frac{\partial f_1}{\partial x_i} \\ \frac{\partial f_2}{\partial x_i} \\ \frac{\partial f_3}{\partial x_i} \end{bmatrix}.$$

We define an operator ℓ as follow

$$\ell f = \sum_{i=0}^{2} A_i \frac{\partial f}{\partial x_i}.$$

(3)
It is clear that $\mu f = 0$ if and only if $\ell f = 0$. Next, we identify the function f with $f := \begin{pmatrix} f_0 \\ f_1 \\ f_2 \\ f_3 \end{pmatrix}$ and introduce a differential operator L as follows

$$Lf = \sum_{j=0}^{2} B_j \frac{\partial f}{\partial x_j} + Cf + D,$$

(4)

where $B_j = [b^{(j)}_{\alpha\beta}]$, $C = [c_{\alpha\beta}]$, $D = \begin{pmatrix} d_0 \\ d_1 \\ d_2 \\ d_3 \end{pmatrix}$, $b^{(j)}_{\alpha\beta}$, $c_{\alpha\beta}$, d_α, $(\alpha, \beta = 0, 1, 2, 3)$ are real-valued functions which are supposed to depend at least continuously on the time t and the space-like x_0, x_1, x_2.

A pair of operators ℓ, L is said to be associated (see [8]) if $\ell f = 0$ implies $\ell (Lf) = 0$ (for each t in case the coefficient of L depend on t). Now we formulate necessary and sufficient conditions on the coefficients of operator L under which L is associated to the operator ℓ (on the other word, L is associated to the Cauchy-Riemann operator of Quaternion algebra). Assume that the functions $b^{(j)}_{\alpha\beta}$, $c_{\alpha\beta}$, d_α $(j = 0, 1, 2, \alpha, \beta = 0, 1, 2, 3)$ are continuously differentiable with respect to the space-like variable x_0, x_1, x_2 and differentiable on t.

Putting

$$P_j = [p^{(j)}_{\alpha\beta}] = A_j B_j, \quad j = 0, 1, 2$$

(5)

$$Q_{ij} = [q^{(ij)}_{\alpha\beta}] = A_i B_j + A_j B_i, \quad 0 \leq i < j \leq 2$$

(6)

$$R_j = [r^{(j)}_{\alpha\beta}] = \sum_{i=0}^{2} A_i \frac{\partial B_j}{\partial x_i} + A_j C, \quad j = 0, 1, 2, \quad \alpha, \beta = 0, 1, 2, 3.$$

(7)

Then we get following theorem

Theorem 1. The operator L is associated to the operator ℓ if and only if the following conditions are satisfied

i) The functions $h^{(\alpha)} = \sum_{i=0}^{3} c_{\alpha i} e_i$, $\alpha = 0, 1, 2, 3$, and $g = \sum_{i=0}^{3} d_i e_i$ are regular.

\[
\begin{align*}
\left\{ \begin{array}{l}
 r_{00}^{(1)} = r_{10}^{(0)}, \quad r_{00}^{(2)} = r_{12}^{(0)}, \\
r_{11}^{(1)} = -r_{00}^{(0)}, \quad r_{11}^{(2)} = -r_{13}^{(0)}, \\
r_{12}^{(1)} = r_{13}^{(0)}, \quad r_{12}^{(2)} = -r_{10}^{(0)}, \\
r_{13}^{(1)} = -r_{12}^{(0)}, \quad r_{13}^{(2)} = r_{11}^{(0)}
\end{array} \right. \\
\left\{ \begin{array}{l}
 q_{00}^{(1)} = p_{10}^{(0)} - p_{11}^{(1)}, \quad q_{02}^{(0)} = p_{20}^{(0)} - p_{22}^{(2)}, \quad q_{10}^{(1)} = -p_{13}^{(1)} + p_{13}^{(2)}, \\
 q_{10}^{(2)} = p_{10}^{(0)} + p_{11}^{(1)}, \quad q_{12}^{(0)} = -p_{13}^{(0)} + p_{13}^{(2)}, \quad q_{12}^{(1)} = p_{10}^{(1)} + p_{12}^{(2)}, \\
 q_{12}^{(0)} = p_{13}^{(0)} - p_{13}^{(1)}, \quad q_{12}^{(2)} = p_{10}^{(0)} + p_{10}^{(2)}, \quad q_{12}^{(1)} = p_{10}^{(1)} - p_{12}^{(2)}.
\end{array} \right.
\]

