Trieste Lectures

Alexander Rosenberg*

Institut des Hautes Etudes Scientifiques, Bures Sur Yvette, France

Lectures given at the
School on Algebraic K-theory and its Applications
Trieste, 14 - 25 May 2007

LNS0823006

*rosenber@ihes.fr
Contents

Introduction 311

Lecture 1 312
Noncommutative locally affine ‘spaces’ and schemes 312

Lecture 2 327
Underlying topological spaces of noncommutative ‘spaces’ and schemes 327

Lecture 3 351
Non-abelian homological algebra 351

Lecture 4 399
Universal K-functors 399

Lecture 5 412
Comparison theorems for higher K-theory: reduction by resolution, additivity, devissage. Towards some applications 412

References 427
Introduction

Lecture 1 is dedicated to the first notions of noncommutative algebraic geometry – preliminaries on ‘spaces’ represented by categories and morphisms of ‘spaces’ represented by (isomorphism classes of) functors. We introduce continuous, affine, and locally affine morphisms which lead to definitions of noncommutative schemes and more general locally affine ‘spaces’. The notion of a noncommutative scheme is illustrated by two important examples related to quantized enveloping algebras: the quantum flag varieties and the associated quantum D-schemes represented by the categories of (twisted) quantum D-modules introduced in [LR] (see also [T]). An important example of a locally affine noncommutative ‘space’ which is not a scheme is the noncommutative projective ‘space’ introduced in [KR1], or more general Grassmannians studied in [KR3].

In Lecture 2, we recover some fragments of geometry behind the pseudo-geometric picture sketched in the first lecture. For simplicity, we restrict to the ‘spaces’ represented by abelian categories and, in the last section, to the ‘spaces’ represented by triangulated categories. We start with introducing underlying topological spaces (spectra) of ‘spaces’ represented by abelian categories and describing their main properties. One of the consequences of these properties is the reconstruction theorem for commutative schemes [R4] which says, in particular, that any quasi-separated commutative scheme can be reconstructed uniquely up to isomorphism from its category of quasi-coherent sheaves. The noncommutative fact behind the reconstruction theorem is the geometric realization of a noncommutative scheme as a locally affine stack of local categories on its underlying topological spaces. The latter is a noncommutative analog of a locally affine locally ringed topological space, i.e. a geometric scheme. We conclude this short introduction to the geometry of noncommutative ‘spaces’ and schemes with a sketch of the first notions and facts of spectral theory of ‘spaces’ represented by triangulated categories.

Lectures 3, 4, 5 are based on some parts of the manuscript [R8] created out of attempts to find natural frameworks for homological theories which appear in noncommutative algebraic geometry. We start, in Lecture 3, with a version of non-abelian (and often non-additive) homological algebra which is based on presites (→ categories endowed with a Grothendieck pretopology) whose covers consist of one morphism. Although it does not matter for most of constructions and facts, we assume that the pretopologies are subcanonical
(i.e. representable presheaves are sheaves), or, equivalently, covers are strict epimorphisms (i.e. cokernels of pairs of arrows). We call such presites right exact categories. The dual structures, left exact categories, appear naturally and play a crucial role in the version of higher K-theory sketched in Lecture 4. We develop standard tools of higher K-theory starting with the long ‘exact’ sequence (in Lecture 4) followed by reductions by resolutions and devissage which are discussed in Lecture 5.

Lecture 1
Noncommutative locally affine ‘spaces’ and schemes

1. Noncommutative ‘spaces’ represented by categories and morphisms between them. Continuous, affine and locally affine morphisms.

1.1. Categories and ‘spaces’. As usual, Cat, or Cat_Δ, denotes the bicategory of categories which belong to a fixed universum Δ. We call objects of Cat^{op} ‘spaces’. For any ‘space’ X, the corresponding category C_X is regarded as the category of quasi-coherent sheaves on X. For any Δ-category A, we denote by |A| the corresponding object of Cat^{op} (the underlying ‘space’) defined by C_{|A|} = A.

We denote by |Cat|^{op} the category having same objects as Cat^{op}. Morphisms from X to Y are isomorphism classes of functors C_Y \to C_X. For a morphism X \xrightarrow{f} Y, we denote by f^* any functor C_Y \to C_X representing f and call it an inverse image functor of the morphism f. We shall write f = [F] to indicate that f is a morphism having an inverse image functor F. The composition of morphisms X \xrightarrow{f} Y and Y \xrightarrow{g} Z is defined by g \circ f = [f^* \circ g^*].

1.2. Localizations and conservative morphisms. Let Y be an object of |Cat|^{op} and Σ a class of arrows of the category C_Y. We denote by Σ^{-1}Y the object of |Cat|^{op} such that the corresponding category coincides with (the standard realization of) the quotient of the category C_Y by Σ (cf. [GZ, 1.1]): C_{Σ^{-1}Y} = Σ^{-1}C_Y. The canonical localization functor C_Y \xrightarrow{p_{Σ^{-1}} Y} Σ^{-1}C_Y is regarded as an inverse image functor of a morphism, Σ^{-1}Y \xrightarrow{p_{Σ^{-1}} Y} Y.
For any morphism \(X \to Y \) in \(|\text{Cat}|^o\), we denote by \(\Sigma_f \) the family of all arrows \(s \) of the category \(C_Y \) such that \(f^*(s) \) is invertible (notice that \(\Sigma_f \) does not depend on the choice of an inverse image functor \(f^* \)). Thanks to the universal property of localizations, \(f^* \) is represented as the composition of the localization functor \(p^*_f = p^*_{\Sigma_f} : C_Y \to \Sigma_f^{-1}C_Y \) and a uniquely determined functor \(\Sigma_f^{-1}C_Y \xrightarrow{f^*_c} C_X \). In other words, \(f = p_f \circ f_c \) for a uniquely determined morphism \(X \xrightarrow{f_c} \Sigma_f^{-1}Y \).

A morphism \(X \to Y \) is called conservative if \(\Sigma_f \) consists of isomorphisms, or, equivalently, \(p_f \) is an isomorphism.

A morphism \(X \xrightarrow{f} Y \) is called a localization if \(f_c \) is an isomorphism, i.e. the functor \(f^*_c \) is an equivalence of categories.

Thus, \(f = p_f \circ f_c \) is a unique decomposition of a morphism \(f \) into a localization and a conservative morphism.

1.3. Continuous, flat, and affine morphisms.

A morphism is called continuous if its inverse image functor has a right adjoint (called a direct image functor), and flat if, in addition, the inverse image functor is left exact (i.e. preserves finite limits). A continuous morphism is called affine if its direct image functor is conservative (i.e. it reflects isomorphisms) and has a right adjoint.

1.4. Categoric spectrum of a unital ring.

For an associative unital ring \(R \), we define the categoric spectrum of \(R \) as the object \(\text{Sp}(R) \) of \(|\text{Cat}|^o\) represented by the category \(R - \text{mod} \) of left \(R \)-modules; i.e. \(C_{\text{Sp}(R)} = R - \text{mod} \).

Let \(R \xrightarrow{\phi} S \) be a unital ring morphism and \(R - \text{mod} \xrightarrow{\hat{\phi}^*} S - \text{mod} \) the functor \(S \otimes_R - \). The canonical right adjoint to \(\hat{\phi}^* \) is the pull-back functor \(\hat{\phi}^*_c \) along the ring morphism \(\phi \). A right adjoint to \(\hat{\phi}^*_c \) is given by

\[
\phi^! : S - \text{mod} \xrightarrow{\hat{\phi}^!} R - \text{mod}, \quad L \mapsto \text{Hom}_R(\phi^*_c(S), L).
\]

The map

\[
\left(R \xrightarrow{\phi} S \right) \mapsto \left(\text{Sp}(S) \xrightarrow{\hat{\phi}} \text{Sp}(R) \right)
\]

is a functor

\[
\text{Rings}^{op} \xrightarrow{\text{Sp}} |\text{Cat}|^o
\]

which takes values in the subcategory of \(|\text{Cat}|^o\) formed by affine morphisms.
The image \(\text{Sp}(R) \xrightarrow{\tilde{\phi}} \text{Sp}(T) \) of a ring morphism \(T \xrightarrow{\phi} R \) is flat (resp. faithful) iff \(\phi \) turns \(R \) into a flat (resp. faithful) right \(T \)-module.

1.4.1. Continuous, flat, and affine morphisms from \(\text{Sp}(S) \) to \(\text{Sp}(R) \). Let \(R \) and \(S \) be associative unital rings. A morphism \(\text{Sp}(S) \xrightarrow{f} \text{Sp}(R) \) with an inverse image functor \(f^* \) is continuous iff

\[
f^* \simeq \mathcal{M} \otimes_R : L \longrightarrow \mathcal{M} \otimes_R L
\]

for an \((S, R)\)-bimodule \(\mathcal{M} \) defined uniquely up to isomorphism. The functor

\[
f_* = \text{Hom}_S(\mathcal{M}, -) : N \longrightarrow \text{Hom}_S(\mathcal{M}, N)
\]

is a direct image of \(f \).

By definition, the morphism \(f \) is conservative iff \(\mathcal{M} \) is faithful as a right \(R \)-module, i.e. the functor \(\mathcal{M} \otimes_R - \) is faithful.

The direct image functor (2) is conservative iff \(\mathcal{M} \) is a generator in the category of left \(S \)-modules, i.e. for any nonzero \(S \)-module \(N \), there exists a nonzero \(S \)-module morphism \(\mathcal{M} \longrightarrow N \).

The morphism \(f \) is flat iff \(\mathcal{M} \) is flat as a right \(R \)-module.

The functor (2) has a right adjoint, \(f^! \), iff \(f_* \) is isomorphic to the tensoring (over \(S \)) by a bimodule. This happens iff \(\mathcal{M} \) is a projective \(S \)-module of finite type. The latter is equivalent to the condition: the natural functor morphism \(\mathcal{M}_S^* \otimes_S - \longrightarrow \text{Hom}_S(\mathcal{M}, -) \) is an isomorphism. Here \(\mathcal{M}_S^* = \text{Hom}_S(\mathcal{M}, S) \).

In this case, \(f^! \simeq \text{Hom}_R(\mathcal{M}_S^*, -) \).

1.5. Example. Let \(G \) be a monoid and \(R \) a \(G \)-graded unital ring. We define the ‘space’ \(\text{Sp}_G(R) \) by taking as \(C_{\text{Sp}_G(R)} \) the category \(\text{gr}_G R - \text{mod} \) of left \(G \)-graded \(R \)-modules. There is a natural functor \(\text{gr}_G R - \text{mod} \xrightarrow{\phi_*} R_0 - \text{mod} \) which assigns to each graded \(R \)-module its zero component (‘zero’ is the unit element of the monoid \(G \)). The functor \(\phi_* \) has a left adjoint, \(\phi^* \), which maps every \(R_0 \)-module \(M \) to the graded \(R \)-module \(R \otimes_{R_0} M \). The adjunction arrow \(\text{Id}_{R_0 - \text{mod}} \longrightarrow \phi_* \phi^* \) is an isomorphism. This means that the functor \(\phi^* \) is fully faithful, or, equivalently, the functor \(\phi_* \) is a localization.

The functors \(\phi_* \) and \(\phi^* \) are regarded as respectively a direct and an inverse image functor of a morphism \(\text{Sp}_G(R) \xrightarrow{\phi} \text{Sp}(R_0) \). It follows from the above that the morphism \(\phi \) is affine iff \(\phi \) is an isomorphism (i.e. \(\phi^* \) is an equivalence of categories).
In fact, if \(\phi \) is affine, the functor \(\phi_* \) should be conservative. Since \(\phi_* \) is a localization, this means, precisely, that \(\phi_* \) is an equivalence of categories.

1.6. The cone of a non-unital ring. Let \(R_0 \) be a unital associative ring, and let \(R_+ \) be an associative ring, non-unital in general, in the category of \(R_0 \)-bimodules; i.e. \(R_+ \) is endowed with an \(R_0 \)-bimodule morphism \(R_+ \otimes R_0 \xrightarrow{\cdot} R_+ \) satisfying the associativity condition. Let \(R = R_0 \oplus R_+ \) denote the augmented ring described by this data. Let \(T_{R_+} \) denote the full subcategory of the category \(R \mod \) whose objects are all \(R \)-modules annihilated by \(R_+ \). Let \(T_{R_+}^- \) be the Serre subcategory (that is a full subcategory closed by taking subquotients, extensions, and arbitrary direct sums) of the category \(R \mod \) spanned by \(T_{R_+}^- \).

We define the ‘space’ cone of \(R_+ \) by taking as \(C_{\text{Cone}(R_+)} \) the quotient category \(R \mod / T_{R_+}^- \). The localization functor \(R \mod \xrightarrow{u^*} R \mod / T_{R_+}^- \) is an inverse image functor of a morphism of ‘spaces’ \(\text{Cone}(R_+) \xrightarrow{u^*} \text{Sp}(R) \). The functor \(u^* \) has a (necessarily fully faithful) right adjoint, i.e. the morphism \(u \) is continuous. If \(R_+ \) is a unital ring, then \(u \) is an isomorphism (see C3.2.1). The composition of the morphism \(u \) with the canonical affine morphism \(\text{Sp}(R) \xrightarrow{} \text{Sp}(R_0) \) is a continuous morphism \(\text{Cone}(R_+) \xrightarrow{} \text{Sp}(R_0) \). Its direct image functor is (regarded as) the global sections functor.

1.7. The graded version: \(\text{Proj}_G \). Let \(G \) be a monoid and \(R = R_0 \oplus R_+ \) a \(G \)-graded ring with zero component \(R_0 \). Then we have the category \(\text{gr}_G R \mod \) of \(G \)-graded \(R \)-modules and its full subcategory \(\text{gr}_G T_{R_+}^- = T_{R_+}^- \cap \text{gr}_G R \mod \) whose objects are graded modules annihilated by the ideal \(R_+ \).

We define the ‘space’ \(\text{Proj}_G(R) \) by setting
\[
C_{\text{Proj}_G(R)} = \text{gr}_G R \mod / \text{gr}_G T_{R_+}^-.
\]
Here \(\text{gr}_G T_{R_+}^- \) is the Serre subcategory of the category \(\text{gr}_G R \mod \) spanned by \(\text{gr}_G T_{R_+}^- \). One can show that \(\text{gr}_G T_{R_+}^- = \text{gr}_G R \mod \cap T_{R_+}^- \). Therefore, we have a canonical projection
\[
\text{Cone}(R_+) \xrightarrow{p} \text{Proj}_G(R).
\]
The localization functor \(\text{gr}_G R \mod \xrightarrow{} C_{\text{Proj}_G(R_+)} \) is an inverse image functor of a continuous morphism \(\text{Proj}_G(R) \xrightarrow{v} \text{Sp}_G(R) \). The composition \(\text{Proj}_G(R) \xrightarrow{v} \text{Sp}(R_0) \) of the morphism \(v \) with the canonical morphism \(\text{Sp}_G(R) \xrightarrow{\phi} \text{Sp}(R_0) \) defines \(\text{Proj}_G(R) \) as a ‘space’ over \(\text{Sp}(R_0) \). Its direct image functor is called the global sections functor.
1.7.1. Example: cone and Proj of a \(\mathbb{Z}_+\)-graded ring. Let \(R = \bigoplus_{n \geq 0} R_n \) be a \(\mathbb{Z}_+\)-graded ring, \(R_+ = \bigoplus_{n \geq 1} R_n \) its ‘irrelevant’ ideal. Thus, we have the cone of \(R_+ \), \(\text{Cone}(R_+) \), and \(\text{Proj}(R) = \text{Proj}_{\mathbb{Z}}(R) \), and a canonical morphism \(\text{Cone}(R_+) \rightarrow \text{Proj}(R) \).

2. Beck’s Theorem and affine morphisms.

2.1. The Beck’s Theorem. Let \(X \xrightarrow{f} Y \) be a continuous morphism in with inverse image functor \(f^* \), direct image functor \(f_* \), and adjunction morphisms

\[
\text{Id}_{C_Y} \xrightarrow{\eta_f} f_* f^* \quad \text{and} \quad f^* f_* \xrightarrow{\epsilon_f} \text{Id}_{C_X}.
\]

Let \(\mathcal{F}_f \) denote the monad \((F_f, \mu_f)\) on \(Y \), where \(F_f = f_* f^* \) and \(\mu_f = f_* \epsilon_f f^* \).

We denote by \(\mathcal{F}_f \text{-mod} \), or by \((\mathcal{F}_f/Y) \text{-mod} \) the category of \(\mathcal{F}_f \)-modules. Its objects are pairs \((M, \xi)\), where \(M \in \text{Ob}_Y \) and \(\xi \) is a morphism \(F_f(M) \rightarrow M \) such that the diagram

\[
\begin{array}{ccc}
F_f^2(M) & \xrightarrow{\mu_f(M)} & F_f(M) \\
F_f(\xi) & \downarrow & \downarrow \xi \\
F_f(M) & \xrightarrow{\xi} & M
\end{array}
\]

commutes and \(\xi \circ \eta_f(M) = \text{id}_M \). Morphisms from \((M, \xi)\) to \((\widetilde{M}, \widetilde{\xi})\) are given by morphisms \(M \xrightarrow{g} \widetilde{M} \) of the category \(C_Y \) such that the diagram

\[
\begin{array}{ccc}
F_f(M) & \xrightarrow{F_f(g)} & F_f(\widetilde{M}) \\
\xi & \downarrow & \downarrow \widetilde{\xi} \\
M & \xrightarrow{g} & \widetilde{M}
\end{array}
\]

commutes. The composition is defined in a standard way.

We denote by \(\text{Sp}(\mathcal{F}_f/Y) \) the ‘space’ represented by the category of \(\mathcal{F}_f \)-modules and call it the categoric spectrum of the monad \(\mathcal{F}_f \).

There is a commutative diagram

\[
\begin{array}{ccc}
C_X & \xrightarrow{\bar{f}_*} & (\mathcal{F}_f/Y) \text{-mod} \\
f_* \downarrow & & \downarrow f_* \\
C_X & \xrightarrow{f_*} & (\mathcal{F}_f/Y) \text{-mod}
\end{array}
\]

(3)

Here \(\bar{f}_* \) is the canonical functor

\[
C_X \rightarrow (\mathcal{F}_f/Y) \text{-mod}, \quad M \mapsto (f_*(M), f_* \epsilon_f(M)),
\]
and f^* is the forgetful functor $(\mathcal{F}_f/Y) - \text{mod} \longrightarrow C_Y$.

