United Nations Educational Scientific and Cultural Organization
and
International Atomic Energy Agency
THE ABDUS SALAM INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS

COMMUTING GRAPHS OF MATRIX ALGEBRAS

S. Akbari
Department of Mathematical Sciences, Sharif University of Technology,
P.O. Box 11365-9415, Tehran, Iran,
Institute for Studies in Theoretical Physics and Mathematics,
P.O. Box 19395-5746, Tehran, Iran
and
The Abdus Salam International Centre for Theoretical Physics, Trieste, Italy,

H. Bidkhori
Department of Mathematics, Massachusetts Institute of Technology,
Cambridge, MA, USA
and
A. Mohammadian
Department of Mathematical Sciences, Sharif University of Technology,
P.O. Box 11365-9415, Tehran, Iran
and
Institute for Studies in Theoretical Physics and Mathematics,
P.O. Box 19395-5746, Tehran, Iran.

MIRAMARE – TRIESTE
August 2006

1Junior Associate of ICTP. s_akbari@sharif.edu
2hoda_bidkhori@yahoo.com
3ali_m@mehr.sharif.edu
Abstract

The commuting graph of a ring R, denoted by $\Gamma(R)$, is a graph whose vertices are all non-central elements of R and two distinct vertices x and y are adjacent if and only if $xy = yx$. The commuting graph of a group G, denoted by $\Gamma(G)$, is similarly defined. In this paper we investigate some graph theoretic properties of $\Gamma(M_n(F))$, where F is a field and $n \geq 2$. Also we study the commuting graphs of some classical groups such as $GL_n(F)$ and $SL_n(F)$. We show that $\Gamma(M_n(F))$ is a connected graph if and only if every field extension of F of degree n contains a proper intermediate field. We prove that apart from finitely many fields, a similar result is true for $\Gamma(GL_n(F))$ and $\Gamma(SL_n(F))$. Also we show that for two fields E and F and integers $m, n \geq 2$, if $\Gamma(M_m(E)) \simeq \Gamma(M_n(F))$, then $m = n$ and $|E| = |F|$.
1. Introduction

For a ring R, we denote the center of R by $Z(R)$. If X is either an element or a subset of R, then $C_R(X)$ denotes the centralizer of X in R. For any non-commutative ring R, we associate a graph with the vertex set $R \setminus Z(R)$ and join two vertices x and y if and only if $x \neq y$ and $xy = yx$. This graph was introduced in [2] and is called the commuting graph of R and denoted by $\Gamma(R)$. If F is a field and n is a natural number, then $M_n(F)$ denotes the ring of $n \times n$ matrices over F, $\text{GL}_n(F)$ and $\text{SL}_n(F)$ denote the group of all invertible matrices in $M_n(F)$ and the group of all matrices with determinant 1 in $M_n(F)$, respectively. In this article, we denote the finite field of order q by \mathbb{F}_q. For any field F, we set $F^* = F \setminus \{0\}$, that is the multiplicative group of F. For any i, j, $1 \leq i, j \leq n$, we denote by E_{ij}, that element in $M_n(F)$ whose (i, j)-entry is 1 and whose other entries are 0. Also, I and I_r denote the identity matrix and the identity matrix of size r, respectively. For a matrix $A \in M_n(F)$, $F[A]$ denotes the F-subalgebra generated by A and I. Also for any matrix $A \in M_n(F)$ and $\alpha \in F^n$, the A-annihilator of α is a polynomial with minimum degree, say $f(x)$, such that $f(A)\alpha = 0$. The matrix $A \in M_n(F)$ is said to be cyclic if there exists a vector $\alpha \in F^n$ such that $\{\alpha, A\alpha, \ldots, A^{n-1}\alpha\}$ is a basis for the vector space F^n over F. It is easily checked that a matrix A is cyclic if and only if the minimal and the characteristic polynomials of A coincide. For any two matrices $A \in M_n(F)$ and $B \in M_m(F)$, we define

$$A \oplus B = \begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix} \in M_{n+m}(F).$$

In a graph G, a path \mathcal{P} is a sequence of distinct vertices $v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_k$ in which every two consecutive vertices are adjacent. The graph G is called connected if for every pair of vertices u and v in G, there exists a path with endpoints u and v. In this paper, we study the connectivity problem of the graphs $\Gamma(M_n(F))$, $\Gamma(\text{GL}_n(F))$, and $\Gamma(\text{SL}_n(F))$. Recently, the connectivity problem of the other subgraphs of matrix rings over division rings have been studied in [5, 6]. For further information about the connectivity of the commuting graphs of finite simple groups, see [14].

For a vertex v of a graph G, the degree of v is the cardinality of the set of edges incident with v. A subset X of the vertices of a graph G is called a dominating set if each vertex of $G \setminus X$ is adjacent to at least one vertex of X. The minimum size of a dominating set in a graph G is called the domination number of G and denoted by $\gamma(G)$. Also a subset Y of the vertices of a graph is called an independent set if the induced subgraph on Y has no edges. The maximum size of an independent set in a graph G is called the independence number of G and denoted by $\alpha(G)$. In [2] it has been proven that for any finite field F and $n \geq 2$, the following hold.

(i) If $n < |F|$, then $\alpha(\Gamma(M_n(F))) \geq (|F|^2 + |F| + 1)|F|^{\frac{2}{|F| - 2}}$.

(ii) If $n \geq |F|$, then $\alpha(\Gamma(M_n(F))) \geq (|F|^2 + |F| + 1)|F|(|F| - 1)(n - |F|)^{-1}$.

2
Here we improve the lower bound showing that if F is a finite field and $n \geq 2$, then $\alpha(\Gamma(M_n(F))) \geq |F|^{(n-1)^2+1}(|F| - 1)^{n-2}$.