ii) $i = 0, 1, 2, 3.$

iii) $i = 0, 1, 2, 3.$

Proof. We get

$$\ell (Lf) = \sum_{i=0}^{2} A_i \frac{\partial (Lf)}{\partial x_i}.$$
\[
\sum_{i=0}^{2} A_i \frac{\partial}{\partial x_i} \left(\sum_{j=0}^{2} B_j \frac{\partial f}{\partial x_j} + C f + D \right)
\]

\[
= \sum_{i=0}^{2} A_i \frac{\partial}{\partial x_i} \left(\sum_{j=0}^{2} B_j \frac{\partial f}{\partial x_j} \right) + \sum_{i=0}^{2} A_i \frac{\partial(C f)}{\partial x_i} + \sum_{i=0}^{2} A_i \frac{\partial D}{\partial x_i}
\]

\[
= \sum_{i=0}^{2} \sum_{j=0}^{2} A_i B_j \frac{\partial^2 f}{\partial x_i \partial x_j} + \sum_{i=0}^{2} \sum_{j=0}^{2} A_i C \frac{\partial^2 f}{\partial x_i \partial x_j} + \sum_{i=0}^{2} A_i \frac{\partial D}{\partial x_i}
\]

By (5), (6) and (7), then (8) can be rewritten as follow

\[
l(Lf) = \sum_{i=0}^{2} P_i \frac{\partial^2 f}{\partial x_i^2} + \sum_{0 \leq i < j \leq 2} Q_{ij} \frac{\partial^2 f}{\partial x_i \partial x_j} + \sum_{j=0}^{2} R_j \frac{\partial f}{\partial x_j}
\]

\[
+ \left(\sum_{i=0}^{2} A_i \frac{\partial C}{\partial x_i} \right) f + \sum_{i=0}^{2} A_i \frac{\partial D}{\partial x_i}.
\]

Denote

\[
M = \sum_{i=0}^{2} P_i \frac{\partial^2 f}{\partial x_i^2} + \sum_{0 \leq i < j \leq 2} Q_{ij} \frac{\partial^2 f}{\partial x_i \partial x_j} = \begin{pmatrix} m_0 \\ m_1 \\ m_2 \\ m_3 \end{pmatrix}
\]

\[
N = \sum_{j=0}^{2} R_j \frac{\partial f}{\partial x_j} = \begin{pmatrix} n_0 \\ n_1 \\ n_2 \\ n_3 \end{pmatrix}
\]

\[
S = \left(\sum_{i=0}^{2} A_i \frac{\partial C}{\partial x_i} \right) f, \quad T = \sum_{i=0}^{2} A_i \frac{\partial D}{\partial x_i}
\]

Then we obtain

\[
l(Lf) = M + N + S + T.
\]
We get

\[m_i = p^{(0)} \frac{\partial^2 f_0}{\partial x_0^2} + p^{(1)} \frac{\partial^2 f_1}{\partial x_1^2} + p^{(2)} \frac{\partial^2 f_2}{\partial x_2^2} + p^{(3)} \frac{\partial^2 f_3}{\partial x_3^2} \]

\[+ r^{(0)} \frac{\partial f_0}{\partial x_0} + r^{(1)} \frac{\partial f_1}{\partial x_1} + r^{(2)} \frac{\partial f_2}{\partial x_2} + r^{(3)} \frac{\partial f_3}{\partial x_3} \]

\[+ q^{(0)} \frac{\partial^2 f_0}{\partial x_0 \partial x_1} + q^{(1)} \frac{\partial^2 f_1}{\partial x_1 \partial x_1} + q^{(2)} \frac{\partial^2 f_2}{\partial x_2 \partial x_2} + q^{(3)} \frac{\partial^2 f_3}{\partial x_3 \partial x_3}. \tag{11} \]