The following assertion is one of the versions of Beck's theorem.

2.1.1. **Theorem.** Let $X \xrightarrow{f} Y$ be a continuous morphism.

(a) If the category C_Y has cokernels of reflexive pairs of arrows, then the functor \bar{f}_* has a left adjoint, \bar{f}^*; hence \bar{f}_* is a direct image functor of a continuous morphism $X \xrightarrow{f} \text{Sp}(\mathcal{F}_f/Y)$.

(b) If, in addition, the functor f_* preserves cokernels of reflexive pairs, then the adjunction arrow $\bar{f}^*\bar{f}_* \longrightarrow \text{Id}_{C_X}$ is an isomorphism, i.e. \bar{f}_* is a localization.

(c) If, in addition to (a) and (b), the functor f_* is conservative, then \bar{f}_* is a category equivalence.

Proof. See [MLM], IV.4.2, or [ML], VI.7.

2.1.2. **Corollary.** Let $X \xrightarrow{f} Y$ be an affine morphism (cf. 1.3). If the category C_Y has cokernels of reflexive pairs of arrows (e.g. C_Y is an abelian category), then the canonical morphism $X \xrightarrow{f} \text{Sp}(\mathcal{F}_f/Y)$ is an isomorphism.

2.1.3. **Monadic morphisms.** A continuous morphism $X \xrightarrow{f} Y$ is called *monadic* if the functor

$$C_X \xrightarrow{\bar{f}_*} \mathcal{F}_f - \text{mod}, \quad M \mapsto (f_*(M), f_*\epsilon_f(M)),$$

is an equivalence of categories.

2.2. **Continuous monads and affine morphisms.** A functor F is called *continuous* if it has a right adjoint. A monad $\mathcal{F} = (F, \mu)$ on a ‘space’ Y (i.e. on the category C_Y) is called *continuous* if the functor F is continuous.

2.2.1. **Proposition.** A monad $\mathcal{F} = (F, \mu)$ on Y is continuous iff the canonical morphism $\text{Sp}(\mathcal{F}/Y) \xrightarrow{f} Y$ is affine.

Proof. A proof in the case of a continuous monad can be found in [KR2, 6.2], or in [R3, 4.4.1] (see also [R4, 2.2]).

2.2.2. **Corollary.** Suppose that the category C_Y has cokernels of reflexive pairs of arrows. A continuous morphism $X \xrightarrow{f} Y$ is affine iff its direct image functor $C_X \xrightarrow{\bar{f}_*} C_Y$ is the composition of a category equivalence

$$C_X \longrightarrow (\mathcal{F}_f/Y) - \text{mod}$$
for a continuous monad F_f on Y and the forgetful functor $(F_f/Y)\text{-mod} \to C_Y$. The monad F_f is determined by f uniquely up to isomorphism.

Proof. The conditions of the Beck’s theorem are fulfilled if f is affine, hence f_* is the composition of an equivalence $C_X \to (F_f/Y)\text{-mod}$ for a monad $F_f = (f_*, f^*, \mu_f)$ in C_Y and the forgetful functor $(F_f/Y)\text{-mod} \to C_Y$ (see (1)). The functor $F_f = f_* f^*$ has a right adjoint $f_! f^!$, where $f^!$ is a right adjoint to f_*. The rest follows from 2.1.2.3.

2.3. The category of affine schemes over a ‘space’ and the category of monads on this ‘space’.

2.3.1. Proposition. Let $$
\begin{array}{c}
X \xrightarrow{h} Y \\
f \downarrow \quad \swarrow g
\end{array}
S
$$
be a commutative diagram in $|\text{Cat}|^\circ$. Suppose C_Z has cokernels of reflexive pairs of arrows. If f and g are affine, then h is affine.

Let Aff_S denote the full subcategory of the category $|\text{Cat}|^\circ/S$ of ‘spaces’ over S whose objects are pairs $(X, X \xrightarrow{f} S)$, where f is an affine morphism. On the other hand, we have the category $\mathcal{Mon}_c(S)$ of continuous monads on the ‘space’ S (i.e. on the category C_S) and the functor $$
\mathcal{Mon}_c(S)^{op} \to Aff_S
\text{(1)}
$$
which assigns to every continuous monad F the object $(\text{Sp}(F/S, f))$, where $\text{Sp}(F/S)$ is the ‘space’ represented by the category $F\text{-mod}$ and the morphism f has the forgetful functor $F\text{-mod} \to C_S$ as a direct image functor. It follows from 2.3.1 and 2.2.2 that this functor is essentially full (that is its image is equivalent to the category Aff_S).

For every endofunctor $C_S \xrightarrow{G} C_S$, let $|G|$ denote the set $\text{Hom}(\text{Id}_{C_S}, G)$ of elements of G. If $F = (F, \mu)$ is a monad, then the set of elements of F has a natural monoid structure; we denote this monoid by $|F|$. And we denote by $|F|^*$ the group of the invertible elements of the monoid $|F|$. We say that two monad morphisms $F \xrightarrow{\phi} G$ are conjugate to each other if $\phi = t \cdot \psi \cdot t^{-1}$ for some $t \in |G|^*$.

Let $\mathcal{Mon}_c(S)$ denote the category whose objects are continuous monads on C_S and morphisms are conjugacy classes of morphisms of monads.
2.3.2. Proposition The functor (1) induces an equivalence between the
category $\mathcal{M}_{\Sigma}^c(S)$ and the category Aff_S of affine schemes over S.

2.3.3. Example. Let $S = \text{Sp}(R)$ for an associative ring R. Then the
category $\mathcal{M}_{\Sigma}^c(S)$ of monads on $C_S = R - \text{mod}$ is naturally equivalent to
the category $R\backslash \text{Rings}$ of associative rings over R. The conjugacy classes of
monad morphisms correspond to conjugacy classes of ring morphisms. Let
Ass denote the category whose objects are associative rings and morphisms
the conjugacy classes of ring morphisms.

One deduces from 2.3.2 the following assertion:

2.3.3.1. Proposition. The category Aff_S of affine schemes over $S = \text{Sp}(R)$ is naturally equivalent to the category $(R\backslash \text{Ass})^{op}$.

3. Noncommutative schemes and locally affine ‘spaces’.

3.1. Covers. We call a family $\{U_i \xrightarrow{u_i} X | i \in J\}$ of morphisms of
‘spaces’ a cover if

- all inverse image functors u_i^* are exact (i.e. the functors u_i^* preserve
 finite limits and colimits),
- the family $\{u_i^* | i \in J\}$ is conservative (i.e. if $u_i^*(s)$ is an isomorphism
 for all $i \in J$, then s is an isomorphism).

3.2. Locally affine morphisms of ‘spaces’. We call a morphism
$X \xrightarrow{f} S$ of ‘spaces’ locally affine if there exists a cover $\{U_i \xrightarrow{u_i} X | i \in J\}$
of the ‘space’ X such that all the compositions $f \circ u_i$ are affine.

3.2.1. Semisepa rated covers and semisepa rated locally affine
‘spaces’. A cover $\{U_i \xrightarrow{u_i} X | i \in J\}$ is called semisepa rated if each of the
morphisms u_i is affine.

A locally affine ‘space’ with a semisepa rated affine cover is called semisepa rated.

3.3. Weak schemes over S. Weak schemes over a ‘space’ S are locally
affine morphisms $X \longrightarrow S$ which have an affine cover $\{U_i \xrightarrow{u_i} X | i \in J\}$
formed by localization. The latter means that each inverse image functor
u_i^* is the composition of the localization functor $C_X \longrightarrow \Sigma_{u_i^*}^{-1}C_X$, where
$\Sigma_{u_i^*} = \{s \in \text{Hom}C_X | u_i^*(s) \text{ is invertible}\}$, and an equivalence of categories
$\Sigma_{u_i^*}^{-1}C_X \longrightarrow C_{U_i}$.

3.4. Schemes. A weak scheme $X \longrightarrow S$ with an affine cover $\{U_i \xrightarrow{u_i} X | i \in J\}$ is a scheme if for every $i \in J$, the multiplicative system $\Sigma_{u_i^*}$ is
finitely generated.

4.1. Comonads associated with “covers”. Let \(\{ U_i \xrightarrow{u_i} X \mid i \in J \} \) be a family of continuous morphisms and \(u \) the corresponding morphism \(\mathcal{U} = \coprod_{i \in J} U_i \xrightarrow{u} X \) with the inverse image functor

\[
C_X \xrightarrow{u^*} \prod_{i \in J} C_{U_i} = C_{\mathcal{U}}, \quad M \mapsto (u_i^*(M)|i \in J).
\]

It follows that the family of inverse image functors \(\{ C_X \xrightarrow{u_i^*} C_{U_i} \mid i \in J \} \) is conservative iff the functor \(u^* \) is conservative.

Suppose that the category \(C_X \) has products of \(|J| \) objects. Then the morphism \(\mathcal{U} = \coprod_{i \in J} U_i \xrightarrow{u} X \) is continuous: its direct image functor assigns to every object \((L_i|i \in J)\) of the category \(C_{\mathcal{U}} = \coprod_{i \in J} C_{U_i} \) the product \(\prod_{i \in J} u_i^*(L_i) \).

The adjunction morphism \(\eta_{C_X} \xrightarrow{\eta_u} u_*u^* \) assigns to each object \(M \) of \(C_X \) the morphism \(M \xrightarrow{\prod_{i \in J} u_i u_i^*(M)} \) determined by adjunction arrows \(\eta_{C_X} \xrightarrow{\eta_{u_i}} u_{i*}u_i^* \).

The adjunction morphism \(u^*u_* \xrightarrow{\epsilon_u} Id_{C_{\mathcal{U}}} \) assigns to each object \(\mathcal{L} = (L_i|i \in J) \) of \(C_{\mathcal{U}} \) the morphism \((\epsilon_{u,i}(\mathcal{L})|i \in J) \), where

\[
u_i^*(\prod_{j \in J} u_{j*}(L_j)) \xrightarrow{\epsilon_{u,i}(\mathcal{L})} L_i
\]

is the composition of the image

\[
u_i^*(\prod_{j \in J} u_{j*}(L_j)) \xrightarrow{u_i^*(p_i)} u_i^*u_{i*}(L_i)
\]

of the image of the projection \(p_i \) and the adjunction arrow \(u_i^*u_{i*}(L_i) \xrightarrow{\epsilon_{u,i}(L_i)} L_i \).

4.2. Beck’s theorem and glueing. Suppose that for each \(i \in J \), the category \(C_{U_i} \) has kernels of coreflexive pairs of arrows and the functor \(u_i^* \) preserves them. Then the inverse and direct image functors of the morphism \(u \) satisfy the conditions of Beck’s theorem, hence the category \(C_X \) is
equivalent to the category of comodules over the comonad $\mathcal{G}_u = (G_u, \delta_u) = (u^*u_*, u^*\eta_u u_*)$ associated with the choice of inverse and direct image functors of u together with an adjunction morphism $Id_{C_X} \xrightarrow{\eta_u} u_*u^*$.

Recall that \mathcal{G}_u-comodule is a pair (\mathcal{L}, ζ), where \mathcal{L} is an object of C_X and ζ a morphism $\mathcal{L} \rightarrow G_u(\mathcal{L})$ such that $\epsilon_u(\mathcal{L}) \circ \zeta = id_{\mathcal{L}}$ and $G_u(\zeta) \circ \zeta = \delta_u(\mathcal{L}) \circ \zeta$. Beck’s theorem says that if the category C_X has kernels of coreflexive pairs of arrows and the functor u^* preserves and reflects them, then the functor $C_X \xrightarrow{u^*} (\mathcal{U}\setminus\mathcal{G}_u) - \text{comod}$ which assigns to each object M of C_X the \mathcal{G}_u-comodule $(u^*(M), \delta_u(M))$ is an equivalence of categories.

In terms of our local data – the “cover” $\{U_i \xrightarrow{u_i} X \mid i \in J\}$, a \mathcal{G}_u-comodule (\mathcal{L}, ζ) is the data $(L_i, \zeta_i|i \in J)$, where $(L_i|i \in J) = \mathcal{L}$ and ζ_i is a morphism

$$L_i \rightarrow u_i^*u_*(\mathcal{L}) = u_i^*(\prod_{j \in J} u_j^*(L_j))$$

which equalizes the pair of arrows

$$u_i^*u_*(\mathcal{L}) = u_i^*(\prod_{j} u_j^*(L_j)) \xrightarrow{u_i^*(\eta_{u_*)}} u_i^*(\prod_{m} u_m^*u_m^*(\prod_{j} u_j^*(L_j)))$$

$$= u_i^*u_*u_*u_*(\mathcal{L})$$

and such that $\epsilon_{u,i}(\mathcal{L}) \circ \zeta_i = id_{L_i}$, $i \in J$.

The exactness of the diagram

$$\mathcal{L} \xrightarrow{\zeta} G_u(\mathcal{L}) \xrightarrow{\delta_u(\mathcal{L})} G^2_u(\mathcal{L})$$

is equivalent to the exactness of the diagram

$$L_i \xrightarrow{\zeta_i} u_i^*(\prod_{j \in J} u_j^*(L_j)) \xrightarrow{u_i^*(\eta_{u_*})} u_i^*(\prod_{m \in J} u_m^*u_m^*(\prod_{j \in J} u_j^*(L_j)))$$ (1)

for every $i \in J$. If the functors u_i^* preserve products of J objects (or just the products involved into (1)), then the diagram (1) is isomorphic to the diagram

$$L_i \xrightarrow{\zeta_i} \prod_{j \in J} u_i^*u_j^*(L_j) \xrightarrow{u_i^*(\eta_{u_*})} \prod_{j, m \in J} u_i^*u_m^*u_m^*u_j^*(L_j)$$ (2)
4.3. Remark. The exactness of the diagram (1) might be viewed as a sort of sheaf property. This interpretation looks more plausible (or less stretched) when the diagram (1) is isomorphic to the diagram (2), because $u_i^*u_m^*(L_j)$ can be regarded as the section of L_j over the ‘intersection’ of U_i and U_j and $u_i^*u_m^*u_m^*(L_j)$ as the section of L_j over the intersection of the elements U_j, U_m, and U_i of the “cover”.

4.4. The condition of the continuity of the comonad associated with a “cover”. Suppose that each direct image functor $C_{U_i} \xrightarrow{u_i^*} C_X$, $i \in J$, has a right adjoint, $u_i^!$, and let $u^!$ denote the functor $C_X \longrightarrow C_\mathcal{U} = \prod_{i \in J} C_{U_i}$ which maps every object M to $(u_i^!(M))_{i \in J}$. If the category C_X has coproducts of $|J|$ objects, then the functor $u^!$ has a left adjoint which maps every object $(L_i)_{i \in J}$ of $C_\mathcal{U}$ to the coproduct $\prod_{i \in J} u_*^!(L_i)$.

Therefore, if the canonical morphism $\prod_{i \in J} u_*^!(L_i) \longrightarrow \prod_{i \in J} u_*^!(L_i)$ is an isomorphism for every object $(L_i)_{i \in J}$ of the category $C_\mathcal{U}$, then (and only then) the functor $u^!$ is a right adjoint to the functor u_*.

In particular, $u^!$ is a right adjoint to u_*, if the category C_X is additive and J is finite.

4.5. Note. If, in addition, the functors $u_*^!$ are conservative for all $i \in J$, then the functor u_* is conservative, and the category $C_\mathcal{U}$ is equivalent to the category of modules over the continuous monad $\mathcal{F}_u = (F_u, \mu_\eta)$, where $F_u = u_*u^*$ and $\mu_u = u_*\epsilon_uu^*$ for an adjunction morphism $u^*u_* \xrightarrow{\epsilon_u} Id_{C_\mathcal{U}}$.

5. Some motivating examples.

5.1. The base affine ‘space’ and the flag variety of a reductive Lie algebra from the point of view of noncommutative algebraic geometry. Let \mathfrak{g} be a reductive Lie algebra over \mathbb{C} and $U(\mathfrak{g})$ the enveloping algebra of \mathfrak{g}. Let \mathcal{G} be the group of integral weights of \mathfrak{g} and \mathcal{G}_+ the semigroup of nonnegative integral weights. Let $R = \oplus_{\lambda \in \mathcal{G}_+} \mathbb{C}R_\lambda$, where R_λ is the vector space of the (canonical) irreducible finite dimensional representation with the highest weight λ. The module R is a \mathcal{G}-graded algebra with the multiplication determined by the projections $R_\lambda \otimes R_\nu \longrightarrow R_{\lambda + \nu}$, for all $\lambda, \nu \in \mathcal{G}_+$. It is well known that the algebra R is isomorphic to the algebra of regular functions on the base affine space of \mathfrak{g}. Recall that G/U, where G is a connected simply connected algebraic group with the Lie algebra \mathfrak{g}, and U is its maximal unipotent subgroup.
The category $C_{\text{Cone}(R)}$ is equivalent to the category of quasi-coherent sheaves on the base affine space Y of the Lie algebra \mathfrak{g}. The category $C_{\text{Proj}_G(R)}$ is equivalent to the category of quasi-coherent sheaves on the flag variety of \mathfrak{g}.

5.2. The quantized base affine ‘space’ and quantized flag variety of a semisimple Lie algebra. Let now \mathfrak{g} be a semisimple Lie algebra over a field k of zero characteristic, and let $U_q(\mathfrak{g})$ be the quantized enveloping algebra of \mathfrak{g}. Define the G-graded algebra $R = \bigoplus_{\lambda \in \mathcal{G}_+} R_{\lambda}$ the same way as above. This time, however, the algebra R is not commutative. Following the classical example (and identifying spaces with categories of quasi-coherent sheaves on them), we call $\text{Cone}(R)$ the quantum base affine ‘space’ and $\text{Proj}_G(R)$ the quantum flag variety of \mathfrak{g}.