2. Connectivity of $\Gamma(M_n(F))$

In [2] it has been shown that for any field F, $\Gamma(M_2(F))$ is not connected and each of its connected components is a complete graph. If F is finite, then the number of connected components of $\Gamma(M_2(F))$ is $|F|^2 + |F| + 1$ and each of them has $|F|^2 - |F|$ vertices. In this section we prove that for any field F and integer $n \geq 3$, the graph $\Gamma(M_n(F))$ is connected if and only if every field extension of F of degree n contains a proper intermediate field. We first recall the following beautiful lemma due to Frobenius.

Lemma A. [9, p. 111] Let F be a field and $n \geq 2$. Suppose that $A_1 \oplus \cdots \oplus A_k$ is the rational form of a matrix $A \in M_n(F)$. If for each i, n_i is the size of the matrix A_i and $n_1 \geq \cdots \geq n_k$, then $\dim_F C_{M_n(F)}(A) = n_1 + 3n_2 + \cdots + (2k - 1)n_k$.

Corollary 1. Let F be a field and $n \geq 2$. The matrix $A \in M_n(F)$ is cyclic if and only if $C_{M_n(F)}(A) = F[A]$.

Lemma 2. Let F be a field and $n \geq 3$. If there is a field extension of F of degree n with no proper intermediate fields, then $\Gamma(M_n(F))$ is not a connected graph.

Proof. Let K be a field extension of F with no proper intermediate fields and $\dim_F K = n$. Let $f(x) \in F[x]$ be the minimal polynomial of some element $a \in K \setminus F$ and let $A \in M_n(F)$ be the companion matrix of $f(x)$. Clearly, $K \simeq F[A]$. Since A is a cyclic matrix, by Corollary 1 we have $C_{M_n(F)}(A) = F[A]$. Suppose that B is a non-scalar matrix in $F[A]$. Since there is no proper intermediate fields between F and K, we conclude that $F[B] = F[A]$. Thus $\dim_F F[B] = n$ and B is a cyclic matrix and moreover $C_{M_n(F)}(B) = F[B]$. This implies that $F[A] \setminus FI$ is a connected component of $\Gamma(M_n(F))$. So the proof is complete.

The proof of the previous lemma concludes the following corollary.

Corollary 3. Let F be a field and $n \geq 3$. Suppose A is a non-scalar matrix in $M_n(F)$ such that $F[A]$ is a field extension of F of degree n with no proper intermediate fields. Then $F[A] \setminus FI$ is a connected component of $\Gamma(M_n(F))$.

In the next lemma we investigate the existence of a non-cyclic matrix in the F-algebra $F[A]$, where $A \in M_n(F)$.

Lemma 4. Let F be a field and $n \geq 3$ and $A \in M_n(F) \setminus FI$. Suppose that $F[A]$ contains at least one proper intermediate field, if $F[A]$ is a field extension of F of degree n. Then $F[A] \setminus FI$ contains a non-cyclic matrix.
Proof. First suppose that the minimal polynomial of A is reducible. Let $f(x)$ is the minimal polynomial of A and assume that $f(x) = g_1(x)g_2(x)$, for two coprime polynomials $g_1(x)$ and $g_2(x)$ of degrees at least 1. Using the primary decomposition theorem [8, p.220], we find an integer k and two matrices $B_1 \in M_k(F)$ and $B_2 \in M_{n-k}(F)$ such that the minimal polynomials of B_1, B_2 are $g_1(x), g_2(x)$, respectively, and A is conjugate to $B_1 \oplus B_2$. Since $n \geq 3$, without loss of generality we may assume that $k \geq 2$. Clearly, $A' = g_1(A)$ has the form $0 \oplus C$, for some $C \in M_{n-k}(F)$. Now, if φ is the minimal polynomial of C, then $A'\varphi(A') = 0$. This implies that the degree of the minimal polynomial of A' is at most $n-k+1$. Thus A' is a non-cyclic element of $F[A] \setminus FI$. Moreover, if $f(x) = p(x)^r$ for some irreducible polynomial $p(x)$ and $r \geq 2$, then $p(A)^{r/2}$ is a non-cyclic element contained in $F[A] \setminus FI$.

Next assume that the minimal polynomial of A is irreducible. So $F[A]$ is a field extension of F. If $\dim_F F[A] < n$, then A is not cyclic and so we are done. So suppose that $\dim_F F[A] = n$. By the hypothesis, there exists a matrix $B \in F[A]$ such that $FI \subsetneq F[B] \subsetneq F[A]$. Since $\dim_F F[B] < n$, B is a non-cyclic element of $F[A] \setminus FI$. The proof is complete. □

Lemma 5. Let F be a field and $n \geq 3$. Then for every two non-cyclic matrices X and Y in $M_n(F)$, there exists a path with non-invertible intermediate vertices between X and Y in $\Gamma(M_n(F))$.

Proof. Assume that A is a non-cyclic matrix in $M_n(F)$. Clearly, it is enough to show that there exists a path with non-invertible intermediate vertices between A and E_{11}. By Lemma A, we have $\dim_F C_{M_n(F)}(A) \geq n + 1$. Let $\{C_1, \ldots, C_{n+1}\}$ be a linearly independent subset of $C_{M_n(F)}(A)$, where $C_1 = I$. There exist scalars $\lambda_1, \ldots, \lambda_{n+1}$ such that the matrix $A_1 = \sum_{i=1}^{n+1} \lambda_i C_i$ is a non-zero matrix whose first row is 0. Suppose that

$$A_1 = \begin{bmatrix} 0 & 0 & \cdots & 0 \\ X & B \end{bmatrix}. $$

Let $g(x) = x^m + b_{m-1}x^{m-1} + \cdots + b_0$ be the B-annihilator of X. First assume that $g(x)$ is not equal to the minimal polynomial of B. It is easy to check that both A_1 and E_{11} commute with $A_2 = 0_1 \oplus g(B)$. Hence $A - A_1 - A_2 - E_{11}$ is a path in $\Gamma(M_n(F))$ with non-invertible intermediate vertices, as desired. Next suppose that $g(x)$ is the minimal polynomial of B. We have