Similarly, one gets

\[n_i = r^{(0)} \frac{\partial f_0}{\partial x_0} + r^{(1)} \frac{\partial f_1}{\partial x_1} + r^{(2)} \frac{\partial f_2}{\partial x_2} + r^{(3)} \frac{\partial f_3}{\partial x_3} \]

\[+ r^{(0)} \frac{\partial^2 f_0}{\partial x_0 \partial x_0} + r^{(1)} \frac{\partial^2 f_1}{\partial x_1 \partial x_1} + r^{(2)} \frac{\partial^2 f_2}{\partial x_2 \partial x_2} + r^{(3)} \frac{\partial^2 f_3}{\partial x_3 \partial x_3}. \tag{12} \]

Suppose that f is a regular function, then

\[
\begin{align*}
\frac{\partial f_0}{\partial x_0} - \frac{\partial f_1}{\partial x_1} - \frac{\partial f_2}{\partial x_2} &= 0 \\
\frac{\partial f_0}{\partial x_2} + \frac{\partial f_1}{\partial x_1} - \frac{\partial f_2}{\partial x_2} &= 0 \\
\frac{\partial f_0}{\partial x_1} + \frac{\partial f_1}{\partial x_0} - \frac{\partial f_3}{\partial x_2} &= 0 \\
\frac{\partial f_2}{\partial x_1} - \frac{\partial f_3}{\partial x_1} - \frac{\partial f_1}{\partial x_2} &= 0.
\end{align*} \tag{13} \]

It follows from (13) that

\[
\begin{align*}
\frac{\partial f_0}{\partial x_0} &= \frac{\partial f_1}{\partial x_1} + \frac{\partial f_2}{\partial x_2} \\
\frac{\partial f_0}{\partial x_1} &= \frac{\partial f_2}{\partial x_0} - \frac{\partial f_3}{\partial x_2} \\
\frac{\partial f_0}{\partial x_2} &= \frac{\partial f_1}{\partial x_0} - \frac{\partial f_3}{\partial x_1} \\
\frac{\partial f_1}{\partial x_0} &= \frac{\partial f_0}{\partial x_1} + \frac{\partial f_2}{\partial x_2} \\
\frac{\partial f_1}{\partial x_1} &= \frac{\partial f_0}{\partial x_0} + \frac{\partial f_3}{\partial x_1} \\
\frac{\partial f_1}{\partial x_2} &= \frac{\partial f_0}{\partial x_2} - \frac{\partial f_3}{\partial x_0}.
\end{align*} \tag{14} \]

and

\[
\begin{align*}
\frac{\partial^2 f_0}{\partial x_0^2} &= \frac{\partial^2 f_1}{\partial x_0 \partial x_1} + \frac{\partial^2 f_2}{\partial x_0 \partial x_2} \\
\frac{\partial^2 f_0}{\partial x_1^2} &= \frac{\partial^2 f_1}{\partial x_1^2} - \frac{\partial^2 f_2}{\partial x_0 \partial x_1} - \frac{\partial^2 f_3}{\partial x_1 \partial x_2} \\
\frac{\partial^2 f_0}{\partial x_2^2} &= -\frac{\partial^2 f_1}{\partial x_2 \partial x_1} + \frac{\partial^2 f_3}{\partial x_1 \partial x_2}.
\end{align*} \tag{15} \]

and similar expression for the other \(\frac{\partial^2 f_i}{\partial x_j^2}, i = 1, 2, 3; \quad j = 0, 1, 2. \)

Hence we get 3 remaining systems having the form of (15). Thus, one has a total of 12 equations.