5.2.1. Canonical affine covers of the base affine ‘space’ and the flag variety. Let W be the Weyl group of the Lie algebra \mathfrak{g}. Fix a $w \in W$. For any $\lambda \in \mathcal{G}_+$, choose a nonzero w-extremal vector $e_{w\lambda}^\lambda$ generating the one dimensional vector subspace of R_{λ} formed by the vectors of the weight $w\lambda$. Set $S_w = \{k^s e_{w\lambda}^\lambda | \lambda \in \mathcal{G}_+ \}$. It follows from the Weyl character formula that $e_{w\lambda}^\lambda e_{w\mu}^\mu \in k^s e_{w(\lambda+\mu)}^{\lambda+\mu}$. Hence S_w is a multiplicative set. It was proved by Joseph [Jo] that S_w is a left and right Ore subset in R. The Ore sets $\{S_w | w \in W\}$ determine a conservative family of affine localizations

$$\text{Sp}(S_w^{-1}R) \longrightarrow \text{Cone}(R), \quad w \in W,$$

of the quantum base affine ‘space’ and a conservative family of affine localizations

$$\text{Sp}_G(S_w^{-1}R) \longrightarrow \text{Proj}_G(R), \quad w \in W,$$

of the quantum flag variety. We claim that the category $gr_G S_w^{-1}R-mod$ of G-graded $S_w^{-1}R$-modules is naturally equivalent to the category $(S_w^{-1}R)_{0-mod}$.

In fact, by 1.5, it suffices to verify that the canonical functor

$$gr_G S_w^{-1}R-mod \longrightarrow (S_w^{-1}R)_{0-mod}$$

which assigns to every graded $S_w^{-1}R$-module its zero component is faithful; i.e. the zero component of every nonzero G-graded $S_w^{-1}R$-module is nonzero. This is, really, the case, because if z is a nonzero element of the λ-component of a G-graded $S_w^{-1}R$-module, then $(e_{w\lambda}^\lambda)^{-1}z$ is a nonzero element of the zero component of this module.
Thus, we obtain an affine cover

$$\text{Sp}((S_w^{-1}R)_0) \longrightarrow \text{Proj}_G(R), \quad w \in W,$$

(6)

of the quantum flag variety $\text{Proj}_G(R)$ of the Lie algebra g.

The covers (4) and (6) are scheme structures on respectively quantum base affine ‘space’ and quantum flat variety. One can check that all morphisms (4) and (6) are affine, i.e. the covers (4) and (5) are semiseparated.

5.3. Noncommutative Grassmannians. Fix an associative unital \(k \)-algebra \(R \). Let $R \backslash \text{Alg}_k$ be the category of associative \(k \)-algebras over \(R \) (i.e. pairs \((S, R \rightarrow S)\), where \(S \) is a \(k \)-algebra and \(R \rightarrow S \) a \(k \)-algebra morphism). We call them for convenience \(R \)-rings. We denote by R^e the \(k \)-algebra $R \otimes_k R^e$. Here R^e is the algebra opposite to R.

5.3.1. The functor $Gr_{M,V}$. Let \(M, V \) be left \(R \)-modules. Consider the functor, $Gr_{M,V} : R \backslash \text{Alg}_k \longrightarrow \text{Sets}$, which assigns to any \(R \)-ring \((S, R \twoheadrightarrow S)\) the set of isomorphism classes of epimorphisms $s^*(M) \longrightarrow s^*(V)$ (here $s^*(M) = S \otimes_R M$) and to any \(R \)-ring morphism $(S, R \twoheadrightarrow S) \overset{\phi}{\longrightarrow} (T, R \twoheadrightarrow T)$ the map $Gr_{M,V}(S, s) \longrightarrow Gr_{M,V}(T, t)$ induced by the inverse image functor $S \rightarrow \text{mod} \overset{\phi^*}{\longrightarrow} T \rightarrow \text{mod}$, $N \longmapsto T \otimes_S N$.

5.3.2. The functor $G_{M,V}$. Denote by $G_{M,V}$ the functor $R \backslash \text{Alg}_k \longrightarrow \text{Sets}$ which assigns to any \(R \)-ring \((S, R \twoheadrightarrow S)\) the set of pairs of morphisms $s^*(V) \overset{\nu}{\rightarrow} s^*(M) \overset{\nu}{\rightarrow} s^*(V)$ such that $u \circ \nu = id_{s^*(V)}$ and acts naturally on morphisms. Since V is a projective module, the map

$$\pi = \pi_{M,V} : G_{M,V} \longrightarrow Gr_{M,V}, \quad (v, u) \longmapsto [u],$$

(1)

is a (strict) functor epimorphism.

5.3.3. Relations. Denote by $\mathfrak{R}_{M,V}$ the "functor of relations" $G_{M,V} \times_{Gr_{M,V}} G_{M,V}$. By definition, $\mathfrak{R}_{M,V}$ is a subfunctor of $G_{M,V} \times G_{M,V}$ which assigns to each \(R \)-ring, $(S, R \twoheadrightarrow S)$, the set of all 4-tuples $(u_1, v_1; u_2, v_2) \in G_{M,V} \times G_{M,V}$ such that the epimorphisms u_1, u_2 are equivalent. The latter means that there exists an isomorphism $s^*(V) \overset{\psi}{\rightarrow} s^*(V)$ such that $u_2 = \psi \circ u_1$, or, equivalently, $\psi^{-1} \circ u_2 = u_1$. Since $u_i \circ v_i = id_1$, $i = 1, 2$, these equalities imply that $\psi = u_2 \circ v_1$ and $\psi^{-1} = u_1 \circ v_2$. Thus, $\mathfrak{R}_{M,V}(S, s)$ is a subset of all $(u_1, v_1; u_2, v_2) \in G_{M,V}(S, s) \times G_{M,V}(S, s)$ satisfying the following relations:

$$u_2 = (u_2 \circ v_1) \circ u_1, \quad u_1 = (u_1 \circ v_2) \circ u_2$$

(2)
in addition to the relations describing $G_{M,V}(S,s) \times G_{M,V}(S,s)$:

$$u_1 \circ v_1 = id_{S \otimes_R V} = u_2 \circ v_2 \tag{3}$$

Denote by p_1, p_2 the canonical projections $\mathcal{R}_{M,V} \longrightarrow G_{M,V}$. It follows from the surjectivity of $G_{M,V} \longrightarrow Gr_{M,V}$ that the diagram

$$\mathcal{R}_{M,V} \xrightarrow{p_1} G_{M,V} \xrightarrow{\pi} Gr_{M,V} \tag{4}$$

is exact.

5.3.4. Proposition. If both M and V are projective modules of a finite type, then the functors $G_{M,V}$ and $\mathcal{R}_{M,V}$ are corepresentable.

Proof. See [KR2, 10.4.3].

5.3.5. Quasi-coherent presheaves on presheaves of sets. Consider the category Aff_k of affine k-schemes which we identify with the category of representable functors on the category Alg_k of k-algebras, and the fibered category with the base Aff_k whose fibers are categories of left modules over corresponding algebras. Let X be a presheaf of sets on Aff_k. Then we have a fibered category Aff_k/X with the base Aff_k/X induced by the forgetful functor $\text{Aff}_k/X \longrightarrow \text{Aff}_k$. The category $Qcoh(X)$ of quasi-coherent presheaves on X is the opposite to the category of cartesian sections of Aff_k/X.

5.3.6. Quasi-coherent presheaves on $Gr_{M,V}$. Suppose that M and V are projective modules of a finite type, hence the functors $G_{M,V}$ and $\mathcal{R}_{M,V}$ are corepresentable by R-rings resp. $(\mathfrak{S}_{M,V}, R \rightarrow \mathfrak{S}_{M,V})$ and $(\mathcal{R}_{M,V}, R \rightarrow \mathcal{R}_{M,V})$. Then the category $Qcoh(G_{M,V})$ (resp. $Qcoh(\mathcal{R}_{M,V})$) is equivalent to $\mathfrak{S}_{M,V} - \text{mod}$ (resp. $\mathcal{R}_{M,V} - \text{mod}$), and the category $Qcoh(Gr_{M,V})$ of quasi-coherent presheaves on $Gr_{M,V}$ is equivalent to the kernel of the diagram

$$\xymatrix{ Qcoh(G_{M,V}) \ar[r]^{\nu_1} & Qcoh(\mathcal{R}_{M,V}) \ar[l]_{\nu_2} } \tag{5}$$

This means that, after identifying categories of quasi-coherent presheaves in (5) with corresponding categories of modules, quasi-coherent presheaves on $Gr_{M,V}$ can be realized as pairs (L, ϕ), where L is a $\mathfrak{S}_{M,V}$-module and ϕ is
an isomorphism $p_1^*(L) \simto p_2^*(L)$. Morphisms $(L, \phi) \to (N, \psi)$ are given by morphisms $L \to N$ such that the diagram

\[
\begin{array}{ccc}
p_1^*(L) & \to & p_1^*(N) \\
\phi & \downarrow & \downarrow \psi \\
p_2^*(L) & \to & p_2^*(N)
\end{array}
\]

commutes. The functor

\[
Qcoh(G_{M,V}) \xrightarrow{\pi^*} Qcoh(G_{M,V}), \quad (L, \phi) \mapsto L,
\]

is an inverse image functor of the projection $G_{M,V} \xrightarrow{\pi} Gr_{M,V}$ (see 5.3.3(4)).

One can show that the functor π^* is an inverse image functor of a faithfully flat affine morphism $\bar{\pi}$ from an affine ‘space’ $\text{Sp}(G_{M,V})$ (where $G_{M,V}$ is a ring representing the functor $G_{M,V}$) to the ‘space’ Grass$_{M,V}$ represented by the category $Qcoh(G_{M,V})$ of quasi-coherent sheaves on $Gr_{M,V}$. In our terminology, this means that $\bar{\pi}$ is an affine semiseparated cover of Grass$_{M,V}$.

5.3.7. Quasi-coherent sheaves of sets. Let X be a presheaf of sets on Aff_k. Given a (pre)topology τ on Aff_k/X, we define the subcategory $Qcoh(X, \tau)$ of quasi-coherent sheaves on (X, τ) [KR4].

5.3.7.1. Theorem ([KR4]). (a) A topology τ on Aff_k is subcanonical (i.e. all representable presheaves are sheaves) iff $Qcoh(X) = Qcoh(X, \tau)$ for every presheaf of sets X on Aff_k (in other words, ‘descent’ topologies on Aff_k are precisely subcanonical topologies). In this case, $Qcoh(X) = Qcoh(X, \tau) \hookrightarrow Qcoh(X^\tau) = Qcoh(X^\tau, \tau)$, where X^τ is the sheaf associated to X and \hookrightarrow is a natural full embedding.

(b) If τ is a topology of effective descent [KR4] (e.g. the fpqc or smooth topology [KR2]), then the categories $Qcoh(X, \tau)$ and $Qcoh(X^\tau)$ are naturally equivalent.

This theorem says, roughly speaking, that the category $Qcoh(X)$ of quasi-coherent presheaves knows which topologies to choose. A topology that seems to be the most plausible for Grassmannians, in particular, for \mathbb{P}_k^n, is the smooth topology introduced in [KR2]. It is of effective descent, and the category of quasi-coherent sheaves on \mathbb{P}_k^n defined in [KR1] is naturally equivalent to the category of quasi-coherent sheaves of the projective space defined via smooth topology on Aff_k.

A. Rosenberg
Lecture 2
Underlying topological spaces of noncommutative ‘spaces’
and schemes

1. Topologizing, thick, and Serre subcategories.

1.1. Topologizing subcategories. A full subcategory T of an abelian category C_X is called topologizing if it is closed under finite coproducts and subquotients.

A subcategory S of C_X is called coreflective if the inclusion functor $S \hookrightarrow C_X$ has a right adjoint; that is every object of C_X has a biggest subobject which belongs to S. Dually, a subcategory T of C_X is called reflective if the inclusion functor $T \hookrightarrow C_X$ has a left adjoint.

We denote by $\mathcal{S}(X)$ the preorder (with respect to \subseteq) of topologizing subcategories and by $\mathcal{S}_c(X)$ (resp. $\mathcal{S}^c(X)$) the preorder of coreflective (resp. reflective) topologizing subcategories of C_X.

1.1.1. The Gabriel product and infinitesimal neighborhoods of topologizing categories. The Gabriel product, $S \bullet T$, of the pair of subcategories S, T of C_X is the full subcategory of C_X spanned by all objects M such that there exists an exact sequence

$$0 \longrightarrow L \longrightarrow M \longrightarrow N \longrightarrow 0$$

with $L \in \text{Ob}T$ and $N \in \text{Ob}S$. It follows that $0 \bullet T = T = T \bullet 0$ for any strictly full subcategory T. The Gabriel product of two topologizing subcategories is a topologizing subcategory, and its restriction to topologizing categories is associative; i.e. $(\mathcal{S}(X), \bullet)$ is a monoid. Similarly, the Gabriel product of coreflective topologizing subcategories is a coreflective topologizing subcategory, hence $\mathcal{S}_c(X)$ is a submonoid of $(\mathcal{S}(X), \bullet)$. Dually, the preorder $\mathcal{S}^c(X)$ of reflective topologizing subcategories of C_X is a submonoid of $(\mathcal{S}(X), \bullet)$.

The n^{th} infinitesimal neighborhood, $T^{(n+1)}$, of a subcategory T is defined by $T^{(0)} = 0$ and $T^{(n+1)} = T^{(n)} \bullet T$ for $n \geq 0$.

1.2. The preorder \succ and topologizing subcategories. For any two objects, M and N, of an abelian category C_X, we write $M \succ N$ if N is a subquotient of a finite coproduct of copies of M. For any object M of the category C_X, we denote by $[M]$ the full subcategory of C_X whose objects are all $L \in \text{Ob}C_X$ such that $M \succ L$. It follows that $M \succ N \iff [N] \subseteq [M]$. In particular, M and N are equivalent with respect to \succ (i.e.
$M \succ N \succ M$ iff $[M] = [N]$. Thus, the preorder $\langle \{[M] \mid M \in ObC_X\}, \supseteq \rangle$ is a canonical realization of the quotient of (ObC_X, \succ) by the equivalence relation associated with \succ.

1.2.1. Lemma. (a) For any object M of C_X, the subcategory $[M]$ is the smallest topologizing subcategory containing M.

(b) The smallest topologizing subcategory spanned by a family of objects S coincides with $\bigcup_{N \in S} [N]$, where S_Σ denotes the family of all finite coproducts of objects of S.

Proof. (a) Since \succ is a transitive relation, the subcategory $[M]$ is closed with respect to taking subquotients. If $M \succ M_i$, $i = 1, 2$, then $M \succ M \oplus M \succ M_1 \oplus M_2$, which shows that $[M]$ is closed under finite coproducts, hence it is topologizing. Clearly, any topologizing subcategory containing M contains the subcategory $[M]$.

(b) The union $\bigcup_{N \in S} [N]$ is contained in every topologizing subcategory containing the family S. It is closed under taking subquotients, because each $[N]$ has this property. It is closed under finite coproducts, because if $N_1, N_2 \in S_\Sigma$ and $N_i \succ M_i$, $i = 1, 2$, then $N_1 \oplus N_2 \succ M_1 \oplus M_2$. ■

For any subcategory (or a class of objects) S, we denote by $[S]$ (resp. by $[S]_c$) the smallest topologizing resp. coreflective topologizing subcategory containing S.

1.2.2. Proposition. Suppose that C_X is an abelian category with small coproducts. Then a topologizing subcategory of C_X is coreflective iff it is closed under small coproducts. The smallest coreflective topologizing subcategory spanned by a set of objects S coincides with $\bigcup_{N \in \tilde{S}} [N] = \bigcup_{N \in \tilde{S}} [N]$, where \tilde{S} is the family of all small coproducts of objects of S.

Suppose that C_X satisfies (AB4), i.e. it has infinite coproducts and the coproduct of a set of monomorphisms is a monomorphism. Then, for any object M of C_X, the smallest coreflective topologizing subcategory $[M]_c$ spanned by M is generated by subquotients of coproducts of sets of copies of M.

Proof. The argument is similar to that of 1.2.1 and left to the reader as an exercise. ■

1.3. Thick subcategories. A topologizing subcategory T of the category C_X is called thick if $T \bullet T = T$; in other words, T is thick iff it is closed
under extensions.

We denote by $\mathfrak{T}(X)$ the preorder of thick subcategories of C_X. For a thick subcategory \mathcal{T} of C_X, we denote by X/\mathcal{T} the quotient ‘space’ defined by $C_{X/\mathcal{T}} = C_X/\mathcal{T}$.

1.4. **Serre subcategories.** We recall the notion of a Serre subcategory of an abelian category as it is defined in [R, III.2.3.2]. For a subcategory \mathcal{T} of C_X, let \mathcal{T}^- denote the full subcategory of C_X generated by all objects L of C_X such that any nonzero subquotient of L has a nonzero subobject which belongs to \mathcal{T}.

1.4.1. **Proposition.** Let \mathcal{T} be a subcategory of C_X. Then

(a) The subcategory \mathcal{T}^- is thick.

(b) $(\mathcal{T}^-)^- = \mathcal{T}^-.$

(c) $\mathcal{T} \subseteq \mathcal{T}^-$ iff any subquotient of an object of \mathcal{T} is isomorphic to an object of \mathcal{T}.

Proof. See [R, III.2.3.2.1].

1.4.2. **Remark.** It follows from 1.4.1 and the (definition of \mathcal{T}^-) that, for any subcategory \mathcal{T} of an abelian category C_X, the associated Serre subcategory \mathcal{T}^- is the largest topologizing (or the largest thick) subcategory of C_X such that every its nonzero object has a nonzero subobject from \mathcal{T}.

1.4.3. **Definition.** A subcategory \mathcal{T} of an abelian category C_X is called a **Serre subcategory** if $\mathcal{T}^- = \mathcal{T}$. We denote by $\mathcal{S}(X)$ the preorder (with respect to \subseteq) of all Serre subcategories of C_X.

The following characterization of Serre subcategories turns to be quite useful.