$$g(A_1) = \begin{bmatrix} b_0 & 0 & \cdots & 0 \\ Y & 0_{n-1} \end{bmatrix},$$

where $Y = (B^{m-1} + b_{m-1}B^{m-2} + \cdots + b_1 I)X$. Since $Y \neq 0$, we have $g(A_1) \neq 0$. Moreover there exists a non-zero matrix $B' \in M_{n-1}(F)$ such that $B'Y = 0$. Now obviously the matrix $A'_2 = 0_1 \oplus B'$ commutes with $g(A_1)$. Therefore $A - A_1 - g(A_1) - A'_2 - E_{11}$ is a path in $\Gamma(M_n(F))$ with non-invertible intermediate vertices. The proof of the lemma is complete. □
Now we are in a position to prove the main theorem of this section.

Theorem 6. Let F be a field and $n \geq 3$. The graph $\Gamma(M_n(F))$ is connected if and only if every field extension of F of degree n contains at least a proper intermediate field.

Proof. By Lemma 2, one direction is clear. For other direction, consider two vertices A and B in $\Gamma(M_n(F))$. By Lemma 4, we find two non-cyclic matrices $A' \in C_{M_n(F)}(A)$ and $B' \in C_{M_n(F)}(B)$. Now, using Lemma 5, there exists a path between A' and B' in $\Gamma(M_n(F))$. This completes the proof. □

Corollary 7. Suppose that F is a finite field and $n \geq 2$. The graph $\Gamma(M_n(F))$ is connected if and only if n is not a prime number.

Remark 8. In [11] it has been shown that for any n, there is a field extension of \mathbb{Q} of degree n with no proper intermediate fields, where \mathbb{Q} is the field of rational numbers. Thus for each $n \geq 2$, the graph $\Gamma(M_n(\mathbb{Q}))$ is not connected. Moreover, if F is either the field of real numbers or an algebraically closed field, then for $n \geq 3$, $\Gamma(M_n(F))$ is a connected graph.

3. Connectivity in $\Gamma(GL_n(F))$

In this section we would like to determine under which conditions does there exist a path with invertible intermediate vertices between two vertices of $\Gamma(M_n(F))$. The following lemma is used in our proofs frequently.

Lemma B. [13, Theorem 27.5.1] Suppose that $A \in M_r(F)$ and $B \in M_s(F)$ are two matrices such that the minimal polynomials of A and B are coprime. Then

$$C_{M_n(F)}(A \oplus B) = \{X \oplus Y \mid X \in C_{M_r(F)}(A) \text{ and } Y \in C_{M_s(F)}(B), \text{ where } n = r + s\}.$$

Theorem 9. Let F be a field and $n \geq 3$. Suppose that two vertices X and Y are contained in the same connected component of $\Gamma(M_n(F))$. Then there is a path with invertible intermediate vertices between X and Y, unless $n - 1$ is a prime number and $F = \mathbb{F}_2$.

Proof. Clearly, it suffices to show that for any two non-adjacent vertices X and Y, if $X \rightarrow A \rightarrow Y$ is a path in $\Gamma(M_n(F))$, then there are invertible matrices P_1, \ldots, P_ℓ such that $X \rightarrow P_1 \rightarrow \cdots \rightarrow P_\ell \rightarrow Y$ is a path in $\Gamma(M_n(F))$. If there is an invertible matrix $P \in F[A] \setminus FI$, then there is nothing to prove.

So assume that all invertible matrices in $F[A]$ are scalar matrices. This implies that $F[A]$ has no non-zero nilpotent elements. Therefore the minimal polynomial of A is the product of some distinct irreducible polynomials. By the primary decomposition theorem [8, p. 220] and
with no loss of generality, we may write $A = A_1 \oplus \cdots \oplus A_r$, where the minimal polynomials of matrices A_1, \ldots, A_r are irreducible and distinct. Hence $F[A_1], \ldots, F[A_r]$ are fields and $F[A] \simeq F[A_1] \times \cdots \times F[A_r]$. Since each unit of $F[A]$ is a scalar matrix, $F[A_1]^*, \ldots, F[A_r]^*$ are trivial groups. This yields that $F = \mathbb{F}_2$ and A is an idempotent matrix. With no loss of generality suppose that $A = I_k \oplus 0_{n-k}$, for some k. Since X and Y commute with A, we have $X = X_1 \oplus X_2$ and $Y = Y_1 \oplus Y_2$, where $X_1, Y_1 \in M_k(F)$ and $X_2, Y_2 \in M_{n-k}(F)$. Assume that $n-1$ is not a prime number. To complete the proof, we consider two cases as follows.

Case 1. $2 \leq k \leq n-2$. We claim that for any matrix $S \in M_m(F)$ with $m \geq 3$, there is a matrix $S' \in M_m(F)$ which is not idempotent and $SS' = S'S$. If S is not idempotent, then put $S' = S$. Suppose that S is an idempotent matrix. There is an invertible matrix Q such that $QSQ^{-1} = I_s \oplus 0_{m-s}$, where $s = \text{rank } S$. If $s \geq 2$, then put $S' = Q^{-1}E_{12}Q$; otherwise $m - s \geq 2$ and in this case set $S' = Q^{-1}E_{m,m-1}Q$. So the claim is proved.