Substituting above 12 equations into (11), and after a calculation, we obtain
\[m_i = \left(-p_{i1}^{(0)} + p_{i1}^{(1)} + q_{i0}^{(0)} \right) \frac{\partial^2 f_0}{\partial x_0 \partial x_1} + \left(-p_{i2}^{(0)} + p_{i2}^{(2)} + q_{i0}^{(0)} \right) \frac{\partial^2 f_0}{\partial x_0 \partial x_2} \\
+ \left(p_{i3}^{(1)} - p_{i3}^{(2)} + q_{i0}^{(12)} \right) \frac{\partial^2 f_0}{\partial x_1 \partial x_2} + \left(p_{i4}^{(0)} - p_{i4}^{(1)} + q_{i0}^{(01)} \right) \frac{\partial^2 f_1}{\partial x_0 \partial x_1} \\
+ \left(p_{i5}^{(0)} - p_{i5}^{(2)} + q_{i1}^{(02)} \right) \frac{\partial^2 f_1}{\partial x_0 \partial x_2} + \left(p_{i6}^{(1)} - p_{i6}^{(2)} + q_{i1}^{(12)} \right) \frac{\partial^2 f_1}{\partial x_1 \partial x_2} \\
+ \left(p_{i7}^{(0)} + p_{i7}^{(2)} + q_{i2}^{(01)} \right) \frac{\partial^2 f_2}{\partial x_0 \partial x_2} + \left(p_{i8}^{(0)} - p_{i8}^{(1)} + q_{i2}^{(02)} \right) \frac{\partial^2 f_2}{\partial x_0 \partial x_2} \\
+ \left(p_{i9}^{(1)} + p_{i9}^{(2)} + q_{i3}^{(02)} \right) \frac{\partial^2 f_3}{\partial x_0 \partial x_2} + \left(-p_{i0}^{(1)} + p_{i0}^{(2)} + q_{i3}^{(12)} \right) \frac{\partial^2 f_3}{\partial x_1 \partial x_2}. \tag{16} \]

Analogously, substituting the relation (14) into (12), one gets
\[n_i = -r_{i1}^{(0)} + r_{i1}^{(1)} \frac{\partial f_0}{\partial x_1} + (-r_{i2}^{(0)} + r_{i2}^{(2)}) \frac{\partial f_0}{\partial x_2} + (r_{i0}^{(0)} + r_{i0}^{(1)}) \frac{\partial f_1}{\partial x_1} \\
+ (r_{i3}^{(1)} + r_{i3}^{(2)}) \frac{\partial f_1}{\partial x_2} + (-r_{i1}^{(0)} + r_{i1}^{(1)}) \frac{\partial f_2}{\partial x_1} + (r_{i0}^{(0)} + r_{i0}^{(2)}) \frac{\partial f_2}{\partial x_2} \\
+ (r_{i2}^{(0)} + r_{i2}^{(1)}) \frac{\partial f_3}{\partial x_1} + (-r_{i1}^{(0)} + r_{i1}^{(2)}) \frac{\partial f_3}{\partial x_2}. \tag{17} \]

\textbf{(*)Sufficient condition}

Suppose that the conditions (i), (ii), and (iii) of theorem are satisfied. From the relation (i), it follows that \(S = T = 0 \). Because (ii) it leads to \(n_i = 0, i = 0, 1, 2, 3 \). Using the condition (iii) it implies \(m_i = 0, i = 0, 1, 2, 3 \). This means that \(M = N = 0 \).

Hence \(l(Lf) = M + N + S + T = 0 \) for all regular functions \(f \).

The sufficient conditions is proved.

\textbf{(*)Necessary condition}

Assume that a \((l,L)\) is an associated pair, i.e., if \(lf = 0 \), then \(l(Lf) = 0 \). We will choose 22 regular functions as follow

First, choose \(f^{(1)} = 0 \), then (10) passes into \(T \). Because \(l(Lf) = 0 \), then \(T = 0 \). This means that \(g = \sum_{i=0}^{3} d_i e_i \) is a regular function. Thus the term \(T \) can be omitted in (10). Next, we choose \(f^{(2)} \) is arbitrary Quaternion constant, \(f^{(2)} \neq 0 \). For this choice (10) implies \(S = 0 \). Since \(f^{(2)} \) is arbitrary, then \(\sum_{i=0}^{2} A_i \frac{\partial C}{\partial x_i} = 0 \). On another word \(h^{(\alpha)} = \sum_{i=0}^{3} C_{\alpha} e_i, \alpha = 0, 1, 2, 3 \) are regular functions. Hence \(S \) vanished in (10). Now, choose \(f^{(3)} = x_0 + x_1 e_1 \), then (10) leads to \(N = 0 \), so \(n_i = 0, i = 0, 1, 2, 3 \). But in fact \(n_i = r_{i0}^{(0)} + r_{i1}^{(1)} \). Therefore, we get \(r_{i1}^{(1)} = -r_{i0}^{(0)} \).

Note that the equality is the same the condition \(3^{rd} \) of the relation (i).