1.4.4. **Proposition.** Let \mathcal{T} be a subcategory of an abelian category C_X closed under taking subquotients. The following conditions are equivalent:

(a) \mathcal{T} is a Serre subcategory.

(b) If \mathcal{S} is a subcategory of the category C_X which is closed under subquotients and is not contained in \mathcal{T}, then $\mathcal{S} \cap \mathcal{T}^\perp \neq 0$.

Proof. $(a) \Rightarrow (b)$. Let \mathcal{T} be a subcategory of C_X closed under taking quotients. By the definition of \mathcal{T}^-, an object M does not belong to \mathcal{T}^- iff it has a nonzero subquotient, L, which does not have a nonzero subobject from \mathcal{T}. Since \mathcal{T} is closed under taking quotients, the latter means precisely that $\text{Hom}(N, L) = 0$ for every $N \in \text{Ob}\mathcal{T}$, i.e. $L \in \text{Ob}\mathcal{T}^\perp$. Thus, M does not belong to \mathcal{T}^- iff it has a nonzero subquotient which belongs to \mathcal{T}^\perp.
(b) ⇒ (a). By the condition (b), if an object \(M \) does not belong to \(\mathcal{T} \), then it has a nonzero subquotient which belongs to \(\mathcal{T}^\perp \). But, by the observation above, this means that the object \(M \) does not belong to \(\mathcal{T}^\perp \). So that \(\mathcal{T}^\perp \subseteq \mathcal{T} \). The inverse inclusion holds, because \(\mathcal{T} \) is closed under taking subquotients (see 1.4.1(c)). ■

1.4.5. The property \((\text{sup})\). Recall that \(X \) (or the corresponding category \(C_X \)) has the property \((\text{sup})\) if for any ascending chain, \(\Omega \), of subobjects of an object \(M \), the supremum of \(\Omega \) exists, and for any subobject \(L \) of \(M \), the natural morphism

\[
sup(N \cap L \mid N \in \Omega) \rightarrow (\sup \Omega) \cap L
\]

is an isomorphism.

1.4.6. Coreflective thick subcategories and Serre subcategories. Recall that a full subcategory \(\mathcal{T} \) of a category \(C_X \) is called coreflective if the inclusion functor \(\mathcal{T} \hookrightarrow C_X \) has a right adjoint. In other words, each object of \(C_X \) has the largest subobject which belongs to \(\mathcal{T} \).

1.4.6.1. Lemma. Any coreflective thick subcategory is a Serre subcategory. If \(C_X \) has the property \((\text{sup})\), then any Serre subcategory of \(C_X \) is coreflective.

Proof. See [R, III.2.4.4]. ■

1.4.7. Proposition. Let \(C_X \) have the property \((\text{sup})\). Then for any thick subcategory \(\mathcal{T} \) of \(C_X \), all objects of \(\mathcal{T}^\perp \) are suprema of their subobjects contained in \(\mathcal{T} \).

Proof. Since \(C_X \) has the property \((\text{sup})\), the full subcategory \(\mathcal{T}_s \) of \(C_X \) whose objects are suprema of objects from \(\mathcal{T} \) is thick and coreflective, hence Serre, subcategory containing \(\mathcal{T} \) and contained in \(\mathcal{T}^\perp \). Therefore it coincides with \(\mathcal{T}^\perp \). ■

2. The spectrum \(\text{Spec}(X) \). We denote by \(\text{Spec}(X) \) the family of all nonzero objects \(M \) of the category \(C_X \) such that \(L \triangleright M \) for any nonzero subobject \(L \) of \(M \).

The spectrum \(\text{Spec}(X) \) of the ‘space’ \(X \) is the family of topologizing subcategories \(\{[M] \mid M \in \text{Spec}(X)\} \) endowed with the specialization preorder \(\supseteq \).
Let τ^r denote the topology on $\text{Spec}(X)$ associated with the specialization preorder: the closure of $W \subseteq \text{Spec}(X)$ consists of all $[M]$ such that $[M] \subseteq [M']$ for some $[M'] \in W$.

2.1. Proposition. (a) Every simple object of the category C_X belongs to $\text{Spec}(X)$. The inclusion $\text{Simple}(X) \hookrightarrow \text{Spec}(X)$ induces an embedding of the set of the isomorphism classes of simple objects of C_X into the set of closed points of $(\text{Spec}(X), \tau^r)$.

(b) If every nonzero object of C_X has a simple subquotient, then each closed point of $(\text{Spec}(X), \tau^r)$ is of the form $[M]$ for some simple object M of the category C_X.

Proof. (a) If M is a simple object, then $\text{Ob}[M]$ consists of all objects isomorphic to coproducts of finite number of copies of M. In particular, if M and N are simple objects, then $[M] \subseteq [N]$ iff $M \simeq N$.

(b) If L is a subquotient of M, then $[L] \subseteq [M]$. If $[M]$ is a closed point of $\text{Spec}(X)$, this implies the equality $[M] = [L]$. ■

Notice that the notion of a simple object of an abelian category is selfdual, i.e. $\text{Simple}(X) = \text{Simple}(X^o)$, where X^o is the dual ‘space’ defined by $C_X^o = C_X^{op}$. In particular, the map $M \mapsto [M]$ induces an embedding of isomorphism classes of simple objects of C_X into the intersection $\text{Spec}(X) \cap \text{Spec}(X^o)$.

2.1.1. Proposition. If the category C_X has enough objects of finite type, then the set of closed points of $\text{Spec}(X)$ coincides with $\text{Spec}(X) \cap \text{Spec}(X^o)$.

Proof. Since every nonzero object of C_X has a nonzero subobject of finite type, $\text{Spec}(X)$ consists of $[M]$ such that M is of finite type and belongs to $\text{Spec}(X)$. On the other hand, if M is of finite type and $[M]$ belongs to $\text{Spec}(X^o)$, then $[M] = [M_1]$, where M_1 is a simple quotient of M. Hence the assertion. ■

2.2. Supports of objects. For any object M of the category C_X, the support of M is defined by $\text{Supp}(M) = \{Q \in \text{Spec}(X) \mid Q \subseteq [M]\}$. This notion enjoys the usual properties:

2.2.1. Proposition. (a) If $0 \to M' \to M \to M'' \to 0$, is a short exact sequence, then

$\text{Supp}(M) = \text{Supp}(M') \cup \text{Supp}(M'')$.
(b) Suppose the category C_X has the property (sup). Then

(b1) If M is the supremum of a filtered system $\{M_i \mid i \in J\}$ of its subobjects, then

$$\text{Supp}(M) = \bigcup_{i \in J} \text{Supp}(M_i).$$

(b2) As a consequence of (a) and (b1), we have

$$\text{Supp}\left(\bigoplus_{i \in J} M_i \right) = \bigcup_{i \in J} \text{Supp}(M_i).$$

Proof. (a) Since $[M'] \subseteq [M] \supseteq [M'']$, we have the inclusion

$$\text{Supp}(M') \cup \text{Supp}(M'') \subseteq \text{Supp}(M).$$

In order to show the inverse inclusion, notice that for any object L of the subcategory $[M]$, there exists an exact sequence $0 \rightarrow L' \rightarrow L \rightarrow L'' \rightarrow 0$ such that L' is an object of $[M']$ and L'' belongs to $[M'']$. This follows from the fact that L is a subquotient of a coproduct M^\oplus_n of n copies of M the related commutative diagram

$$
\begin{array}{cccccc}
0 & \longrightarrow & M'^{\oplus n} & \longrightarrow & M^{\oplus n} & \longrightarrow & M''^{\oplus n} & \longrightarrow & 0 \\
& & \uparrow & & \uparrow \text{cart} & & \uparrow & & \\
0 & \longrightarrow & K' & \longrightarrow & K & \longrightarrow & K'' & \longrightarrow & 0 \\
& & \downarrow & & \downarrow & & \downarrow & & \\
0 & \longrightarrow & L' & \longrightarrow & L & \longrightarrow & L'' & \longrightarrow & 0
\end{array}
$$

whose rows are exact sequences, the upper vertical arrows are monomorphisms, the lower ones epimorphisms, and the left upper square is cartesian.

Now if $[L] \in \text{Spec}(X)$ and the object L' in the diagram (1) is nonzero, then, by the definition of the spectrum, $[L'] = [L]$, hence $[L] \in \text{Supp}(M')$. If $L' = 0$, then the arrow $L \longrightarrow L''$ is an isomorphism, in particular, $[L] = [L''] \in \text{Supp}(M'')$.

(b1) The inclusion $\text{Supp}(M) \supseteq \bigcup_{i \in J} \text{Supp}(M_i)$ is obvious. It follows from the property (sup) that if an object L is a nonzero subquotient of M^\oplus_n for some n, then it contains a nonzero subobject, L', which is a subquotient of M_i for some $i \in J$. If $[L] \in \text{Spec}(X)$, this implies that $[L'] = [L'] \in \text{Supp}(M_i)$.

(b2) If J is finite, the assertion follows from (a). If J is infinite, it is a consequence of (a) and (b1). ■
2.3. Topologies on $\text{Spec}(X)$. Let Ξ be a class of objects of C_X closed under finite coproducts. For any set E of objects of X, let $\mathcal{V}(E)$ denote the intersection $\bigcap_{M \in E} \text{Supp}(M)$. Then, for any family $\{E_i \mid i \in J\}$ of such sets, we have, evidently,

$$\mathcal{V}\left(\bigcup_{i \in J} E_i\right) = \bigcap_{i \in J} \mathcal{V}(E_i).$$

It follows from the equality $\text{Supp}(M \oplus N) = \text{Supp}(M) \cup \text{Supp}(N)$ (see 2.2.1(a)) that $\mathcal{V}(E \oplus \tilde{E}) = \mathcal{V}(E) \cup \mathcal{V}(\tilde{E})$. Here $E \oplus \tilde{E} \overset{\text{def}}{=} \{M \oplus N \mid M \in E, N \in \tilde{E}\}$.

This shows that $\text{Spec}(X)$, \emptyset, and the subsets $\mathcal{V}(E)$ of $\text{Spec}(X)$, where E runs through subsets of Ξ, form the family of all closed sets of a topology, τ_Ξ, on $\text{Spec}(X)$.

2.4. Zariski topology on the spectrum. Notice that the class $\Xi_1(X)$ of objects of finite type is closed under finite coproducts, hence it defines a topology on $\text{Spec}(X)$ which we denote by τ_1.

2.4.1. Example. Let R be a commutative unital ring and C_X the category $R - \text{mod}$ of R-modules. Then $\text{Spec}(X)$ is isomorphic to the prime spectrum $\text{Spec}(R)$ of the ring R and the topology τ_1 corresponds to the Zariski topology on $\text{Spec}(R)$.

2.4.2. Zariski topology. If the category C_X has enough objects of finite type, we shall call the topology τ_1 on $\text{Spec}(X)$ the Zariski topology.

2.4.3. Note. There is a general definition of Zariski topology which does not require finiteness conditions on the category C_X.

2.5. Complement: topologizing subcategories and topologies on the spectrum. There is another, more universal, way to define topologies on $\text{Spec}(X)$.

2.5.1. Lemma. Let \mathcal{M} be a family of topologizing subcategories of an abelian category C_X which contains C_X, the zero subcategory, is closed under arbitrary intersections and such that for any pair T_1, T_2 of elements of \mathcal{M}, there exists $T_3 \in \mathcal{M}$ such that $T_1 \cup T_2 \subseteq T_3 \subseteq (T_1 \cup T_2)^\circ$. Then $\tau_\mathcal{M} = \{\mathcal{V}(T) = \text{Spec}(|T|) \mid T \in \mathcal{M}\}$ is a set of closed subsets of a topology, $\tau_\mathcal{M}$.

Proof. In fact, for any set $\{T_i \mid i \in J\}$ of topologizing subcategories of
the category C_X, we have

$$\mathcal{V}(\bigcap_{i \in J} T_i) = \bigcap_{i \in J} \mathcal{V}(T_i).$$

(1)

If T_1, T_2 and T_3 are topologizing subcategories of C_X such that

$$T_1 \cup T_2 \subseteq T_3 \subseteq (T_1 \cup T_2)^-,$$

then $\mathcal{V}(T_3) = \mathcal{V}(T_1) \cup \mathcal{V}(T_2)$. This is a consequence of the inclusions $\mathcal{V}(T_1) \cup \mathcal{V}(T_2) \subseteq \mathcal{V}(T_3) \subseteq \mathcal{V}((T_1 \cup T_2)^-)$ following from (2) and the equality $\mathcal{V}(T) = \mathcal{V}(T^-)$ which holds for any topologizing subcategory T. ■

2.5.2. A special case. Let Ξ be a set of objects of an abelian category C_X closed under finite coproducts. We set $\mathcal{W}_\Xi = \{[M]|M \in \Xi\}$ and denote by \mathcal{W}_Ξ the set consisting of C_X, 0, and of intersections of arbitrary subfamilies of \mathcal{W}_Ξ. The set of topologizing subcategories \mathcal{W}_Ξ satisfies the conditions of 2.5.1, and the topology it defines coincides with the topology τ_Ξ introduced in 2.3.

2.5.3. Monoids of topologizing subcategories and associated topologies on the spectrum. Let \mathcal{W} be a set of topologizing subcategories of C_X containing C_X and the the zero subcategory 0 and closed under the Gabriel multiplication and arbitrary intersections. Then \mathcal{W} satisfies the conditions of 2.5.1, because for any pair of topologizing subcategories T_1, T_2, their Gabriel product $T_1 \cdot T_2$ contains $T_1 \cup T_2$ and is contained in the Serre subcategory $(T_1 \cup T_2)^-$ generated by $T_1 \cup T_2$.

Taking as \mathcal{W} the monoid $\mathcal{I}(X)$ of all topologizing subcategories of C_X, we recover the topology τ^0 on $\text{Spec}(X)$ associated with the specialization preorder \geq: the closure of a subset of the spectrum consists of all specializations of the elements of this subset. This is the finest among the reasonable topologies on the spectrum.

The map $\Phi \mapsto \tau_\Phi$ is a surjective map from the family of full monoidal subcategories of $(\mathcal{I}(X), \cdot)$ closed under arbitrary intersections onto the set of topologies on $\text{Spec}^0(X)$ which are coarser than the topology τ^0 corresponding to $\mathcal{I}(X)$.

2.5.4. The coarse Zariski topology. Recall that a full subcategory \mathcal{T} of C_X is reflective if the inclusion functor $\mathcal{T} \hookrightarrow C_X$ has a left adjoint. Suppose that the category C_X has supremums of sets of subobjects (for instance, C_X has infinite coproducts). Then, by [R, III.6.2.2], the intersection of any set of
reflective topologizing subcategories is a reflective topologizing subcategory. Taking as \(\mathcal{W} \) the subcategory \(\mathcal{Z}^c(X) \) of reflective topologizing subcategories, we obtain the coarse Zariski topology on \(\text{Spec}(X) \) which we denote by \(\tau_3 \).

2.5.4.1. Proposition. Suppose \(C_X \) has the property \((\text{sup}) \) and a generator of finite type. Then the topological space \((\text{Spec}(X), \tau_3) \) is quasi-compact.

Proof. See [R, III.6.5.2.1]. ■

2.5.4.2. Example: the coarse Zariski topology on an affine noncommutative scheme. Let \(C_X \) be the category \(R - \text{mod} \) of left modules over an associative unital ring \(R \). For every two-sided ideal \(\alpha \) in \(R \), let \(\mathbb{T}_\alpha \) denote the full subcategory of \(R - \text{mod} \) whose objects are modules annihilated by the ideal \(\alpha \). By [R, III.6.4.1], the map \(\alpha \mapsto \mathbb{T}_\alpha \) is an isomorphism of the preorder \((I(R), \subseteq) \) of two-sided ideals of the ring \(R \) onto \((\mathcal{Z}^c(X), \subseteq) \). Moreover, \(\mathbb{T}_\alpha \circ \mathbb{T}_\beta = \mathbb{T}_{\alpha \beta} \) for any pair of two-sided ideals \(\alpha, \beta \). This means that the map \(\alpha \mapsto \mathbb{T}_\alpha \) is an isomorphism of monoidal categories (preorders), where the monoidal structure on \(I(R) \) is the multiplication of ideals. Note by passing that it follows from this description that every reflective topologizing subcategory of \(C_X = R - \text{mod} \) is coreflective.

One of the consequences of 2.5.4.1 is that the topological space \((\text{Spec}(X), \tau_3) \) is quasi-compact. This fact is a special case of a more precise assertion: an open subset \(\mathcal{U} \) of the space \((\text{Spec}(X), \tau_3) \) is quasi-compact iff \(\mathcal{U} = U(\mathbb{T}_\alpha) = \text{Spec}(X) - V(\mathbb{T}_\alpha) \) for a finitely generated two-sided ideal \(\alpha \) of the ring \(R \). Two different proofs of this theorem can be found in [R], I.5.6 and III.6.5.3.1. One of its consequences is that quasi-compact open sets form a base of the Zariski topology on \(\text{Spec}(X) \). In fact, every two-sided ideal \(\alpha \) is the supremum of a set \(\{ \alpha_i \mid i \in J \} \) of its two-sided subideals, so that \(U(\mathbb{T}_\alpha) = U(\text{sup}(\mathbb{T}_{\alpha_i} \mid i \in J)) = \bigcup_{i \in J} U(\mathbb{T}_{\alpha_i}) \).

2.5.4.3. Note. Let \(C_X = R - \text{mod} \) for an associative ring \(R \). Then the sets \(\text{Supp}(R/n) = \mathcal{V}([R/n]) \), where \(n \) runs through the set \(I_\ell(R) \) of all left ideals of the ring \(R \), form a base of Zariski closed sets on \(\text{Spec}(X) \). By 2.5.4.2, closed sets of the coarse Zariski topology are precisely the sets \(\text{Supp}(R/\alpha) \), where \(\alpha \) runs through the set \(I(R) \) of all two-sided ideals of \(R \). This shows that the coarse Zariski topology is, indeed, coarser than the Zariski topology on the spectrum, and these topologies coincide if the ring \(R \) is commutative. One can show that they coincide if \(R \) is a PI ring.