Since $n-1$ is not a prime number, we have $n \geq 5$. If $k \geq 3$, then there are two matrices $X'_1 \in M_k(F)$ and $Y'_1 \in M_k(F)$ which are not idempotent and commute with X_1 and Y_1, respectively. Now since $n - k \geq 2$,

$$X - X'_1 \oplus I_{n-k} - (I_n + E_{n,n-1}) - Y'_1 \oplus I_{n-k} - Y$$

is a path in $\Gamma(M_n(F))$. Furthermore, since the matrices $X'_1 \oplus I_{n-k}$ and $Y'_1 \oplus I_{n-k}$ are not idempotent, by the first step of the proof there are two invertible matrices $P_1 \in F[X'_1 \oplus I_{n-k}] \setminus FI$ and $P_2 \in F[Y'_1 \oplus I_{n-k}] \setminus FI$. Thus $X - P_1 - (I_n + E_{n,n-1}) - P_2 - Y$ is a path with invertible intermediate vertices. If $k = 2$, then $n - k \geq 3$ and a similar argument works.

Case 2. $k = 1$ or $k = n-1$. First assume that $k = 1$. Since $XY \neq YX$, X_2 and Y_2 are not scalar matrices and so they are two vertices of $\Gamma(M_{n-1}(F))$. Note that $n-1$ is not a prime number and $F = \mathbb{F}_2$, so by Corollary 7 there is a path $X_2 - B_1 - \cdots - B_t - Y_2$ in $\Gamma(M_{n-1}(F))$.

Now,

$$X - \lambda_1 I_1 \oplus B_1 - \cdots - \lambda_i I_1 \oplus B_i - Y$$

is a path in $\Gamma(M_n(F))$, with $\lambda_i = 0$ if B_i is an idempotent matrix of rank at least 2, and otherwise $\lambda_i = 1$. For an index j, if B_j is idempotent, then $\text{rank } B_j \neq n-1$, since $B_j \neq I_{n-1}$. Thus we have $2 \leq \text{rank } (\lambda_j I_1 \oplus B_j) \leq n-2$. Therefore, by Case 1, we can replace the vertex $\lambda_j I_1 \oplus B_j$ in (*) with a path whose vertices are invertible matrix. Also if B_j is not an idempotent matrix, then $F[\lambda_j I_1 \oplus B_j] \setminus FI$ contains an invertible matrix. Hence in this case we also find a path between X and Y whose intermediate vertices are invertible. The case $k = n-1$ is proven similarly. So the proof is complete.

In the next remark we will show that if $n-1$ is a prime number, then $\Gamma(GL_n(\mathbb{F}_2))$ is not connected.

Corollary 10. Suppose that $F \neq \mathbb{F}_2$ is a field and $n \geq 3$. The graph $\Gamma(GL_n(F))$ is connected if and only if every field extension of F of degree n contains a proper intermediate field.
Proof. By Theorems 6 and 9, one direction is clear. Assume that there is a field extension of \(F \) of degree \(n \) with no proper intermediate fields. Using Corollary 3, there is an invertible matrix \(A \) such that \(F[A] \setminus FI \) is a connected component of \(\Gamma(M_n(F)) \) and each matrix contained in \(F[A] \setminus FI \) is cyclic. Now, \(B = I + E_{12} \) is an invertible matrix which is not cyclic and there is no path between \(A \) and \(B \). So \(\Gamma(GL_n(F)) \) is not a connected graph. This completes the proof. □

Combining Theorem 6 and Corollary 10 and using [2, Theorem 2], we obtain the following result.

Corollary 11. Suppose that \(F \neq \mathbb{F}_2 \) is a field and \(n \geq 2 \). The graph \(\Gamma(GL_n(F)) \) is connected if and only if the graph \(\Gamma(M_n(F)) \) is connected.

4. Connectivity in \(\Gamma(SL_n(F)) \)

In this section we determine whether two vertices of \(\Gamma(M_n(F)) \) are connected by a path whose intermediate vertices have determinant 1.

Lemma C. [12, Corollary 16.4.b] Let \(F \) be a field and \(n \) be a natural number. For any matrix \(A \in GL_n(F) \), there exist matrix \(C \in SL_n(F) \) such that \(A^n = (\det A)C \).

Theorem 12. Let \(F \) be a finite field and \(n \geq 3 \). Suppose that either \(n - 1 \) is not a prime number or \(n \) is not divisible by \(|F| - 1 \). Then for any two vertices \(X \) and \(Y \) which are contained in the same connected component of \(\Gamma(M_n(F)) \), there is a path between \(X \) and \(Y \) whose intermediate vertices have determinant 1.

Proof. Clearly, it suffices to prove that for any two non-adjacent vertices \(X \) and \(Y \), if \(X \rightarrow A \rightarrow Y \) is a path in \(\Gamma(M_n(F)) \), then there are matrices \(U_1, \ldots, U_s \in SL_n(F) \) such that \(X \rightarrow U_1 \rightarrow \cdots \rightarrow U_s \rightarrow Y \) is a path in \(\Gamma(M_n(F)) \). If there is a non-zero nilpotent matrix \(N \in F[A] \), then \(I + N \in C_{M_n(F)}(\{X,Y\}) \) has determinant 1 and so there is nothing to prove. So we may assume that \(F[A] \) has no non-zero nilpotent element. Therefore the minimal polynomial of \(A \) is the product of some distinct irreducible polynomials. By the primary decomposition theorem [8, p. 220] and with no loss of generality, we may write \(A = A_1 \oplus \cdots \oplus A_k \), where the minimal polynomials of matrices \(A_1, \ldots, A_k \) are irreducible and distinct. Since \(X \) and \(Y \) commute with \(A \), by Lemma B we have \(X = X_1 \oplus \cdots \oplus X_k \) and \(Y = Y_1 \oplus \cdots \oplus Y_k \), where for \(i = 1, \ldots, k \), the matrices \(X_i \) and \(Y_i \) commute with \(A_i \). We consider the following two cases.