By similar method, choose
\[f^{(4)} = x_1 - x_0 e_1, \quad f^{(5)} = x_0 e_2 + x_1 e_3, \quad f^{(6)} = x_1 e_2 - x_0 e_3, \]
\[f^{(7)} = x_0 + x_2 e_2, \quad f^{(8)} = x_0 e_1 - x_2 e_3, \quad f^{(9)} = x_2 - x_0 e_2, \]
\[f^{(10)} = x_2 e_1 + x_0 e_3 \]
and substituting these functions into (10) we obtain \(N = 0 \) for all \(f^{(i)}, \ i = 4, \ldots, 10 \). From this, we have remaining equalities which are contained in the condition (ii). Hence \(N \) can be omitted in (10).

Now we choose \(f^{(11)} = (x_0^2 - x_1^2) + 2x_0x_1e_1 \) and replace \(f \) in (10) by \(f^{(11)} \), it follows that \(M = 0 \). This means
\[
m_i = -p_i^{(0)} + p_i^{(1)} + q_i^{(01)} = 0, \ i = 0, 1, 2, 3.
\]
The equality leads to
\[
q_i^{(01)} = p_i^{(0)} - p_i^{(1)}.
\] (18)

Note that (18) is the same the first condition of (iii). Similarly, choose
\[
\begin{align*}
f^{(12)} &= (x_0^2 - x_2^2) + 2x_0x_2e_2, \quad f^{(13)} = (x_1^2 - x_2^2) - 2x_1x_2e_3 \\
f^{(14)} &= -2x_0x_1 + (x_0^2 - x_1^2)e_1 \\
f^{(15)} &= (x_0^2 - x_1^2)e_1 - 2x_0x_1e_2 \\
f^{(16)} &= (x_1^2 - x_2^2)e_1 - 2x_1x_2e_2 \\
f^{(17)} &= (x_0^2 - x_1^2)e_2 + 2x_0x_1e_3 \\
f^{(18)} &= -2x_0x_2 + (x_0^2 - x_1^2)e_2 \\
f^{(19)} &= 2x_1x_2e_1 + (x_1^2 - x_2^2)e_2 \\
f^{(20)} &= -2x_0x_1 + (x_0^2 - x_1^2)e_3 \\
f^{(21)} &= 2x_0x_2e_1 + (x_0^2 - x_2^2)e_3 \\
f^{(22)} &= 2x_1x_2 + (x_1^2 - x_2^2)e_3,
\end{align*}
\]
and substituting \(f = f^{(j)}, j = 12, \ldots, 22 \) into (10) one obtains \(M = 0 \). By similar arguments we get all remaining equalities of the condition (iii). This completed the proof of necessary condition. \(\square \)

Remark 2. If we replace the Cauchy-Riemann operator by the Cauchy-Fueter operator

\[
\mu = \sum_{k=0}^{3} e_k \frac{\partial}{\partial x_k},
\]

and consider the operators \(l, L \) which are given by

\[
\ell f = \sum_{i=0}^{3} A_i \frac{\partial f}{\partial x_i}
\]

where
\[
A_0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \quad A_1 = \begin{bmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \end{bmatrix}, \quad A_2 = \begin{bmatrix} 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{bmatrix}
\]
\[
A_3 = \begin{bmatrix} 0 & 0 & 0 & -1 \\ 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}
\]
and
\[Lf = \sum_{j=0}^{3} B_j \frac{\partial f}{\partial x_j} + C f + D, \]
and putting
\[P_j = [p_{\alpha \beta}^{(j)}] = A_j B_j, \quad j = 0, 1, 2, 3 \]
\[Q_{ij} = [q_{\alpha \beta}^{(ij)}] = A_i B_j + A_j B_i, \quad 0 \leq i < j \leq 3 \]
\[R_j = [r_{\alpha \beta}^{(j)}] = \sum_{i=0}^{3} A_i \frac{\partial B_i}{\partial x_i} + A_j C, \quad j = 0, 1, 2, 3, \quad \alpha, \beta = 0, 1, 2, 3. \]

Then by analogously method which used in the section 2, we obtain the following theorem