Unfortunately, the coarse Zariski topology is trivial, or too coarse in many important examples of noncommutative affine schemes. Thus, the
coarse Zariski on the spectrum of $X = \text{Sp}(R)$ is trivial iff R is a simple ring (i.e. it does not have non-trivial two-sided ideals). In particular, it is trivial if C_X is the category of D-modules on the affine space \mathbb{A}^n, because the algebra A_n of differential operators on \mathbb{A}^n is simple. The coarse Zariski topology on $\text{Spec}(X)$ is non-trivial, but not sufficiently rich, when C_X is the category of representations of a semisimple Lie algebra over a field of characteristic zero.

3. Local ‘spaces’ and $\text{Spec}^-(\cdot)$.

3.1. Local ‘spaces’. A ‘space’ X and the representing it abelian category C_X are called local if C_X has the smallest nonzero topologizing subcategory, C_{X_1}.

It follows that C_{X_1} is the only closed point of $\text{Spec}(X)$.

3.1.1. Proposition. Let X be local, and let the category C_X have simple objects. Then all simple objects of C_X are isomorphic to each other, and every nonzero object of C_{X_1} is a finite coproduct of copies of a simple object.

Proof. In fact, if M is a simple object in C_X, then $[M]$ is a closed point of $\text{Spec}(X)$. If X is local, this closed point is unique. Therefore, objects of C_{X_1} are finite coproducts of copies of M (see the argument of 2.1). ■

3.1.2. The residue ‘space’ of a local ‘space’. Let X be local ‘space’ and C_{X_1} the smallest non-trivial topologizing subcategory of the category C_X. We regard the inclusion functor $C_{X_1} \hookrightarrow C_X$ as an inverse image functor of a morphism of ‘spaces’ $X \rightarrow X_1$ and call X_1 the residue ‘space’ of X.

3.1.3. The residue skew field of a local ‘space’. Suppose that X is a local ‘space’ such that the category C_X has a simple object, M. We denote by k_X the ring $C_X(M, M)^\circ$ opposite to the ring of endomorphisms of the object M. Since M is simple, k_X is a skew field which we call the residue skew field of the local ‘space’ X. It follows from 3.1.1 that the residue skew field of X (if any) is defined uniquely up to isomorphism.

It follows that the residue category C_{X_1} of the ‘space’ X is naturally equivalent to the category of finitely dimensional k_X-vector spaces.

3.2. $\text{Spec}^-(X)$. By definition, $\text{Spec}^-(X)$ is formed by all Serre subcategories \mathcal{P} of C_X such that X/\mathcal{P} is a local ‘space’. It is endowed with the specialization preorder \supseteq.
We define the support of an object M of C_X in $\textbf{Spec}^-(X)$ as the set $\text{Supp}^-(M)$ of all $P \in \text{Spec}^-(X)$ which do not contain M, or, equivalently, the localization of M at P is nonzero. We leave as an exercise proving the analogue of 2.2.1 for $\text{Supp}^-(\cdot)$.

3.2.1. Zariski topology

We introduce the Zariski topology, τ_Zar, on $\text{Spec}^-(X)$ (in the case when C_X has enough objects of finite type) the same way as the Zariski topology on $\text{Spec}(X)$: its closed sets are the intersections of supports of objects of finite type.

3.2.2. Remark on topologies on $\text{Spec}^-(X)$

For any (topologizing) subcategory T of C_X, we set $\mathcal{V}^-(T) = \{ P \in \text{Spec}^-(X) \mid T \not\subseteq P \}$. If $T = [M]$ for an object M, then the set $\mathcal{V}^-(T)$ coincides with the support $\text{Supp}^-(M)$ of the object M. There is an analogue of 2.5.1 for the sets $\mathcal{V}^-(T)$. In particular, any submonoid \mathfrak{M} of the monoid $(\mathcal{T}(X), \bullet)$ of topologizing subcategories of C_X which is closed under arbitrary intersections determines a topology $\tau_{\mathfrak{M}}$ on $\text{Spec}^-(X)$ whose closed sets are $\mathcal{V}^-(T)$, where T runs through \mathfrak{M}. And all “reasonable” topologies on $\text{Spec}^-(X)$ are of this form (see 2.5.3). In particular, taking the submonoid $\mathcal{T}^r(X)$ of reflective topologizing subcategories of C_X (and assuming that C_X has suprema of sets of subobjects), we obtain the coarse Zariski topology τ^Zar on $\text{Spec}^-(X)$ (similar to 2.5.4). Details are left to the reader.

3.2.3. Indecomposable injectives and $\text{Spec}^-(\cdot)$

If C_X is a Grothendieck category with Gabriel-Krull dimension (say, C_X is locally noetherian), then the elements of $\text{Spec}^-(X)$ are in bijective correspondence with the set of isomorphism classes of indecomposable injectives of the category C_X. The bijective correspondence is given by the map which assigns to every indecomposable injective E of C_X its left orthogonal – the full subcategory $\perp E$ generated by all objects M of C_X such that $C_X(M, E) = 0$.

In other words, $\text{Spec}^-(X)$ is isomorphic to the Gabriel spectrum of the category C_X.

An advantage of $\text{Spec}^-(X)$ is that it makes sense for all abelian categories, even those which do not have indecomposable injectives at all. For instance, if C_X is the category of coherent sheaves on a noetherian scheme, then its Gabriel spectrum is empty, while $\text{Spec}^-(X)$ coincides with $\text{Spec}(X)$ and is homeomorphic to the underlying topological space of the scheme.

3.3. $\text{Spec}(X)$, $\text{Spec}^1(X)$, and $\text{Spec}^-(X)$

For any subcategory P of C_X, we denote by P^t the intersection of all topologizing subcategories
of C_X properly containing \mathcal{P}. Let $\text{Spec}^{1,1}_t(X)$ denote the set of all Serre subcategories \mathcal{P} of C_X such that $\mathcal{P}^t \neq \mathcal{P}$.

3.3.1. Proposition. $\text{Spec}^{1,1}_t(X)$ consists of all topologizing subcategories \mathcal{P} such that $\mathcal{P}_t \text{ def } \mathcal{P}^t \cap \mathcal{P}^\perp$ is nonzero.

Proof. If $\mathcal{P} \in \text{Spec}^{1,1}_t(X)$, i.e. \mathcal{P} is a Serre subcategory of C_X which is properly contained in \mathcal{P}^t, then it follows from 1.4.4 that $\mathcal{P}_t \neq 0$.

Suppose now that \mathcal{P} is a topologizing subcategory of C_X such that $\mathcal{P}_t \neq 0$. We claim that then \mathcal{P} is a Serre subcategory, i.e. $\mathcal{P} = \mathcal{P}^\perp$.

In fact, let \mathcal{S} be a topologizing subcategory of C_X which is not contained in \mathcal{P}. Then $\mathcal{P} \circ \mathcal{S}$ contains \mathcal{P}_t properly and $(\mathcal{P} \circ \mathcal{S}) \cap \mathcal{P}^\perp \subseteq \mathcal{S}$. In particular, $\mathcal{P}_t \subseteq \mathcal{S}$. Since $\mathcal{P}_t \neq 0$, this implies that \mathcal{S} is not contained in \mathcal{P}^\perp. This (and 1.4.2) shows that $\mathcal{P}^\perp = \mathcal{P}^\perp$.

For any subcategory \mathcal{Q} of the category C_X, we denote by $\widehat{\mathcal{Q}}$ the union of all topologizing subcategories of C_X which do not contain \mathcal{Q}. It is easy to see, that for a pair $\mathcal{Q}_1, \mathcal{Q}_2$ topologizing subcategories, $\mathcal{Q}_1 \subseteq \mathcal{Q}_2$ iff $\widehat{\mathcal{Q}_1} \subseteq \widehat{\mathcal{Q}_2}$.

If \mathcal{Q} has one object, L, the subcategory $\widehat{\mathcal{Q}}$ is the union of all topologizing subcategories of C_X which do not contain L. We shall write $\langle L \rangle$ instead of $\widehat{\mathcal{Q}}$.

3.3.2. Proposition. (a) $\text{Spec}^{1,1}_t(X) \subseteq \text{Spec}^\perp(X)$.

(b) For any $\mathcal{Q} \in \text{Spec}(X)$, the subcategory $\widehat{\mathcal{Q}}$ is an element of $\text{Spec}^{1,1}_t(X)$ and the map

$$\text{Spec}(X) \longrightarrow \text{Spec}^{1,1}_t(X), \quad \mathcal{Q} \mapsto \widehat{\mathcal{Q}},$$

is an isomorphism of preorders.

Proof. (a) If $\mathcal{P} \in \text{Spec}^{1,1}_t(X)$, then $\mathcal{P}^t / \mathcal{P}$ is contained in and equivalent to the smallest nonzero topologizing subcategory of C_X / \mathcal{P}.

(b1) If $\mathcal{Q} \in \text{Spec}(X)$, then $\widehat{\mathcal{Q}}$ is a Serre subcategory.

In fact, suppose that $\widehat{\mathcal{Q}} \neq \mathcal{Q}^\perp$, and let M be an object of \mathcal{Q}^\perp which does not belong to its subcategory \mathcal{Q}. The latter means that $\mathcal{Q} \subseteq [M]$. Let $\mathcal{Q} = [L]$ for some $L \in \text{Spec}(X)$ (cf. 2). The inclusion $\mathcal{Q} \subseteq [M]$ means that L is a subquotient of a coproduct of a finite number, $M^{\oplus n}$, of copies of M. Since $M^{\oplus n}$ is an object of \mathcal{Q}^\perp, the object L has a nonzero subobject N which belongs to \mathcal{Q}; i.e. $\mathcal{Q} \nsubseteq [N]$. But, since $L \in \text{Spec}(X)$, the subcategories $[N]$ and $[L] = \mathcal{Q}$ coincide. Contradiction.
(b2) It follows from the definition of \(\hat{Q} \) that, for any subcategory \(Q \), the subcategory \(\hat{Q} \mathord{\text{tr}} \) coincides with the intersection of all topologizing subcategories of \(C_X \) containing \(\hat{Q} \cup Q \). In particular, \(\hat{Q} \) belongs to \(\text{Spec}^{1,1}_t(X) \) whenever \(\hat{Q} \) is a Serre subcategory. Together with (b1), this shows that the assignment \(Q \mapsto \hat{Q} \) induces a map \(\text{Spec}(X) \to \text{Spec}^{1,1}_t(X) \).

(b3) Let \(\mathcal{P} \in \text{Spec}^{1,1}_t(X) \). It follows from 3.3.1 that \(\mathcal{P} \neq \emptyset \). Moreover, by the argument of 3.3.1, if \(T \) is a topologizing subcategory of \(C_X \) such that \(T \nsubseteq \mathcal{P} \), then \(\mathcal{P}_t = \mathcal{P} \cap \mathcal{P}^\perp \subseteq T \).

(c) Let \(\mathcal{P} \in \text{Spec}^{1,1}_t(X) \). Every nonzero object of \(\mathcal{P}_t = \mathcal{P} \cap \mathcal{P}^\perp \) belongs to \(\text{Spec}(X) \).

Let \(L \) be a nonzero object of \(\mathcal{P}_t \) and \(L_1 \) its nonzero subobject of, hence \([L_1] \subseteq [L] \). If \([L_1] \nsubseteq [L] \), then it follows from (b3) above that \([L_1] \subseteq \mathcal{P} \), or, equivalently, \(L_1 \in \text{Ob}\mathcal{P} \). This contradicts to the assumption that the object \(L \) is \(\mathcal{P} \)-torsion free.

(d) Let \(\mathcal{P} \in \text{Spec}^{1,1}_t(X) \). Then \(\mathcal{P} = \langle L \rangle \) for any nonzero object of \(\mathcal{P}_t = \mathcal{P} \cap \mathcal{P}^\perp \).

Let \(L \) be a nonzero object of \(\mathcal{P}_t \). Since \(L \) does not belong to the Serre subcategory \(\langle L \rangle \), by (b3), we have the inclusion \(\langle L \rangle \subseteq \mathcal{P} \). On the other hand, if \(\langle L \rangle \nsubseteq \mathcal{P} \), then \(L \in \text{Ob}\mathcal{P} \) which is not the case. Therefore \(\mathcal{P} = \langle L \rangle \).

(e) The topologizing subcategory \(\mathcal{P}_t \) coincides with the subcategory \([L] \) for any nonzero object \(L \) of \(\mathcal{P}_t \).

Clearly \([L] \subseteq [\mathcal{P}_t] \) for any \(L \in \text{Ob}\mathcal{P}_t \). By (b3), if \(\mathcal{P}_t \nsubseteq [L] \), then \([L] \subseteq \mathcal{P} \), hence \(L = 0 \).

Since, by (c), every nonzero object of \(\mathcal{P}_t \) belongs to \(\text{Spec}(X) \), this shows that \(\mathcal{P}_t \) is an element of \(\text{Spec}(X) \).

(f) It follows from the argument above that the map

\[
\text{Spec}(X) \to \text{Spec}^{1,1}_t(X), \quad Q \mapsto \hat{Q},
\]

is inverse to the map \(\text{Spec}^{1,1}_t(X) \to \text{Spec}(X) \) which assigns to every \(\mathcal{P} \) the topologizing subcategory \([\mathcal{P}_t] \).

3.3.2.1. Note. Let \(\mathfrak{M} \) be a submonoid of the monoid \((\mathfrak{T}(X), \bullet) \) of topologizing subcategories of the category \(C_X \) which is closed under arbitrary intersections. Let \(\tau^{1,1}_{\mathfrak{M}} \) denote the topology on \(\text{Spec}^{1,1}_t(X) \) induced by the topology \(\tau^{1,1}_{\mathfrak{M}} \) on \(\text{Spec}^1(X) \) (cf. 3.2.2). Then the map \(\text{Spec}(X) \to \text{Spec}^{1,1}_t(X) \) of 3.3.2 is an isomorphism from the topological space \(\text{Spec}(X, \tau^{1,1}_{\mathfrak{M}}) \) (defined in 2.5.1) and \(\text{Spec}^{1,1}_t(X, \tau^{1,1}_{\mathfrak{M}}) \).
3.3.3. The difference between $\text{Spec}_{1,1}^X(X)$ and $\text{Spec}^-(X)$. If $C_X = R - \text{mod}$, where R is a commutative noetherian ring, then the map which assigns to each prime ideal p of R the isomorphism class of the injective hull of R/p is an isomorphism between the Gabriel spectrum of C_X (hence $\text{Spec}^-(X)$) and the prime spectrum of the ring R [Gab, Ch.VI]. In this case, $\text{Spec}_{1,1}^X(X) = \text{Spec}^-(X)$, i.e. the map $\mathcal{Q} \rightarrow \hat{\mathcal{Q}}$ is an isomorphism between $\text{Spec}(X)$ and $\text{Spec}^-(X)$.

If R is a non-noetherian commutative ring, $\text{Spec}^-(X)$ might be much bigger than (the image of) the prime spectrum of R, while $\text{Spec}(X)$ (hence $\text{Spec}_{1,1}^X(X)$) is naturally isomorphic to $\text{Spec}(R)$: the isomorphism is given by the map which assigns to a prime ideal p the topologizing subcategory $[R/p]$; the inverse map assigns to $\mathcal{Q} = [M]$ the annihilator of the module M.

4. ‘Locality’ theorems.

4.1. Proposition. Let $\{T_i \mid i \in J\}$ be a finite set of thick subcategories of an abelian category C_X such that $\bigcap_{i \in J} T_i = 0$; and let u_i^* be the localization functor $C_X \rightarrow C_X/T_i$. The following conditions on a nonzero coreflective topologizing subcategory \mathcal{Q} of C_X are equivalent:

(a) $\mathcal{Q} \in \text{Spec}(X)$,
(b) $[u_i^*(\mathcal{Q})] \in \text{Spec}(X/T_i)$ for every $i \in J$ such that $\mathcal{Q} \not\subset T_i$.

Here $[u_i^*(\mathcal{Q})]$ denote the topologizing subcategory of C_X/T_i spanned by $u_i^*(\mathcal{Q})$.

Proof. The assertion follows from [R4, 9.6.1].

4.1.1. Note. The condition (b) of 4.1 can be reformulated as follows:

(b’) For any $i \in J$, either $u_i^*(\mathcal{Q}) = 0$, or $[u_i^*(\mathcal{Q})] \in \text{Spec}(X/T_i)$.

4.2. Proposition. Let C_X be an abelian category and $\mathcal{U} = \{U_i \xrightarrow{u_i} X \mid i \in J\}$ a finite set of continuous morphisms such that $\{C_X \xrightarrow{u_i} C_{U_i} \mid i \in J\}$ is a conservative family of exact localizations.

(a) The morphisms $U_{ij} = U_i \cap U_j \xrightarrow{u_{ij}} U_i$ are continuous for all $i, j \in J$.
(b) Let L_i be an object of $\text{Spec}(U_i)$; i.e. $[L_i]_c \in \text{Spec}(U_i)$ and L_i is $\langle L_i \rangle$-torsion free. The following conditions are equivalent:

(i) $L_i \simeq u_i^*(L)$ for some $L \in \text{Spec}(X)$;
(ii) for any $j \in J$ such that $u_{ij}^*(L_i) \neq 0$, the object $u_{ji}^* u_{ij}^*(L_i)$ of C_{U_j} has an associated point; i.e. it has a subobject L_{ij} which belongs to $\text{Spec}(U_j)$.

Proof. The assertion follows from 4.1 (see [R4, 9.7.1]).
4.3. **Examples.** (a) If $C_{\mathcal{X}}$ is the category of quasi-coherent sheaves on a quasi-compact quasi-separated scheme \mathcal{X} and each U_i is the category of quasi-coherent sheaves on an open subscheme of \mathcal{X}, then the glueing conditions of 4.2 hold for any $L_i \in \text{Spec}(U_i)$; i.e. the spectrum $\text{Spec}(X)$ is naturally identified with $\bigcup_{i \in J} \text{Spec}(U_i)$.

(b) Similarly, if $C_{\mathcal{X}}$ is the category of holonomic D-modules over a sheaf of twisted differential operators on a smooth quasi-compact scheme \mathcal{X}, and $\{U_i \xrightarrow{u_i} X \mid i \in J\}$ is a cover of X corresponding to an open Zariski cover of \mathcal{X}, then $\text{Spec}(X) = \bigcup_{i \in J} \text{Spec}(U_i)$.