Case 1. With no loss of generality, assume that \(A_1 \) is not a scalar matrix. Since the minimal polynomial of \(A_1 \) is irreducible, \(F[A_1] \) is a finite field. Let \(r \) be the size of \(A_1 \) and \(m = \dim_F F[A_1] \). Therefore the order of the multiplicative cyclic group \(F(A_1)^*/F^* \) is \(|F|^{m-1} + \cdots + |F| + 1 \) which is more than \(m \). Thus there is a matrix \(B \in F[A_1] \) such that \(B^m \) is not a scalar.
matrix. Assume that $A_1 = A_0 \oplus \cdots \oplus A_0$ is the rational form of A_1, where A_0 is a cyclic matrix of size m. Since $B \in F[A_1]$, we can write $B = B_0 \oplus \cdots \oplus B_0$, for some $B_0 \in M_n(F)$. Now B_0^m is not a scalar matrix, so using Lemma C we find a matrix $C_0 \in F[B_0] \setminus FI$ with determinant 1. Set $C = C_0 \oplus \cdots \oplus C_0$, where the number of C_0 and the number of A_0 appearing in the rational form of A_1 are the same. Now, since $C \in F[A_1]$, $C \oplus I_{n-r}$ is a matrix with determinant 1 in $C_{M_n(F)}(\{X,Y\})$. So in this case, we are done.

Case 2. Suppose that A_1, \ldots, A_k are scalar matrices. If $k = n$, then since $A_i \neq A_j$, for $i \neq j$, X and Y are diagonal matrices and so $XY = YX$, a contradiction. Thus $k < n$ and without loss of generality we may assume that r, the size of A_1, is more than 1. If $F = \mathbb{F}_2$, then the result follows from Theorem 9. So assume that $F \neq \mathbb{F}_2$.

Assume first that $r \leq n - 2$. If there exists a matrix $P \in GL_r(F)$ such that PX_1P^{-1} is diagonal, then define $X' = P^{-1} \text{diag}(\lambda^2, \lambda^{r-n-2}, 1, \ldots, 1)P \oplus \lambda I_{n-r}$, for some $\lambda \neq 0, 1$. Otherwise, X_1 is not diagonalizable and so by Case 1 there is a non-scalar matrix $Q \in SL_r(F)$ which commutes with X_1. In this case set $X' = Q \oplus I_{n-r}$. Similarly define a non-scalar matrix $Y' \in SL_n(F)$ correspondence to $Y_2 \oplus \cdots \oplus Y_k$ and note that $X \rightarrow X' \rightarrow Y' \rightarrow Y$ is a path whose intermediate vertices have determinant 1. So the assertion is proved.

Now, assume that $r = n - 1$. If n is not divisible by $|F| - 1$, then there is a scalar $\mu \in F^*$ with $\mu^n \neq 1$. Therefore $X - \mu I_r \oplus \mu^{1-n} I_1 \rightarrow Y$ is a path in $\Gamma(M_n(F))$, as desired. So assume that $n - 1$ is not a prime number. Since $XY \neq YX$, the matrices X_1 and Y_1 are not scalars and so they are two vertices in $\Gamma(M_{n-1}(F))$. Then by Theorem 9 we find a path $X_1 \rightarrow P_1 \rightarrow \cdots \rightarrow P_t \rightarrow Y_1$ in $\Gamma(M_{n-1}(F))$, where $P_i \in GL_{n-1}(F)$ for $i = 1, \ldots, t$. Now, $X \rightarrow P_1 \oplus (\det P_1)^{-1} I_1 \rightarrow \cdots \rightarrow P_t \oplus (\det P_t)^{-1} I_1 \rightarrow Y$ is a path in $\Gamma(M_n(F))$ whose intermediate vertices have determinant 1. This completes the proof.

\[\square \]

Remark 13. Note that the converse of the previous theorem is also true. Assume that $n - 1$ is a prime number and $|F| - 1$ divides n. Let $S_0 \in M_{n-1}(F)$ be a cyclic matrix such that its minimal polynomial is irreducible and put $S = S_0 \oplus (\det S_0)^{-1} I_1$. By Corollary 1 and Lemma B, every vertex adjacent to S has the form $Z \oplus \nu I_1$, \quad (*)$

where $Z \in F[S_0]$ and $\nu \in F$. Suppose that T is a vertex not adjacent to S and $S \rightarrow Z_0 \oplus \nu_0 I_1 \rightarrow T$ is a path in $\Gamma(M_n(F))$. We show that Z_0 is a scalar matrix. Working towards a contradiction, assume that $Z_0 \not\in FI$. Since $F[S_0]$ is a field with prime degree over F and $Z_0 \in F[S_0]$, we have $F[Z_0] = F[S_0]$. This implies that Z_0 is a cyclic matrix and therefore every vertex adjacent to $Z_0 \oplus \nu_0 I_1$ has the form ($*$). But this is a contradiction, since T is not adjacent to S. Hence every path in $\Gamma(M_n(F))$ between S and a vertex which is not adjacent to S, contains a vertex of the form $\alpha I_{n-1} \oplus \beta I_1$, for some $\alpha, \beta \in F$. Now, since the nth powers of all elements of F^* are
equal to 1, every matrix of the form $\alpha I_{n-1} \oplus \beta I_1$ in $SL_n(F)$ is scalar. Hence there is no path between S and T whose intermediate vertices have determinant 1.

Corollary 14. Suppose that F is a finite field and $n \geq 2$. The graph $\Gamma(SL_n(F))$ is not a connected graph if and only if at least one of the following cases occurs.

(i) n is a prime number.

(ii) $n-1$ is a prime number and $|F|-1$ divides n.

Proof. Suppose first that for two vertices X and Y in $\Gamma(SL_n(F))$, there is no path between X and Y in $\Gamma(SL_n(F))$. If there is no path between X and Y in $\Gamma(M_n(F))$, then by Corollary 7, Case (i) occurs. Otherwise, by Theorem 12, Case (ii) occurs.