Theorem 2. The operator \(L \) is associated to the operator \(\ell \) if and only if the following conditions are satisfied

i) The functions \(h^{(\alpha)} = \sum_{i=0}^{3} c_{i\alpha} e_i, \quad \alpha = 0, 1, 2, 3, \) and \(g = \sum_{i=0}^{3} d_i e_i \) are regular.

\[\begin{align*}
q_{i0}^{(1)} &= p_{i1}^{(0)} - p_{i1}^{(1)}, & q_{i0}^{(2)} &= p_{i2}^{(0)} - p_{i2}^{(2)}, & q_{i0}^{(03)} &= p_{i3}^{(0)} - p_{i3}^{(03)} \\
q_{i0}^{(12)} &= -p_{i1}^{(1)} + p_{i3}^{(2)}, & q_{i0}^{(13)} &= p_{i2}^{(1)} - p_{i3}^{(3)}, & q_{i0}^{(23)} &= -p_{i1}^{(2)} + p_{i3}^{(3)} \\
q_{i0}^{(01)} &= p_{i1}^{(0)} + p_{i0}^{(1)}, & q_{i0}^{(02)} &= p_{i2}^{(0)} + p_{i0}^{(2)}, & q_{i0}^{(03)} &= p_{i3}^{(0)} + p_{i0}^{(03)} \\
q_{i2}^{(1)} &= -p_{i1}^{(1)} + p_{i0}^{(2)}, & q_{i2}^{(13)} &= -p_{i3}^{(1)} + p_{i3}^{(3)}, & q_{i2}^{(23)} &= -p_{i1}^{(2)} + p_{i3}^{(3)} \\
q_{i3}^{(1)} &= -p_{i1}^{(1)} + p_{i2}^{(2)}, & q_{i3}^{(13)} &= -p_{i3}^{(1)} + p_{i3}^{(3)}, & q_{i3}^{(23)} &= -p_{i1}^{(2)} + p_{i3}^{(3)} \\
q_{i3}^{(01)} &= p_{i1}^{(0)} - p_{i1}^{(1)}, & q_{i3}^{(02)} &= -p_{i0}^{(0)} + p_{i0}^{(2)}, & q_{i3}^{(03)} &= p_{i1}^{(0)} - p_{i1}^{(03)} \\
q_{i3}^{(12)} &= p_{i1}^{(1)} - p_{i1}^{(2)}, & q_{i3}^{(13)} &= p_{i0}^{(1)} - p_{i1}^{(3)}, & q_{i3}^{(23)} &= p_{i0}^{(2)} - p_{i1}^{(3)}.
\end{align*} \]
3. Example

3.1. Operator L is associated to the Cauchy-Riemann operator. First, we choose $c_{\alpha\beta}$ are arbitrary real-constants, $g = \sum_{i=0}^{3} d_i e_i$ is arbitrary regular function and choose the elements $b_{\alpha\beta}^{(0)}$, $\alpha, \beta = 0, 1, 2, 3$ of the matrix B_0 as follow