This is due to functoriality of sheaves of holonomic modules with respect to direct and inverse image functors of open immersions and the fact that holonomic modules are of finite length (hence they have associated closed points).

4.4. **Proposition.** Let $C_{\mathcal{X}}$ be an abelian category and $\mathcal{U} = \{U_i \xrightarrow{u_i} X \mid i \in J\}$ a finite set of morphisms of ‘spaces’ whose inverse image functors, $\{C_{\mathcal{X}} \xrightarrow{u_i^*} C_{U_i} \mid i \in J\}$, form a conservative family of exact localizations, and $\text{Ker}(u_i^*)$ is a coreflective subcategory for every $i \in J$. Then $\text{Spec}^{-}(X) = \bigcup_{i \in J} \text{Spec}^{-}(U_i)$.

Proof. The equality is proven in [R4, 9.5]. ■

5. **Noncommutative k-schemes.**

5.1. **Affine k-spaces.** Let k be a (not necessarily commutative) associative unital ring. A k-‘space’ is a continuous morphism $X \xrightarrow{f} \text{Sp}(k)$, where continuous means that its inverse image functor, $k - \text{mod} \xrightarrow{f^*} C_{\mathcal{X}}$ has a right adjoint, $f_* -$ the direct image functor of f. The object $\mathcal{O} = f^*(k)$ plays the role of the structure sheaf on X. The k-space $X \xrightarrow{f} \text{Sp}(k)$ is *affine* if the direct image functor f_* is conservative (reflects isomorphisms) and has a right adjoint, $f^!$. Equivalently, the object \mathcal{O} is a projective generator of finite type.

5.2. **Noncommutative schemes.** Consider a k-‘space’ $(X, X \xrightarrow{f} \text{Sp}(k))$ for which there exists a family $\{T_i \mid i \in J\}$ of Serre subcategories of $C_{\mathcal{X}}$ such that $\bigcap_{i \in J} T_i = 0$ and the compositions of $X/T_i \rightarrow X$ and $X \xrightarrow{f}$
Sp(k) are affine for all \(i \in J \); i.e. \((X, f)\) is a weak scheme in the sense of I.2.2.

This weak scheme is a scheme, if for every \(i \in J \), the set

\[
\mathcal{V}^-(T_i) \overset{\text{def}}{=} \{ \mathcal{P} \in \text{Spec}^-(X) \mid T_i \not\subseteq \mathcal{P} \}
\]

is closed in Zariski topology.

6. Complement: Zariski geometric center and reconstruction of schemes.

6.1. The center of a category and localizations. Recall that the center, \(Z(C_Y) \), of a svelte additive category \(C_Y \) is the ring of endomorphisms of its identical functor. If \(C_Y \) is a category of left modules over a ring \(R \), then the center of \(C_Y \) is naturally isomorphic to the center of the ring \(R \).

6.1.1. Proposition. Let \(C_X \) be an abelian category and \(\tau \) a topology on \(\text{Spec}(X) \). The map \(\mathcal{O}_{X, \tau} \) which assigns to every open subset \(W \) of \(\text{Spec}(X) \) the center of the quotient category \(C_X / S_W \), where \(S_W = \bigcap_{\mathcal{Q} \in W} \hat{\mathcal{Q}} \) is a presheaf of commutative rings on \((\text{Spec}(X), \tau) \).

Proof. This follows from a general (and easily verified) fact that the map which assigns to a svelte category its center is functorial with respect to localization functors.

6.2. Zariski geometric center. Given a topology \(\tau \) on \(\text{Spec}(X) \), we denote by \(\mathcal{O}_{X, \tau} \) the sheaf associated with the presheaf \(\mathcal{O}_{X, \tau} \). The ringed space \((\text{Spec}(X), \tau, \mathcal{O}_{X, \tau}) \) is called the geometric center of \((X, \tau) \). If \(\tau \) is the Zariski topology, then we write simply \((\text{Spec}(X), \mathcal{O}_X) \) and call this ringed space the Zariski geometric center of \(X \).

6.2.1. Proposition. Suppose that the category \(C_X \) has enough objects of finite type. Then the Zariski geometric center of \(X \) is a locally ringed topological space.

Proof. Under the conditions, one can show that the stalk of the sheaf \(\mathcal{O}_X \) at a point \(\mathcal{Q} \) of the spectrum is isomorphic to the center of the local category \(C_X / \hat{\mathcal{Q}} \). On the other hand, the center of any local category (in particular, the center of \(C_X / \hat{\mathcal{Q}} \)) is a local ring (see [R, Ch. III]).
6.3. Commutative schemes which can be reconstructed from their categories of quasi-coherent or coherent sheaves. Let \(X = (\mathcal{X}, \mathcal{O}_\mathcal{X}) \) be a ringed topological space and \(U = (\mathcal{U}, \mathcal{O}_\mathcal{U}) \) an open immersion. Then the morphism \(j \) has an exact inverse image functor \(j^* \) and a fully faithful direct image functor \(j_* \). This implies that \(\text{Ker}(j^*) \) is a Serre subcategory of the category \(\mathcal{O}_X - \text{Mod} \) of sheaves of \(\mathcal{O}_X \)-modules and the unique functor

\[
\mathcal{O}_X - \text{Mod}/\text{Ker}(j^*) \longrightarrow \mathcal{O}_U - \text{Mod}
\]

induced by \(j^* \) is an equivalence of categories [Gab, III.5].

Suppose now that \(X = (\mathcal{X}, \mathcal{O}_\mathcal{X}) \) is a scheme and \(\text{Qcoh}_X \) the category of quasi-coherent sheaves on \(X \). The inverse image functor \(j^* \) of the immersion \(j \) maps quasi-coherent sheaves to quasi-coherent sheaves. Let \(u^* \) denote the functor \(\text{Qcoh}_X \longrightarrow \text{Qcoh}_U \) induced by \(j^* \). The functor \(u^* \), being the composition of the exact full embedding of \(\text{Qcoh}_X \) into \(\mathcal{O}_X - \text{Mod} \) and the exact functor \(j^* \), is exact; hence it is represented as the composition of an exact localization \(\text{Qcoh}_X \longrightarrow \text{Qcoh}_X/\text{Ker}(u^*) \) and a uniquely defined exact functor \(\text{Qcoh}_X/\text{Ker}(u^*) \longrightarrow \text{Qcoh}_U \). If the direct image functor \(j_* \) of the immersion \(j \) maps quasi-coherent sheaves to quasi-coherent sheaves, then it induces a fully faithful functor \(\text{Qcoh}_U \longrightarrow \text{Qcoh}_X \) which is right adjoint to \(u^* \). In particular, the canonical functor \(\text{Qcoh}_X/\text{Ker}(u^*) \longrightarrow \text{Qcoh}_U \) is an equivalence of categories.

The reconstruction of a scheme \(X \) from the category \(\text{Qcoh}_X \) of quasi-coherent sheaves on \(X \) is based on the existence of an affine cover \(\{ U_i \stackrel{u_i}{\longrightarrow} X \mid i \in J \} \) such that the canonical functors \(\text{Qcoh}_X/\text{Ker}(u_i^*) \longrightarrow \text{Qcoh}_{U_i}, \ i \in J \) are category equivalences. It follows from the discussion above (or from [GZ, I.2.5.2]) that this is guaranteed if the inverse image functor \(\text{Qcoh}_X \longrightarrow \text{Qcoh}_{U_i} \) has a fully faithful right adjoint.

On the other hand, one can deduce from 4.1 (and the equality \(\bigcap_{i \in J} T_i = \bigcap_{i \in J} T_i^- \) for any finite set \(\{ T_i \mid i \in J \} \) of topologizing subcategories of \(C_X \); see [R4, 4.1]) that if there exists an affine cover \(\{ U_i \stackrel{u_i}{\longrightarrow} X \mid i \in J \} \) such that the canonical functors

\[
\text{Qcoh}_X/\text{Ker}(u_i^*) \longrightarrow \text{Qcoh}_{U_i}, \ i \in J,
\]

are category equivalences, then \(\text{Ker}(u_i^*) \) is a Serre subcategory for all \(i \in J \),
which implies (in these circumstances) the existence of a right adjoint $u_i\ast$ to u_i^\ast for each $i \in J$.

6.4. Proposition. Let $X = (X, \mathcal{O}_X)$ be a quasi-compact quasi-separated commutative scheme. Then the scheme X is isomorphic to the Zariski geometric center $(\text{Spec}(X), \mathcal{O}_X)$ of the ‘space’ X represented by the category Qcoh_X of quasi-coherent sheaves on X.

Proof. The assertion follows from the ‘locality’ theorem 4.1. See details in [R4, 9.8]. □

6.4.1. Note. If the C_X is the category of quasi-coherent sheaves on a quasi-compact quasi-separated scheme, then Zariski topology on $\text{Spec}(X)$ coincides with the coarse Zariski topology (see 2.5.4).

6.5. The reduced geometric center of a ‘space’. Fix a ‘space’ X and a topology τ on $\text{Spec}(X)$. The map which assigns to each open subset U of $\text{Spec}(X)$ the prime spectrum of the ring $\mathcal{O}_{X,\tau}(U)$ of global sections of the sheaf $\mathcal{O}_{X,\tau}$ over U is a functor from the category of $\text{Open}(\tau)$ open sets of the topology τ to the category of topological spaces. We denote its colimit by $\text{Spec}(\mathcal{O}_{X,\tau})$.

6.5.1. Proposition. There is a canonical morphism

$$\xymatrix{ (\text{Spec}(X), \tau) \ar[r]^{p_X} & \text{Spec}(\mathcal{O}_{X,\tau}) } \quad (1)$$

of topological spaces.

Proof. Fix an element Q of $\text{Spec}(X)$. For every open subset U of $\text{Spec}(X)$ containing Q, there is a ring morphism from $\mathcal{O}_{X,\tau}(U)$ to the center $\mathcal{I}(C_X/\hat{Q})$ of the local category C_X/\hat{Q}. The ring $\mathcal{I}(C_X/\hat{Q})$ is local [R, Ch.III]. The preimage of its unique maximal ideal in $\mathcal{O}_{X,\tau}(U)$ is a prime ideal of $\mathcal{O}_{X,\tau}(U)$. The image of this prime ideal in $\text{Spec}(\mathcal{O}_{X,\tau})$ does not depend on the choice of U. This defines the map (1). □

The map (1) is rarely injective. We denote by $\mathcal{O}_{X,\tau}^\prime$ the direct image $p_{X,\tau}(\mathcal{O}_{X,\tau})$ of the sheaf $\mathcal{O}_{X,\tau}$ and call the ringed topological space $(\text{Spec}(\mathcal{O}_{X,\tau}), \mathcal{O}_{X,\tau}^\prime)$ the reduced geometric center of (X, τ). If τ is the Zariski topology, then we call the reduced geometric center of (X, τ) simply the reduced geometric center of X.

6.6. The reduced geometric center of a noncommutative scheme.

One can show that the noncommutative scheme structure on $X \xrightarrow{f} \text{Sp}(k)$
induces a scheme structure on the reduced geometric center of X. If C_X is the category of quasi-coherent sheaves on a commutative quasi-compact, quasi-separated scheme (X, \mathcal{O}_X), then the reduced geometric center is naturally isomorphic to the geometric center of X. In particular, it is isomorphic to the scheme.

6.7. **Complement: a geometric realization of an abelian category.** Let C_X be an abelian category with enough objects of finite type. We have a contravariant pseudo-functor from the category of the Zariski open sets of the spectrum $\text{Spec}(X)$ to Cat which assigns to each open set \mathcal{U} of $\text{Spec}(X)$ the quotient category $C_X/\mathcal{S}_\mathcal{U}$, where $\mathcal{S}_\mathcal{U} = \bigcap_{\mathcal{Q} \in \mathcal{U}} \mathcal{Q}$, and to each embedding $\mathcal{U} \hookrightarrow \mathcal{V}$ the corresponding localization functor. To this pseudo-functor, there corresponds (by a standard formalism) a fibered category over the Zariski topology of $\text{Spec}(X)$. The associated stack, \mathfrak{Z}_X^1, is a stack of local categories: its stalk at each point \mathcal{Q} of $\text{Spec}(X)$ is equivalent to the local category C_X/\mathcal{Q}.

We regard the stack \mathfrak{Z}_X^1 as a geometric realization of the abelian category C_X.

If X is a (noncommutative) scheme, then the stack \mathfrak{Z}_X^1 is locally affine.

6.7.1. **Note.** Taking the center of each fiber of the stack \mathfrak{Z}_X^1, we recover the presheaf of commutative rings \mathcal{O}_X, hence the geometric center of the ‘space’ X.

7. **The spectrum $\text{Spec}_c^0(X)$ and “big” schemes.**

7.1. **The spectrum $\text{Spec}_c^0(X)$.** If C_X is the category of quasi-coherent sheaves on a non-quasi-compact scheme, like, for instance, the flag variety of a Kac-Moody Lie algebra, or a noncommutative scheme which does not have a finite affine cover (say, the quantum flag variety of a Kac-Moody Lie algebra, or the corresponding quantum D-scheme), then the spectrum $\text{Spec}(X)$ is not sufficient. It should be replaced by the spectrum $\text{Spec}_c^0(X)$ whose elements are coreflective topologizing subcategories of C_X of the form $[M]_c$ (i.e. generated by the object M) such that if L is a nonzero subobject of M, then $[L]_c = [M]_c$.

There is a natural map $\text{Spec}(X) \to \text{Spec}_c^0(X)$ which assigns to every $\mathcal{Q} \in \text{Spec}(X)$ the smallest coreflective subcategory $[\mathcal{Q}]_c$ containing \mathcal{Q}.

If the category C_X has enough objects of finite type, this canonical map is a bijection.
7.2. Supports, topologies. The support of an object \(M \) of the category \(C_X \) in the spectrum \(\text{Spec}^0(X) \) is the set \(\text{Supp}_c(M) \) of all \(Q \in \text{Spec}^0(X) \) which are contained in the coreflective subcategory \([M]_c\) generated by \(M \).

The topologies on \(\text{Spec}^0(X) \) are defined via the same pattern as the topologies on \(\text{Spec}(X) \) – either closed sets obtained as supports of certain family of objects, or as supports of a family of topologizing subcategories (cf. 2.3 and 2.5).

7.2.1. The coarse Zariski topology. In particular, the coarse Zariski topology on \(\text{Spec}^0(X) \) is defined similarly to the coarse Zariski topology on \(\text{Spec}(X) \), using the monoid (under the Gabriel multiplication) of bireflective (that is reflective and coreflective) topologizing subcategories.

7.3. The locality theorem. The ‘locality’ theorem for the spectrum \(\text{Spec}^0(X) \) is as follows:

7.3.1. Proposition. Let \(\{T_i \mid i \in J\} \) be a set of coreflective thick subcategories of an abelian category \(C_X \) such that \(\bigcap_{i \in J} T_i = 0 \); and let \(u_i^* \) denote the localization functor \(C_X \rightarrow C_X/T_i \). The following conditions on a nonzero coreflective topologizing subcategory \(Q \) of \(C_X \) are equivalent:

(a) \(Q \in \text{Spec}^0(X) \),

(b) \([u_i^*(Q)]_c \in \text{Spec}^0(X/T_i) \) for every \(i \in J \) such that \(Q \notin T_i \).

Proof. See [R4, 10.4.3].

7.4. The reconstruction of commutative schemes. The reconstruction theorem for non-quasi-compact commutative schemes looks as follows.

7.4.1. Proposition. Let \(C_X \) be the category of quasi-coherent sheaves on a commutative scheme \(X = (\mathcal{X}, \mathcal{O}) \). Suppose that there is an affine cover \(\{U_i \hookrightarrow \mathcal{X} \mid i \in J\} \) of the scheme \(X \) such that all immersions \(U_i \hookrightarrow \mathcal{X}, i \in J \), have a direct image functor. Then the geometric center \((\text{Spec}^0(X), \mathcal{O}_X) \) corresponding to the coarse Zariski topology is isomorphic to the scheme \(X \).

Proof. See [R4, 10.7.1].

7.4.2. Note. If the \(X = (\mathcal{X}, \mathcal{O}) \) is a quasi-compact and quasi-separated scheme, then the category \(C_X \) of quasi-coherent sheaves on \(X \) has enough objects of finite type, hence the spectrum \(\text{Spec}^0(X) \) coincides with \(\text{Spec}(X) \). Thus, the reconstruction theorem 6.4 is a special case of 7.4.1.
8. The spectra of ‘spaces’ represented by triangulated categories.

Fix a svelte triangulated category $\mathcal{C}_{\mathfrak{X}} = (\mathcal{C}_{\mathfrak{X}}, \theta_{\mathfrak{X}}, \Xi_{\mathfrak{X}})$. Here $\theta_{\mathfrak{X}}$ denote its suspension functor and $\Xi_{\mathfrak{X}}$ its category of triangles (otherwise called admissible triangles). We denote by $\mathfrak{H}(\mathfrak{X})$ the preorder (with respect to the inclusion) of all thick triangulated subcategories of $\mathcal{C}_{\mathfrak{X}}$. Recall that a full triangulated subcategory of $\mathcal{C}_{\mathfrak{X}}$ is called thick if it contains all direct summands of its objects.

8.1. $\mathbf{Spec}^1_{\mathfrak{H}}(\mathfrak{X})$ and its decompositions. For any triangulated subcategory T of $\mathcal{C}_{\mathfrak{X}}$, let T^* denote the intersection of all triangulated subcategories of $\mathcal{C}_{\mathfrak{X}}$ which contain T properly. And let T_* be the intersection of T^* and T^\perp – the right orthogonal to T. Recall that T^\perp is the full subcategory of $\mathcal{C}_{\mathfrak{X}}$ generated by all objects N such that $\mathcal{C}_{\mathfrak{X}}(N, M) = 0$ for all $M \in ObT$. It follows that T^\perp is triangulated (for any subcategory T which is stable by the translation functor).