For the other direction, assume first that n is a prime number. Let K be a field extension of F of degree n. By [3, Corollary 1], there is an element $a \in K \setminus F$ such that $N_{K/F}(a) = 1$. Consider the map $\mathcal{L}_a : K \to K$ defined by $\mathcal{L}_a(x) = ax$. Thus the matrix representation of \mathcal{L}_a, say A, is contained in $SL_n(F) \setminus FI$. Hence A is a cyclic matrix with determinant 1 and $\dim_F F[A]$ is a prime number. Now, using Corollary 3, we conclude that $F[A] \cap SL_n(F) \setminus FI$ is a connected component of $\Gamma(SL_n(F))$ and so this graph is not connected. Moreover, if $n-1$ is a prime number and $|F|-1$ divides n, then by Remark 13 we conclude that $\Gamma(SL_n(F))$ is not connected.

Theorem 15. Let $F \neq \mathbb{F}_2$ be a field and $n \geq 2$. For every matrix $A \in M_n(F)$, the set $F[A] \setminus FI$ contains a matrix with determinant 1, unless $F[A]$ is a field, $F[A]/F$ is purely inseparable, and $\dim_F F[A]$ divides n. Furthermore, if F has a purely inseparable field extension and $\text{char } F$ divides n, then there exists a matrix $B \in M_n(F)$ such that none of the elements of $F[B] \setminus FI$ has determinant 1.

Proof. If there is a non-zero nilpotent matrix $N \in F[A]$, then $I + N$ has determinant 1 and so there is nothing to prove. Thus we may assume that $F[A]$ is a reduced ring. Therefore there are fields K_1, \ldots, K_r such that $F[A] \simeq K_1 \times \cdots \times K_r$. If $r \geq 2$, then the element of $F[A]$ corresponding to the element $(\lambda, \lambda^{-1}, 1, \ldots, 1)$, for some $\lambda \in F \setminus \{0,1\}$, is a non-scalar matrix with determinant 1. So assume that $r = 1$. If F is finite, then using [3, Corollary 1], we can find an element of $F[A] \setminus FI$ with determinant 1. Hence suppose that F is infinite. If there exists a matrix $X \in F[A]$ such that X^n is not a scalar matrix, then by Lemma C, there exists a matrix $C \in F[A] \setminus FI$ with determinant 1. So assume that $F[A]^*/F^*$ is an Abelian group whose exponent divides n. Now [1, Lemma 13] implies that $F[A]$ is a purely inseparable extension of F. Let $\text{char } F = p$. Since $F[A]/F$ is a purely inseparable field extension, there is an integer s such that $\dim_F F[A] = p^s$. Therefore the order of AF^* in the group $F[A]^*/F^*$ is p^s. This implies that $\dim_F F[A]$ divides n, as desired.
To complete the proof, suppose that F has a purely inseparable field extension K and $p = \text{char } F$ divides n. Without loss of generality, we may suppose that $\dim_F K = p$. Let E be the subfield of F generated by all algebraic elements over F_p. Suppose that $\omega \in K \setminus F$ and $x^p - t$ is the minimal polynomial of ω over F. Since K/F is a purely inseparable field extension, t is not an algebraic element over E. Let $S \subseteq F$ be a transcendental basis of F over E which contains t. Let $F_0 = E(S \setminus \{t\})$, so we have $F = F_0(t)$ and ω is transcendental over F_0. Now, let T be the companion matrix of the polynomial $x^p - t$. Put $B = T \oplus \cdots \oplus T$, where the number of T is n/p. We show that none of the elements of $F[B] \setminus FI$ has determinant 1.

Let $Y = \lambda_1 B^{p-1} + \cdots + \lambda_{p-1} B + \lambda_p I$ be an arbitrary element of $F[B] \setminus FI$. Also put $Y_0 = \lambda_1 T^{p-1} + \cdots + \lambda_{p-1} T + \lambda_p I$. Since $p = \text{char } F$ and $T^p = t$,

$$Y_0^p - (\lambda_1^p t^{p-1} + \cdots + \lambda_{p-1}^p t + \lambda_p^p) I = 0. \quad (*)$$

This implies that the minimal polynomial of Y_0 as a matrix over F has the form $(x - \alpha)^k$, where F is the algebraic closure of F and $k \geq 2$. Thus the characteristic polynomial of Y_0 is $(x - \alpha)^p$.

Now, using $(*)$, we find that $x^p - (\lambda_1^p t^{p-1} + \cdots + \lambda_{p-1}^p t + \lambda_p^p)$ is the characteristic polynomial of Y_0. So if $\det Y = 1$, then $(\lambda_1^p t^{p-1} + \cdots + \lambda_{p-1}^p t + \lambda_p^p)^n = 1$ and $(\lambda_1 \omega^{p-1} + \cdots + \lambda_{p-1} \omega + \lambda_p)^n = 1$.

On the other hand $\lambda_1, \ldots, \lambda_p \in F = F_0(\omega^p)$. So the latter equation shows that ω is an algebraic element over F_0, a contradiction. Hence the proof is complete. \(\square\)

Theorem 16. Let F be an infinite field and $n \geq 2$. Suppose that two non-adjacent vertices A and B are contained in the same connected component of $\Gamma(M_n(F))$. Also suppose that F does not have a purely inseparable extension of degree n. Then there exists a path between A and B whose intermediate vertices have determinant 1.