\[
\begin{align*}
 b_{00}^{(0)} &= - (\gamma - c_{00}) x_0 - c_{10} x_1 - c_{20} x_2 + \delta_{00}^{(0)} \\
 b_{01}^{(0)} &= c_{01} x_0 + (\gamma - c_{11}) x_1 - c_{21} x_2 + \delta_{01}^{(0)} \\
 b_{02}^{(0)} &= c_{02} x_0 - c_{12} x_1 + (\gamma - c_{22}) x_2 + \delta_{02}^{(0)} \\
 b_{03}^{(0)} &= c_{03} x_0 - c_{13} x_1 - c_{23} x_2 + \delta_{03}^{(0)} \\
 b_{10}^{(0)} &= c_{10} x_0 - (\gamma - c_{00}) x_1 + c_{30} x_2 + \delta_{10}^{(0)} \\
 b_{11}^{(0)} &= - (\gamma - c_{11}) x_0 + c_{01} x_1 + c_{31} x_2 + \delta_{11}^{(0)} \\
 b_{12}^{(0)} &= c_{12} x_0 + c_{02} x_1 + c_{32} x_2 + \delta_{12}^{(0)} \\
 b_{13}^{(0)} &= c_{13} x_0 + c_{03} x_1 - (\gamma - c_{33}) x_2 + \delta_{13}^{(0)} \\
 b_{20}^{(0)} &= c_{20} x_0 - c_{30} x_1 - (\gamma - c_{00}) x_2 + \delta_{20}^{(0)} \\
 b_{21}^{(0)} &= c_{21} x_0 - c_{31} x_1 + c_{01} x_2 + \delta_{21}^{(0)} \\
 b_{22}^{(0)} &= - (\gamma - c_{22}) x_0 - c_{32} x_1 + c_{02} x_2 + \delta_{22}^{(0)} \\
 b_{23}^{(0)} &= c_{23} x_0 + (\gamma - c_{33}) x_1 + c_{03} x_2 + \delta_{23}^{(0)} \\
 b_{30}^{(0)} &= c_{30} x_0 + c_{20} x_1 - c_{10} x_2 + \delta_{30}^{(0)} \\
 b_{31}^{(0)} &= c_{31} x_0 + c_{21} x_1 + (\gamma - c_{11}) x_2 + \delta_{31}^{(0)} \\
 b_{32}^{(0)} &= c_{32} x_0 - (\gamma - c_{22}) x_1 - c_{12} x_2 + \delta_{32}^{(0)} \\
 b_{33}^{(0)} &= -(\gamma - c_{33}) x_0 + c_{23} x_1 - c_{13} x_2 + \delta_{33}^{(0)},
\end{align*}
\]

where $\gamma, \delta_{\alpha\beta}^{(0)}, \alpha, \beta = 0, 1, 2, 3$ are arbitrary real-constants.

Second, choose $B_1 = -A_1 B_0$ and $B_2 = -A_2 B_0$. Then it is easy to verify that all the conditions of theorem 1 are satisfied. By this way one obtains a class of differential operators L which are associated to the Cauchy-Riemann operator of Quaternion algebra.

3.2. Operator L is associated to the Cauchy-Fueter operator. Choosing $c_{\alpha\beta}$ are arbitrary real-constants, $g = \sum_{i=0}^{3} d_i e_i$ is arbitrary regular function. The elements $b_{\alpha\beta}^{(0)}$, $\alpha, \beta = 0, 1, 2, 3$ of the matrix B_0 are given by
problem is solvable provided

Next, choose \(L \) operators

Then we can see that all the conditions of theorem 2 hold. So one gets a class of differential equations with infinitely differentiable coefficients not having any solutions. On the other hand, in view of the H.Lewy example (see [4]), there exist linear first order differential equations with infinitely differentiable coefficients not having any solutions. On the other hand, by the criterion which is given in theorem 1 (and theorem 2, respectively), we can construct