We denote by $\mathbf{Spec}^1_{\mathfrak{H}}(\mathfrak{X})$ the sub preorder of $\mathfrak{H}(\mathfrak{X})$ formed by all thick triangulated subcategories \mathcal{P} for which $\mathcal{P}^* \neq \mathcal{P}$. We have a decomposition

$$\mathbf{Spec}^1_{\mathfrak{H}}(\mathfrak{X}) = \mathbf{Spec}^{1,1}_{\mathfrak{H}}(\mathfrak{X}) \coprod \mathbf{Spec}^{1,0}_{\mathfrak{H}}(\mathfrak{X})$$

of $\mathbf{Spec}^1_{\mathfrak{H}}(\mathfrak{X})$ into a disjoint union of

$$\mathbf{Spec}^{1,1}_{\mathfrak{H}}(\mathfrak{X}) = \{ \mathcal{P} \in \mathfrak{H}(\mathfrak{X}) \mid \mathcal{P}_* \neq 0 \} \quad \text{and} \quad \mathbf{Spec}^{1,0}_{\mathfrak{H}}(\mathfrak{X}) = \{ \mathcal{P} \in \mathbf{Spec}^1_{\mathfrak{H}}(\mathfrak{X}) \mid \mathcal{P}_* = 0 \}.$$

8.2. \mathbb{L}-Local triangulated categories and $\mathbf{Spec}^1_{\mathfrak{H}}(\mathfrak{X})$. We call a triangulated category $\mathcal{C}_{\mathfrak{X}}$ \mathbb{L}-local if it has the smallest nonzero thick triangulated subcategory.

8.2.1. Proposition. Let $\mathcal{P} \in \mathbf{Spec}^{1,1}_{\mathfrak{H}}(\mathfrak{X})$. Then

(a) $\mathcal{P} = \perp \mathcal{P}_*$.

(b) The triangulated category $\mathcal{P} \perp$ is \mathbb{L}-local and \mathcal{P}_* is its smallest nonzero thick triangulated subcategory.

Proof. See [R7, 12.7.1].

8.2.2. Proposition. Suppose that infinite coproducts or products exist in $\mathcal{C}_{\mathfrak{X}}$. Let \mathcal{P} be a thick triangulated subcategory of $\mathcal{C}_{\mathfrak{X}}$. Then the following properties of are equivalent:

Trieste Lectures

347
(i) $\mathcal{P}_* = \mathcal{P}^\perp \cap \mathcal{P}^*$ is nonzero, i.e. $\mathcal{P} \in \text{Spec}^{1,1}_{\mathbb{TH}}(\mathcal{X})$;
(ii) \mathcal{P} belongs to $\text{Spec}^{1}_{\mathbb{TH}}(\mathcal{X})$ and the composition of the inclusion $\mathcal{P}_* \hookrightarrow CT\mathcal{X}$ and the localization functor $CT\mathcal{X} \xrightarrow{q_\mathcal{P}} CT\mathcal{X}/\mathcal{P}$ induces an equivalence of triangulated categories $\mathcal{P}_* \xrightarrow{\sim} \mathcal{P}^*/\mathcal{P}$.
(iii) \mathcal{P} belongs to $\text{Spec}^{1}_{\mathbb{TH}}(\mathcal{X})$ and the inclusion functor $\mathcal{P} \hookrightarrow \mathcal{P}^*$ has a right adjoint.
(iv) \mathcal{P} belongs to $\text{Spec}^{1}_{\mathbb{TH}}(\mathcal{X})$ and \mathcal{P}^\perp is nonzero.

Proof. See [R7, 12.7.3].

8.2.3. Corollary. Suppose that infinite coproducts or products exist in $CT\mathcal{X}$. Then $\text{Spec}^{1,0}_{\mathbb{TH}}(\mathcal{X})$ consists of all $\mathcal{P} \in \text{Spec}^{1}_{\mathbb{TH}}(\mathcal{X})$ such that $\mathcal{P}^* \neq \mathcal{P}$ and $\mathcal{P}^\perp = 0$.

8.3. The spectrum $\text{Spec}^{1/2}_{\mathbb{TH}}(\mathcal{X})$. Let $\text{Spec}^{1/2}_{\mathbb{TH}}(\mathcal{X})$ denote the full sub-preorder of $\mathbb{TH}(\mathcal{X})$ whose objects are thick triangulated subcategories \mathcal{Q} such that $\bot \mathcal{Q}$ belongs to $\text{Spec}^{1}_{\mathbb{TH}}(\mathcal{X})$ and every thick triangulated subcategory of $CT\mathcal{X}$ properly containing $\bot \mathcal{Q}$ contains \mathcal{Q}; i.e. $\bot \mathcal{Q} \vee \mathcal{Q}$ is the smallest thick triangulated subcategory of $CT\mathcal{X}$ properly containing $\bot \mathcal{Q}$.

8.3.1. Proposition. (a) The map $\mathcal{Q} \mapsto \bot \mathcal{Q}$ induces an isomorphism of preorders $\text{Spec}^{1/2}_{\mathbb{TH}}(\mathcal{X}) \xrightarrow{\sim} \text{Spec}^{1}_{\mathbb{TH}}(\mathcal{X})$.
(b) If \mathcal{Q} is an object of $\text{Spec}^{1/2}_{\mathbb{TH}}(\mathcal{X})$, then \mathcal{Q} is a minimal nonzero thick triangulated subcategory of $CT\mathcal{X}$.
(c) Suppose that $CT\mathcal{X}$ has infinite coproducts or products. Then the following properties of a thick triangulated subcategory \mathcal{Q} are equivalent:
(i) \mathcal{Q} belongs to $\text{Spec}^{1/2}_{\mathbb{TH}}(\mathcal{X})$;
(ii) \mathcal{Q} is a minimal nonzero thick triangulated subcategory of $CT\mathcal{X}$ such that $\bot \mathcal{Q}$ belongs to $\text{Spec}^{1}_{\mathbb{TH}}(\mathcal{X})$.

Proof. See [R7, 12.8.1].

8.3.2. Remark. Loosely, 8.2.3 says that the elements of $\text{Spec}^{1,0}_{\mathbb{TH}}(\mathcal{X})$ can be regarded as ”fat” points – they generate (in a weak sense) the whole category $CT\mathcal{X}$.
On the other hand, it follows from 8.2.1(b) and isomorphism of 8.3.1(a) that the spectrum $\text{Spec}^{1/2}_{\mathbb{TH}}(\mathcal{X})$ consists of closed points, hence, by 8.3.1(a), $\text{Spec}^{1}_{\mathbb{TH}}(\mathcal{X})$ consists of closed points (in any reasonable topology).

8.4. Flat spectra. Recall the following assertion which is due to Verdier:
8.4.1. Proposition [Ve1, 10–5]. Let \mathcal{T} be a thick triangulated subcategory of $\mathcal{C} \mathcal{T}_X$, and let

$$\mathcal{T} \overset{\iota}{\longrightarrow} \mathcal{C} \mathcal{T}_X \overset{q}{\longrightarrow} \mathcal{C} \mathcal{T}_X / \mathcal{T}$$

be the inclusion and localization functors. The following properties are equivalent:

(a) The functor $\iota^* \mathfrak{c}$ has a right adjoint.
(b) The functor $q^* \mathfrak{c}$ has a right adjoint.

Let $\mathfrak{S} \mathfrak{c} (X)$ denote the family of all thick triangulated subcategories of the triangulated category $\mathcal{C} \mathcal{T}_X$ which satisfy equivalent conditions of 12.10.3. We define the complete flat spectrum of X, $\text{Spec}^1_{\mathcal{I} \mathcal{G}} (X)$, by setting

$$\text{Spec}^1_{\mathcal{I} \mathcal{G}} (X) = \text{Spec}^1_{\mathfrak{S} \mathfrak{c}} (X) \cap \mathfrak{S} \mathfrak{c} (X). \quad (1)$$

We define the flat spectrum of X as a full subpreorder, $\text{Spec}^0_{\mathcal{I} \mathcal{G}} (X)$, of $\mathfrak{S} \mathfrak{c} (X)$ whose objects are all \mathcal{P} such that $\mathcal{P} \in \text{Spec}^1_{\mathcal{I} \mathcal{G}} (X)$.

It follows from these definitions that the map $\mathcal{P} \mapsto \overline{\mathcal{P}}$ defines an injective morphism

$$\text{Spec}^0_{\mathcal{I} \mathcal{G}} (X) \longrightarrow \text{Spec}^1_{\mathcal{I} \mathcal{G}} (X). \quad (2)$$

Let $\text{Spec}^{1/2}_{\mathcal{I} \mathcal{G}} (X)$ denote the full subpreorder of $\text{Spec}^{1/2}_{\mathfrak{S} \mathfrak{c}} (X)$ whose objects are all \mathcal{Q} such that $\overline{\mathcal{Q}} \in \mathfrak{S} \mathfrak{c} (X)$.

8.4.2. Proposition. (a) The map

$$\mathfrak{S} \mathfrak{c} (X) \longrightarrow \mathfrak{S} \mathfrak{c} (X), \quad \mathcal{Q} \mapsto \overline{\mathcal{Q}},$$

induces an isomorphism

$$\text{Spec}^{1/2}_{\mathcal{I} \mathcal{G}} (X) \cong \text{Spec}^1_{\mathcal{I} \mathcal{G}} (X). \quad (3)$$

(b) $\text{Spec}^0_{\mathcal{I} \mathcal{G}} (X) = \text{Spec}^0_{\mathfrak{S} \mathfrak{c}} (X) \cap \text{Spec}^{1/2}_{\mathcal{I} \mathcal{G}} (X)$. The canonical morphism (2) is the composition of the inclusion $\text{Spec}^0_{\mathcal{I} \mathcal{G}} (X) \hookrightarrow \text{Spec}^{1/2}_{\mathcal{I} \mathcal{G}} (X)$ and the isomorphism (3).

Proof. See [R7, 12.10.1].
8.5. Supports and Zariski topology.

8.5.1. Supports. For any object M of the category C_X, the support of M in $\text{Spec}^1_L(X)$ is defined by $\text{Supp}^1_L(M) = \{ P \in \text{Spec}^1_L(X) \mid M \notin \text{Ob}P \}$. It follows that $\text{Supp}^1_L(L \oplus M) = \text{Supp}^1_L(L) \cup \text{Supp}^1_L(M)$.

8.5.2. Topologies on $\text{Spec}^1_L(X)$. We follow the pattern of 2.4. Let Ξ be a class of objects of C_X closed under finite coproducts. For any set E of objects of X_i, let $\mathcal{V}^1(E)$ denote the intersection $\bigcap_{M \in E} \text{Supp}^1_L(M)$. Then, for any family $\{ E_i \mid i \in I \}$ of such sets, we have, evidently,

$$\mathcal{V}(\bigcup_{i \in J} E_i) = \bigcap_{i \in J} \mathcal{V}(E_i).$$

It follows from the equality $\text{Supp}^1_L(M \oplus N) = \text{Supp}^1_L(M) \cup \text{Supp}^1_L(N)$ (see 2.2.1(a)) that $\mathcal{V}^1(E \oplus \overline{E}) = \mathcal{V}^1(E) \cup \mathcal{V}^1(\overline{E})$. Here $E \oplus \overline{E} \overset{\text{def}}{=} \{ M \oplus N \mid M \in E, \ N \in \overline{E} \}$.

This shows that the subsets $\mathcal{V}^1(E)$ of $\text{Spec}^1_L(X)$, where E runs through subsets of Ξ, are all closed sets of a topology, τ_Ξ, on $\text{Spec}^1_L(X)$.

8.5.3. Zariski topology. The class $\Xi_L(X)$ of compact objects of the category C_X is closed under finite coproducts, hence it defines a topology on $\text{Spec}^1_L(X)$ which we denote by τ_c and call the compact topology. If the category C_X is generated by compact objects, we shall call the topology τ_c on $\text{Spec}^1_L(X)$ the Zariski topology.

Restricting the compact topology to $\text{Spec}^{1,1}_L(X)$ or to $\text{Spec}^1_{\text{loc}}(X)$, we obtain the compact topology on these spectra.

8.6. A geometric realization of a triangulated category. We follow an obvious modification of the pattern of 6.7. Namely, we assign to a Karoubian triangulated category \mathcal{C}_X having a set of compact generators the contravariant pseudo-functor from the category of Zariski open subsets of the spectrum $\text{Spec}^{1,1}_L(X)$ to the category of svelte triangulated categories. The associated stack is the stack of local triangulated categories.

8.7. The geometric center. We define the center of a svelte triangulated category $\mathcal{C}_\mathfrak{g} = (\mathcal{C}_\mathfrak{g}, \theta_\mathfrak{g}, \mathfrak{z}_\mathfrak{g})$ as the subring $\mathcal{O}(\mathfrak{z})$ of the center $\mathfrak{z}(\mathcal{C}_X)$ of the category $\mathcal{C}_\mathfrak{g}$ formed by $\theta_\mathfrak{g}$-invariant endomorphisms of the identical functor of $\mathcal{C}_\mathfrak{g}$. One can show that the ring $\mathcal{O}(\mathfrak{z})$ is local if the triangulated category $\mathcal{C}_\mathfrak{g}$ is local.
Let \mathcal{C}_X be a Karoubian triangulated category with a set of compact generators and \mathcal{X}^3 the corresponding stack of local triangulated categories (cf. 8.6). Assigning to each fiber of the stack \mathcal{X}^3 its center, we obtain a presheaf of commutative rings on the spectrum $\text{Spec}_{\mathcal{C}}^{1,1}(\mathcal{X})$ endowed with the Zariski topology. The associated sheaf, $\mathcal{O}_X^\mathcal{C}$, is a sheaf of local rings. We call the locally ringed topological space $(\text{Spec}_{\mathcal{C}}^{1,1}(\mathcal{X}), \mathcal{O}_X^\mathcal{C})$ the geometric centrum of the triangulated category \mathcal{C}_X.

8.7.1. Note. Similarly to the abelian case, one can define the reduced geometric centrum of \mathcal{C}_X. Details of this construction are left to the reader.

8.8. A general remark on spectral theories. There are certain rather simple general pattern of producing spectra starting from a preorder (they are outlined in [R6]). Here, in Section 8, these pattern are applied to the preorder $\mathcal{H}(\mathcal{X})$ of thick triangulated subcategories of the triangulated category \mathcal{C}_X.

8.8.1. On the spectra of a monoidal triangulated category. Suppose that a triangulated category \mathcal{C}_X has a structure of a monoidal category. Then, replacing the preorder of thick subcategories with the preorder of those thick subcategories which are ideals of \mathcal{C}_X and mimicking the definitions of $\text{Spec}_{\mathcal{C}}^1(\mathcal{X})$ and $\text{Spec}_{\mathcal{C}}^{1,1}(\mathcal{X})$, we obtain the spectra respectively $\text{Spec}_{\mathcal{C}^\otimes}^1(\mathcal{X})$ and $\text{Spec}_{\mathcal{C}^\otimes}^{1,1}(\mathcal{X})$. If the monoidal category \mathcal{C}_X is symmetric, then $\text{Spec}_{\mathcal{C}^\otimes}^1(\mathcal{X})$ coincides with the spectrum introduced by P. Balmer in different terms, as a straightforward imitation of the notion of a prime ideal of a commutative ring. This spectrum has nice properties. Unfortunately, triangulated categories associated with noncommutative ‘spaces’ of interest do not have any symmetric monoidal structure.

It is not clear at the moment what might be the role of the spectra $\text{Spec}_{\mathcal{C}^\otimes}^1(\mathcal{X})$ and $\text{Spec}_{\mathcal{C}^\otimes}^{1,1}(\mathcal{X})$ (if any) in the case of a non-symmetric monoidal category.

Lecture 3

Non-abelian homological algebra

The preliminaries are dedicated to kernels of arrows of arbitrary categories with initial objects. They are complemented in Appendix. In the
treatment of non-abelian homological algebra, we adopt here an inter-
mediate level of generality – right or left exact (instead of fibred or cofibred)
categories, which turns the main body of this text into an exercise on sat-
ellites along the lines of [Gr], in which abelian categories are replaced by right
(or left) exact categories with initial (resp. final) objects. An analysis of
obtained facts leads to the notions of stable category of a left exact category
and to the notions of quasi-suspended and quasi-triangulated categories.

1. Preliminaries: kernels and cokernels of morphisms.

Let \(C_X \) be a category with an initial object, \(x \). For a morphism \(M \xrightarrow{f} N \)
we define the kernel of \(f \) as the upper horizontal arrow in a cartesian square

\[
\begin{array}{ccc}
Ker(f) & \xrightarrow{\iota(f)} & M \\
\downarrow f' & & \downarrow f \\
x & \xrightarrow{\mathrm{cart}} & N
\end{array}
\]

when the latter exists.

Cokernels of morphisms are defined dually, via a cocartesian square

\[
\begin{array}{ccc}
N & \xrightarrow{\epsilon(f)} & Cok(f) \\
\downarrow f & & \downarrow f' \\
M & \xrightarrow{\mathrm{cocart}} & y
\end{array}
\]

where \(y \) is a final object of \(C_X \).

If \(C_X \) is a pointed category (i.e. its initial objects are final), then the no-
tion of the kernel is equivalent to the usual one: the diagram \(\xymatrix{M \ar[r]^{f} \ar@{=}[d] & N} \)

\(\xrightarrow{\iota(f)} \)

is exact.

Dually, the cokernel of \(f \) makes the diagram \(\xymatrix{M \ar[r]_{0} \ar@{=}[d] & N \ar[r]^{\epsilon(f)} & Cok(f)} \)

exact.

1.1. Lemma. Let \(C_X \) be a category with an initial object \(x \).

(a) Let a morphism \(M \xrightarrow{f} N \) of \(C_X \) have a kernel. The canonical

morphism \(Ker(f) \xrightarrow{\iota(f)} M \) is a monomorphism, if the unique arrow \(x \xrightarrow{i_N} N \)

is a monomorphism.
(b) If $M \xrightarrow{f} N$ is a monomorphism, then $x \xrightarrow{i_M} M$ is the kernel of f.