Proof. If $F[A]$ is a field extension of F of degree n with no proper intermediate fields, then using Corollary 3, $F[A] \setminus FI$ is a connected component of $\Gamma(M_n(F))$. Therefore the two vertices A and B are adjacent, a contradiction. So we may assume that if $F[A]$ is a field of degree n, then there is at least one field between F and $F[A]$. Clearly, it is sufficient to find a path between A and $M = \lambda^{1-n} I_1 \oplus \lambda I_{n-1}$ whose intermediate vertices have determinant 1, where λ is a scalar such that $\lambda^n \neq 0, 1$.

Case 1. If either $F[A]$ is not a field or A is a non-cyclic matrix, then by Lemmas 4 and 5, there is a path between A and M whose intermediate vertices are non-invertible matrices. Now, using Theorem 15, we can replace intermediate vertices of this path with vertices which have determinant 1.

Case 2. Assume that A is a cyclic matrix and $F[A]$ is a field of degree n. So there is a matrix $A_0 \in F[A]$ such that $F[A_0] \neq F[A]$ and $F[A_0]$ is a separable extension of F. Hence by Theorem 15, there is a matrix $A_1 \in F[A_0] \setminus FI$ with determinant 1. Now since A_1 is not a cyclic matrix, using Case 1 we find a path between A_1 and M whose intermediate vertices have determinant 1. \(\square\)
Corollary 17. Suppose that F is an infinite field and $n \geq 3$. If every field extension of F of degree n contains at least a proper intermediate field, then $\Gamma(SL_n(F))$ is a connected graph.

Proof. Using Case 1 in the proof of Theorem 16, it sufficient to show that any cyclic matrix in $SL_n(F)$ is adjacent to at least a non-cyclic matrix in $SL_n(F)$. Assume that $A \in SL_n(F)$ is a cyclic matrix. If $F[A]$ is not a field, then by Lemma 4, there is a non-cyclic matrix $B \in F[A] \setminus FI$ which is not invertible. Therefore by Theorem 15, there is a matrix $B_1 \in F[B] \setminus FI$ with determinant 1. Since $B_1 \in SL_n(F)$ is a non-cyclic matrix which commutes with A, we are done. Now, suppose that $F[A]$ is a field. Working towards a contradiction, assume that $F[A]$ is a purely inseparable extension of F. Hence the minimal polynomial of A is $x^n + (-1)^n$. Since n is a power of char F, $(A - I)^n = 0$. On the other hand, $F[A]$ is a field, so we have $A = I$, a contradiction. Thus there exists a matrix $C \in F[A]$ such that $F[C] \nsubseteq F[A]$ and $F[C]$ is a separable extension of F. Hence by Theorem 15, there exists a matrix $C_1 \in F[C] \setminus FI$ with determinant 1. Now, $C_1 \in SL_n(F)$ is a non-cyclic matrix commuting with A and the proof is complete.

5. Some graph theoretic parameters of commuting graphs

In this section we first improve the lower bound for $\alpha(\Gamma(M_n(F)))$ given in [2] and show that if F is a finite field and $n \geq 2$, then $\alpha(\Gamma(M_n(F))) \geq |F|^{(n-1)^2+1}|F|^{-n-2}$. We begin with the following lemma.

Lemma D. [7, p. 91] Let G be a graph with n vertices. If d_1, \ldots, d_n are the degrees of all vertices of G, then $\alpha(G) \geq \sum_{i=1}^{n} \frac{1}{d_i + 1}$.

Theorem 18. If F is a finite field and $n \geq 2$, then $\alpha(\Gamma(M_n(F))) \geq |F|^{(n-1)^2+1}|F|^{-n-2}$.

Proof. If A is a cyclic matrix in $M_n(F)$, then by Corollary 1 the degree of A in $\Gamma(M_n(F))$ is $|F|^n - |F| - 1$. Let A_1, \ldots, A_m be all cyclic matrices in $M_n(F)$ with distinct minimal polynomials. Clearly, we have $m = |F|^n$. Moreover, if $A \in M_n(F)$ is a cyclic matrix, then using Corollary 1, there are at most $|F|^n - 1$ invertible matrices commuting with A. Thus the number of conjugates of A is at least $|GL_n(F)|/(|F|^n - 1)$. Therefore the total number of cyclic matrices is at least $t = |F|^n |GL_n(F)|/(|F|^n - 1)$. By Lemma D, we conclude that $\alpha(\Gamma(M_n(F))) \geq \sum_{i=1}^{t} \frac{1}{|F|^n - |F|}$. Thus we find that

$$\alpha(\Gamma(M_n(F))) \geq \frac{|F|^n}{(|F|^n - |F|)(|F|^n - 1)} \prod_{i=0}^{n-1} (|F|^n - |F|^i) = |F|^n \prod_{i=2}^{n-1} (|F|^n - |F|^i).$$

This implies that

$$\alpha(\Gamma(M_n(F))) \geq |F|^n (|F|^n - |F|^{n-1})^{n-2} = |F|^{(n-1)^2+1}|F|^{-n-2}.$$

So the proof is complete.
Now we state a result about the domination numbers of commuting graphs.

Theorem 19. Let F be an infinite field and $n \geq 2$. Then $\gamma(\Gamma(M_n(F)))$, $\gamma(\Gamma(GL_n(F)))$, and $\gamma(\Gamma(SL_n(F)))$ are infinite.

Proof. It is well known that every vector space over an infinite field cannot be a union of finitely many of its proper subspaces. Thus for any vertices A_1, \ldots, A_k of $\Gamma(M_n(F))$, we have $M_n(F) \neq C_{M_n(F)}(A_1) \cup \cdots \cup C_{M_n(F)}(A_k)$. Clearly, this implies that $\gamma(\Gamma(M_n(F)))$ is infinite.