\[
\begin{align*}
\mathcal{b}_{00}^{(0)} &= \frac{1}{2} \left[-(\gamma - c_{00}) x_0 - c_{10} x_1 - c_{20} x_2 - c_{30} x_3\right] + \delta_{00}^{(0)} \\
\mathcal{b}_{01}^{(0)} &= \frac{1}{2} \left[c_{01} x_0 + (\gamma - c_{11}) x_1 - c_{21} x_2 - c_{31} x_3\right] + \delta_{01}^{(0)} \\
\mathcal{b}_{02}^{(0)} &= \frac{1}{2} \left[c_{02} x_0 - c_{12} x_1 + (\gamma - c_{22}) x_2 - c_{32} x_3\right] + \delta_{02}^{(0)} \\
\mathcal{b}_{03}^{(0)} &= \frac{1}{2} \left[c_{03} x_0 - c_{13} x_1 - c_{23} x_2 + (\gamma - c_{33}) x_3\right] + \delta_{03}^{(0)} \\
\mathcal{b}_{10}^{(0)} &= \frac{1}{2} \left[c_{10} x_1 - (\gamma - c_{00}) x_0 + c_{30} x_2 - c_{20} x_3\right] + \delta_{10}^{(0)} \\
\mathcal{b}_{11}^{(0)} &= \frac{1}{2} \left[-(\gamma - c_{11}) x_0 + c_{01} x_1 + c_{31} x_2 - c_{21} x_3\right] + \delta_{11}^{(0)} \\
\mathcal{b}_{12}^{(0)} &= \frac{1}{2} \left[c_{12} x_0 + c_{02} x_1 + c_{32} x_2 + (\gamma - c_{22}) x_3\right] + \delta_{12}^{(0)} \\
\mathcal{b}_{13}^{(0)} &= \frac{1}{2} \left[c_{13} x_0 + c_{03} x_1 - (\gamma - c_{33}) x_2 - c_{23} x_3\right] + \delta_{13}^{(0)} \\
\mathcal{b}_{20}^{(0)} &= \frac{1}{2} \left[c_{20} x_2 - c_{03} x_1 - (\gamma - c_{00}) x_0 + c_{10} x_3\right] + \delta_{20}^{(0)} \\
\mathcal{b}_{21}^{(0)} &= \frac{1}{2} \left[c_{21} x_0 - c_{31} x_1 + c_{01} x_2 - (\gamma - c_{11}) x_3\right] + \delta_{21}^{(0)} \\
\mathcal{b}_{22}^{(0)} &= \frac{1}{2} \left[-(\gamma - c_{22}) x_0 - c_{32} x_1 + c_{02} x_2 + c_{12} x_3\right] + \delta_{22}^{(0)} \\
\mathcal{b}_{23}^{(0)} &= \frac{1}{2} \left[c_{23} x_2 + (\gamma - c_{33}) x_1 + c_{03} x_2 + c_{13} x_3\right] + \delta_{23}^{(0)} \\
\mathcal{b}_{30}^{(0)} &= \frac{1}{2} \left[c_{30} x_0 + c_{20} x_1 - c_{10} x_2 + (\gamma - c_{00}) x_3\right] + \delta_{30}^{(0)} \\
\mathcal{b}_{31}^{(0)} &= \frac{1}{2} \left[c_{31} x_0 + c_{21} x_1 + (\gamma - c_{11}) x_2 + c_{01} x_3\right] + \delta_{31}^{(0)} \\
\mathcal{b}_{32}^{(0)} &= \frac{1}{2} \left[c_{32} x_0 - (\gamma - c_{22}) x_1 - c_{12} x_2 + c_{02} x_3\right] + \delta_{32}^{(0)} \\
\mathcal{b}_{33}^{(0)} &= \frac{1}{2} \left[-(\gamma - c_{33}) x_0 + c_{23} x_1 - c_{13} x_2 + c_{03} x_3\right] + \delta_{33}^{(0)},
\end{align*}
\]

where \(\gamma, \delta_{a,b}^{(0)}, \alpha, \beta = 0, 1, 2, 3 \) are arbitrary real-constants.

Next, choose

\[
\begin{align*}
B_1 &= -A_1 B_0 \\
B_2 &= -A_2 B_0 \\
B_3 &= -A_3 B_0.
\end{align*}
\]

Then we can see that all the conditions of theorem 2 hold. So one gets a class of differential operators \(L \) which are associated to the Cauchy-Fueter operator of Quaternion algebra.

4. Initial value problems with regular initial functions

The classical Cauchy-Kovalevskaya theorem (in Complex analysis) shows that the initial value problem is solvable provided \(L \) has holomorphic coefficients and the initial function is holomorphic, but in view of the H.Lewy example (see [4]), there exist linear first order differential equations with infinitely differentiable coefficients not having any solutions. On the other hand, by the criterion which is given in theorem 1 (and theorem 2, respectively), we can construct
operator L such that the initial value problem (1), (2) is solvable for each regular initial function φ. Because the components of regular functions are harmonic so the necessary interior estimate (see [9]) follows from the Poisson Integral Formula.

Finally, we get the following theorem

Theorem 3. Suppose that the operator L is associated to the Cauchy-Riemann operator (the Cauchy-Fueter, respectively) of Quaternion algebra. Then the initial value problem (1), (2) is solvable for any arbitrary initial regular function φ and the solution $u(t, x)$ is regular for each t.

Acknowledgments. I would like to express my sincere thanks to Professor Le Hung Son and Professor Wolfgang Tutschke for their precious assistance and encouragement during the completion of this paper. I acknowledge my gratitude to Professor Le Dung Trang for his kind help. Support from the Abdus Salam International Centre for Theoretical Physics, Trieste, Italy, is also acknowledged.

References