Now, assume that γ is a dominating set for $\Gamma(GL_n(F))$. Since F is infinite, for any matrix $A \in M_n(F)$, there exists a scalar $\alpha \in F$ such that $\alpha I - A$ is invertible. Therefore there exists a vertex $X \in \gamma$ such that X commutes with $\alpha I - A$. Thus if $A \neq X$, then $A - X$ is an edge of $\Gamma(M_n(F))$. This yields that γ is also a dominating set for $\Gamma(M_n(F))$. So $\gamma(\Gamma(GL_n(F)))$ is infinite.

Finally, we prove that $\gamma(\Gamma(SL_n(F)))$ is infinite. To get a contradiction, suppose $\{S_1, \ldots, S_m\}$ is a finite dominating set for $\Gamma(SL_n(F))$. We have $SL_n(F) = C_{SL_n(F)}(S_1) \cup \cdots \cup C_{SL_n(F)}(S_m)$. It is well known that $Z(SL_n(F)) \subseteq FI$, so $C_{SL_n(F)}(S_i)$ is a proper subgroup of $SL_n(F)$, for $i = 1, \ldots, m$. By Neumann’s Lemma [10, p. 92], at least one of these subgroups is of finite index in $SL_n(F)$. Thus it is easy to see that $SL_n(F)$ contains a normal subgroup N of finite index r. On the other hand, by [4, Theorem 11], we have $N \subseteq FI$. Hence for any $\lambda \in F^*$, $\text{diag}(\lambda, \lambda^{-1}, 1, \ldots, 1)^r$ is a scalar matrix. This implies that $\lambda^{2r} = 1$, for each $\lambda \in F^*$, a contradiction. Now, the proof is complete. \qed

6. A uniqueness theorem for commuting graphs

In [2] it has been proved that if E and F are two finite fields such that $\Gamma(M_n(E)) \cong \Gamma(M_n(F))$, $m, n \geq 2$, then $m = n$ and $|E| = |F|$. In the sequel, we will generalize this result for arbitrary fields.

Lemma E. [2, Lemma 2] Let F be a field, $n \geq 1$, and $A, B \in M_n(F)$. If $C_{M_n(F)}(A) \subseteq C_{M_n(F)}(B)$, then there exists a polynomial $f(x) \in F[x]$ such that $B = f(A)$.

Lemma 20. Let F be a field and $n \geq 1$. If $C_{M_n(F)}(A_1) \subsetneq \cdots \subsetneq C_{M_n(F)}(A_k)$ is a chain of centralizers, then $k \leq n$. Moreover, if $|F| \geq n$, then there exists a chain of distinct centralizers in $M_n(F)$ of length n.

Proof. Suppose that $C_{M_n(F)}(A) \subsetneq C_{M_n(F)}(B)$, for $A, B \in M_n(F)$. Then by Lemma E, we have $B \in F[A]$. Since $C_{M_n(F)}(A) \neq C_{M_n(F)}(B)$, we conclude that $F[B] \subsetneq F[A]$. Hence the degree of the minimal polynomial of B is less than the degree of the minimal polynomial of A. Now, if $C_{M_n(F)}(A_1) \subsetneq \cdots \subsetneq C_{M_n(F)}(A_k)$ is a chain and m_i is the degree of the minimal
polynomial of A_i, then $n \geq m_1 > \cdots > m_k \geq 1$. This implies that $k \leq n$. Furthermore, if a_1, \ldots, a_n are distinct elements of F, then the following chain

$$C_{M_n(F)}(\text{diag}(a_1, a_2, \ldots, a_n)) \supsetneq C_{M_n(F)}(\text{diag}(a_2, a_2, a_3, \ldots, a_n)) \supsetneq \cdots \supsetneq C_{M_n(F)}(\text{diag}(a_{n-1}, \ldots, a_{n-1}, a_n)) \supsetneq C_{M_n(F)}(\text{diag}(a_n, \ldots, a_n))$$

has length n. This completes the proof.

The uniqueness of the Wedderburn-Artin theorem states that if E and F are two fields and $M_m(E) \cong M_n(F)$, then $m = n$ and $E \cong F$. In the next theorem we prove a similar uniqueness theorem for the commuting graphs.

Theorem 21. If E and F are two fields, $m, n \geq 2$ and $\Gamma(M_m(E)) \cong \Gamma(M_n(F))$, then $m = n$ and $|E| = |F|$.

Proof. By [2, Corollary 2], we may assume that E and F are infinite. Since $M_m(E) \setminus EI$ is the vertex set of $\Gamma(M_m(E))$ and E is infinite, the cardinal of the vertex set of $\Gamma(M_m(E))$ is $|E|$. Now, since $\Gamma(M_m(E)) \cong \Gamma(M_n(F))$, we have $|E| = |F|$. To complete the proof, for any vertex A of $\Gamma(M_m(E))$, let $N(A)$ be the set of all vertices X in $\Gamma(M_m(E))$ such that either $X = A$ or $X - A$ is an edge of $\Gamma(M_m(E))$. Assume that

$$N(A_1) \supsetneq \cdots \supsetneq N(A_k)$$

is a chain in $\Gamma(M_m(E))$ with maximum possible length. Then clearly, $C_{M_m(E)}(A_1) \supsetneq \cdots \supsetneq C_{M_m(E)}(A_k) \supsetneq C_{M_m(E)}(I)$ is a chain of centralizers in $M_m(E)$ with maximum length. By Lemma 20, we conclude that $k = m - 1$. Similarly, the size of every chain of type (\ast) with maximum length in $\Gamma(M_n(F))$ is $n - 1$. Since $\Gamma(M_m(E)) \cong \Gamma(M_n(F))$, we have $m = n$, as desired.

Acknowledgments

The first and third authors are indebted to the Research Council of Sharif University of Technology and the Institute for Studies in Theoretical Physics and Mathematics (IPM) for support. The research of the first author was in part supported by a grant (No. 85160211) from IPM. This work was done within the framework of the Associateship Scheme of the Abdus Salam International Centre for Theoretical Physics, Trieste, Italy.
References