Proof. The pull-backs of monomorphisms are monomorphisms. ■

1.2. Corollary. Let C_X be a category with an initial object x. The following conditions are equivalent:

(a) If $M \xrightarrow{f} N$ has a kernel, then the canonical arrow $\text{Ker}(f) \xrightarrow{\epsilon(f)} M$ is a monomorphism.

(b) The unique arrow $x \xrightarrow{i_M} M$ is a monomorphism for any $M \in \text{Ob} C_X$.

Proof. (a) \Rightarrow (b), because, by 1.1(b), the unique morphism $x \xrightarrow{i_M} M$ is the kernel of the identical morphism $M \xrightarrow{} M$. The implication (b) \Rightarrow (a) follows from 1.1(a). ■

1.3. Note. The converse assertion is not true in general: a morphism might have a trivial kernel without being a monomorphism. It is easy to produce an example in the category of pointed sets.

1.4. Examples.

1.4.1. Kernels of morphisms of unital k-algebras. Let C_X be the category Alg_k of associative unital k-algebras. The category C_X has an initial object – the k-algebra k. For any k-algebra morphism $A \xrightarrow{\varphi} B$, we have a commutative square

$$
\begin{array}{ccc}
A & \xrightarrow{\varphi} & B \\
\uparrow{\kappa(\varphi)} & & \uparrow{\epsilon(\varphi)} \\
K(\varphi) & \xrightarrow{\epsilon(\varphi)} & k \\
\end{array}
$$

where $K(\varphi)$ denote the kernel of the morphism φ in the category of non-unital k-algebras and the morphism $\kappa(\varphi)$ is determined by the inclusion $K(\varphi) \xrightarrow{} A$ and the k-algebra structure $k \xrightarrow{} A$. This square is cartesian. In fact, if

$$
\begin{array}{ccc}
A & \xrightarrow{\varphi} & B \\
\uparrow{\gamma} & & \uparrow{\epsilon(\psi)} \\
C & \xrightarrow{\psi} & k \\
\end{array}
$$

is a commutative square of k-algebra morphisms, then C is an augmented algebra: $C = k \oplus K(\psi)$. Since the restriction of $\varphi \circ \gamma$ to $K(\psi)$ is zero, it factors uniquely through $K(\varphi)$. Therefore, there is a unique k-algebra
morphism $C = k \oplus K(\psi) \xrightarrow{\beta} \text{Ker}(\varphi) = k \oplus K(\varphi)$ such that $\gamma = \varepsilon(\varphi) \circ \beta$ and $\psi = \varepsilon(\varphi) \circ \beta$.

This shows that each (unital) k-algebra morphism $A \xrightarrow{\varphi} B$ has a canonical kernel $\text{Ker}(\varphi)$ equal to the augmented k-algebra corresponding to the ideal $K(\varphi)$.

It follows from the description of the kernel $\text{Ker}(\varphi) \xrightarrow{\varepsilon(\varphi)} A$ that it is a monomorphism iff the k-algebra structure $k \rightarrow A$ is a monomorphism.

Notice that cokernels of morphisms are not defined in Alg_k, because this category does not have final objects.

1.4.2. Kernels and cokernels of maps of sets. Since the only initial object of the category Sets is the empty set \emptyset and there are no morphisms from a non-empty set to \emptyset, the kernel of any map $X \rightarrow Y$ is $\emptyset \rightarrow X$.

The cokernel of a map $X \xrightarrow{f} Y$ is the projection $Y \xrightarrow{\varepsilon(f)} Y/f(X)$, where $Y/f(X)$ is the set obtained from Y by the contraction of $f(X)$ into a point. So that $\varepsilon(f)$ is an isomorphism iff either $X = \emptyset$, or $f(X)$ is a one-point set.

1.4.3. Presheaves of sets. Let C_X be a setlate category and C^\wedge_X the category of non-trivial presheaves of sets on C_X (that is we exclude the trivial presheaf which assigns to every object of C_X the empty set). The category C^\wedge_X has a final object which is the constant presheaf with values in a one-element set. If C_X has a final object, y, then $\hat{y} = C_X(-, y)$ is a final object of the category C^\wedge_X. Since C^\wedge_X has small colimits, it has cokernels of arbitrary morphisms which are computed object-wise, that is using 1.4.2.

If the category C_X has an initial object, x, then the presheaf $\widehat{x} = C_X(-, x)$ is an initial object of the category C^\wedge_X. In this case, the category C^\wedge_X has kernels of all its morphisms (because C^\wedge_X has limits) and the Yoneda functor $C_X \xrightarrow{\text{h}} C^\wedge_X$ preserves kernels.

Notice that the initial object of C^\wedge_X is not isomorphic to its final object unless the category C_X is pointed, i.e. initial objects of C_X are their final objects.

1.5. Some properties of kernels. See Appendix.

2. Right exact categories and (right) ‘exact’ functors.

We define a right exact category as a pair (C_X, \mathfrak{E}_X), where C_X is a category and \mathfrak{E}_X is a pretopology on C_X whose covers are strict epimorphisms; that is for any element $M \rightarrow L$ of \mathfrak{E} (- a cover), the diagram
$M \times_L M \rightarrow M \rightarrow L$ is exact. This requirement means precisely that the pretopology \mathcal{E}_X is subcanonical; i.e. every representable presheaf of sets on C_X is a sheaf. We call the elements of \mathcal{E}_X deflations and assume that all isomorphisms are deflations.

2.1. The coarsest and the finest right exact structures. The coarsest right exact structure on a category C_X is the discrete pretopology: the class of deflations coincides with the class $\text{Iso}(C_X)$ of all isomorphisms of the category C_X.

Let \mathcal{E}^f_X denote the class of all universally strict epimorphisms of C_X; i.e. elements of \mathcal{E}^f_X are strict epimorphisms $M \rightarrow N$ such that for any morphism $\tilde{N} \rightarrow N$, there exists a cartesian square

$$
\begin{array}{ccc}
\tilde{M} & \rightarrow & M \\
\epsilon \downarrow & & \downarrow \epsilon \\
\tilde{N} & \rightarrow & N
\end{array}
$$

whose left vertical arrow is a strict epimorphism. It follows that \mathcal{E}^f_X is the finest right exact structure on the category C_X. We call this structure canonical.

If C_X is an abelian category or a topos, then \mathcal{E}^f_X consists of all epimorphisms.

If C_X is a quasi-abelian category, then \mathcal{E}^f_X consists of all strict epimorphisms.

2.2. Right ‘exact’ and ‘exact’ functors. Let (C_X, \mathcal{E}_X) and (C_Y, \mathcal{E}_Y) be right exact categories. A functor $C_X \rightarrow C_Y$ will be called right ‘exact’ (resp. ‘exact’) if it maps deflations to deflations and for any deflation $M \rightarrow N$ of \mathcal{E}_X and any morphism $\tilde{N} \rightarrow N$, the canonical arrow $F(\tilde{N} \times N M) \rightarrow F(\tilde{N}) \times_{F(N)} F(M)$ is a deflation (resp. an isomorphism).

In other words, the functor F is ‘exact’ if it maps deflations to deflations and preserves pull-backs of deflations.

2.3. Weakly right ‘exact’ and weakly ‘exact’ functors. A functor $C_X \rightarrow C_Y$ is called weakly right ‘exact’ (resp. weakly ‘exact’) if it maps deflations to deflations and for any arrow $M \rightarrow N$ of \mathcal{E}_X, the canonical morphism $F(M \times N M) \rightarrow F(M) \times_{F(N)} F(M)$ is a deflation (resp. an isomorphism). In particular, weakly ‘exact’ functors are weakly right ‘exact’.
2.4. **Note.** Of cause, ‘exact’ (resp. right ‘exact’) functors are weakly ‘exact’ (resp. weakly right ‘exact’). In the additive (actually a more general) case, weakly ‘exact’ functors are ‘exact’ (see 2.7 and 2.7.2).

2.5. **Interpretation:** ‘spaces’ represented by right exact categories. Weakly right ‘exact’ functors will be interpreted as inverse image functors of morphisms between ‘spaces’ represented by right exact categories. We consider the category \mathcal{Esp}_r^w whose objects are pairs (X, \mathcal{E}_X), where (C_X, \mathcal{E}_X) is a svelte right exact category. A morphism from (X, \mathcal{E}_X) to (Y, \mathcal{E}_Y) is a morphism of ‘spaces’ $X \xrightarrow{f} Y$ whose inverse image functor $C_Y \xrightarrow{f^*} C_X$ is a weakly right ‘exact’ functor from (C_Y, \mathcal{E}_Y) to (C_X, \mathcal{E}_X). The map which assigns to every ‘space’ X the pair $(X, Iso(C_X))$ is a full embedding of the category $|\text{Cat}|^o$ of ‘spaces’ into the category \mathcal{Esp}_r^w. This full embedding is a right adjoint functor to the forgetful functor

$$\mathcal{Esp}_r^w \longrightarrow |\text{Cat}|^o, \quad (X, \mathcal{E}_X) \mapsto X.$$

2.5.1. **Proposition.** Let (C_X, \mathcal{E}_X) and (C_Y, \mathcal{E}_Y) be additive right exact categories and $C_X \xrightarrow{F} C_Y$ an additive functor. Then

(a) The functor F is weakly right ‘exact’ iff it maps deflations to deflations and the sequence

$$F(Ker(\epsilon)) \longrightarrow F(M) \xrightarrow{F(\epsilon)} F(N) \longrightarrow 0$$

is exact for any deflation $M \xrightarrow{\epsilon} N$.

(b) The functor F is weakly ‘exact’ iff it maps deflations to deflations and the sequence

$$0 \longrightarrow F(Ker(\epsilon)) \longrightarrow F(M) \xrightarrow{F(\epsilon)} F(N) \longrightarrow 0$$

is ‘exact’ for any deflation $M \xrightarrow{\epsilon} N$.

Proof. See A.2(b). □

2.6. **Conflations and fully exact subcategories of a right exact category.** Fix a right exact category (C_X, \mathcal{E}_X) with an initial object x. We denote by \mathcal{E}_X the class of all sequences of the form $K \xrightarrow{\epsilon} M \xrightarrow{\delta} N$, where $\epsilon \in \mathcal{E}_X$ and $K \xrightarrow{\epsilon} M$ is a kernel of ϵ. Expanding the terminology of exact additive categories, we call such sequences *conflations*.

2.6.1. Fully exact subcategories of a right exact category. We call a full subcategory \mathcal{B} of C_X a fully exact subcategory of the right exact category (C_X, \mathcal{E}_X), if \mathcal{B} contains the initial object x and is closed under extensions; i.e. if objects K and N in a conflation $K \xrightarrow{\varepsilon} M \xrightarrow{\varepsilon} N$ belong to \mathcal{B}, then M is an object of \mathcal{B}.

In particular, fully exact subcategories of (C_X, \mathcal{E}_X) are strictly full subcategories.

2.6.2. Proposition. Let (C_X, \mathcal{E}_X) be a right exact category with an initial object x and \mathcal{B} its fully exact subcategory. Then the class $\mathcal{E}_{X, \mathcal{B}}$ of all deflations $M \xrightarrow{\varepsilon} N$ such that M, N, and $\text{Ker}(\varepsilon)$ are objects of \mathcal{B} is a structure of a right exact category on \mathcal{B} such that the inclusion functor $\mathcal{B} \rightarrow C_X$ is an ‘exact’ functor $(\mathcal{B}, \mathcal{E}_{X,\mathcal{B}}) \rightarrow (C_X, \mathcal{E}_X)$.

Proof. The argument is an application of facts of Appendix. ■

2.6.3. Remark. Let (C_X, \mathcal{E}_X) be a right exact category with an initial object x and \mathcal{B} its strictly full subcategory containing x. Let \mathcal{E} be a right exact structure on \mathcal{B} such that the inclusion functor $\mathcal{B} \xrightarrow{\varepsilon} C_X$ maps deflations to deflations and preserves kernels of deflations. Then \mathcal{E} is contained in $\mathcal{E}_{X,\mathcal{B}}$. In particular, \mathcal{E} is contained in $\mathcal{E}_{X,\mathcal{B}}$ if the inclusion functor is an ‘exact’ functor from $(\mathcal{B}, \mathcal{E})$ to (C_X, \mathcal{E}_X). This shows that if \mathcal{B} is a fully exact subcategory of (C_X, \mathcal{E}_X), then $\mathcal{E}_{X,\mathcal{B}}$ is the finest right exact structure on \mathcal{B} such that the inclusion functor $\mathcal{B} \rightarrow C_X$ is an exact functor from $(\mathcal{B}, \mathcal{E}_{X,\mathcal{B}})$ to (C_X, \mathcal{E}_X).

2.7. Proposition. Let (C_X, \mathcal{E}_X) and (C_Y, \mathcal{E}_Y) be right exact categories and F a functor $C_X \rightarrow C_Y$ which maps conflations to conflations. Suppose that the category C_Y is additive. Then the functor F is ‘exact’.

2.7.1. Corollary. Let (C_X, \mathcal{E}_X) and (C_Y, \mathcal{E}_Y) be additive k-linear right exact categories and F an additive functor $C_X \rightarrow C_Y$. Then the functor F is weakly ‘exact’ iff it is ‘exact’.

Proof. By 2.5.1, a k-linear functor $C_X \xrightarrow{F} C_Y$ is a weakly ‘exact’ iff it maps conflations to conflations. The assertion follows now from 2.7. ■

2.7.2. The property (†). In Proposition 2.7, the assumption that the category C_Y is additive is used only at the end of the proof (part (b)). Moreover, additivity appears there only because it guarantees the following property:
(†) if the rows of a commutative diagram

\[
\begin{array}{ccc}
\tilde{L} & \longrightarrow & \tilde{M} & \longrightarrow & \tilde{N} \\
\downarrow & & \downarrow & & \downarrow \\
L & \longrightarrow & M & \longrightarrow & N
\end{array}
\]

are conflations and its right and left vertical arrows are isomorphisms, then
the middle arrow is an isomorphism.

So that the additivity of \(C_Y \) in 2.7 can be replaced by the property (†)
for \((C_Y, \mathcal{E}_Y)\).

\textbf{2.7.3. An observation.} The following obvious observation helps to
establish the property (†) for many non-additive right exact categories:

If \((C_X, \mathcal{E}_X)\) and \((C_Y, \mathcal{E}_Y)\) are right exact categories and \(C_X \xrightarrow{E} C_Y \) is a
conservative functor which maps conflations to conflations, then the property
(†) holds in \((C_X, \mathcal{E}_X)\) provided it holds in \((C_Y, \mathcal{E}_Y)\).

\textbf{2.7.3.1. Example.} Let \((C_Y, \mathcal{E}_Y)\) be right exact \(k \)-linear category,
\((C_X, \mathcal{E}_X)\) a right exact category, and \(C_X \xrightarrow{E} C_Y \) is a conservative func-
tor which maps conflations to conflations. Then the property (†) holds in
\((C_X, \mathcal{E}_X)\).

For instance, the property (†) holds for the right exact category \((Alg_k, \mathcal{E}^p)\)
of associative unital \(k \)-algebras with strict epimorphisms as deflations, be-
cause the forgetful functor \(Alg_k \xrightarrow{f} k-\text{mod} \) is conservative, maps defla-
tions to deflations (that is to epimorphisms) and is left exact. Therefore, it maps
conflations to conflations.

\textbf{2.8. Proposition.} (a) Let \((C_X, \mathcal{E}_X)\) be a svelte right exact category.
The Yoneda embedding induces an ‘exact’ fully faithful functor \((C_X, \mathcal{E}_X) \xrightarrow{j_X} (C_{Xe}, \mathcal{E}^e_{Xe}) \),
where \(C_{Xe} \) is the category of sheaves of sets on the presite
\((C_X, \mathcal{E}_X)\) and \(\mathcal{E}^e_{Xe} \) the family of all universally strict epimorphisms of \(C_{Xe} \)
(– the canonical structure of a right exact category).

(b) Let \((C_X, \mathcal{E}_X)\) and \((C_Y, \mathcal{E}_Y)\) be right exact categories and \((C_X, \mathcal{E}_X) \xrightarrow{\varphi^*} (C_Y, \mathcal{E}_Y)\) a weakly right ‘exact’ functor. There exists a functor \(C_{Xe} \xrightarrow{\tilde{\varphi}^*} \)
\[C_{Ye} \text{ such that the diagram} \]

\[
\begin{array}{ccc}
C_X & \xrightarrow{\varphi^*} & C_Y \\
\downarrow j_X & & \downarrow j_Y^* \\
C_{Xe} & \xrightarrow{\tilde{\varphi}^*} & C_{Ye}
\end{array}
\]

quasi commutes, i.e. \(\tilde{\varphi}^* j_X \simeq j_Y^* \varphi^* \). The functor \(\tilde{\varphi}^* \) is defined uniquely up to isomorphism and has a right adjoint, \(\tilde{\varphi}_* \).

Proof. (a) Since the right exact structure \(E_X \) of \(C_X \) is a subcanonical presheaf, the Yoneda embedding takes values in the category \(C_{Xe} \) of sheaves on \((C_X, E_X) \), hence it induces a full embedding of \(C_X \) into \(C_{Xe} \) which preserves all small limits and maps deflations to deflations. In particular it is an ‘exact’ functor from \((C_X, E_X) \) to \((C_{Xe}, E_{Xe}) \).

(b) Every weakly right exact functor \((C_X, E_X) \to (C_Y, E_Y) \) determines a continuous (i.e. having a right adjoint) functor between the categories of presheaves of sets, which is compatible with the sheafification functor, hence determines uniquely a continuous functor between the corresponding categories of sheaves making commute the diagram (1). \(\blacksquare \)

2.9. Application: right exact additive categories and exact categories.

2.9.1. **Proposition.** Let \((C_X, E_X) \) be an additive \(k \)-linear right exact category. Then there exists an exact category \((C_X, E_X) \) and a fully faithful \(k \)-linear ‘exact’ functor \((C_X, E_X) \xrightarrow{\gamma_X^*} (C_X, E_X) \) which is universal; that is any ‘exact’ \(k \)-linear functor from \((C_X, E_X) \) to an exact \(k \)-linear category factorizes uniquely through \(\gamma_X^* \).

Proof. We take as \(C_{Xe} \) the smallest fully exact subcategory of the category \(C_{Xe} \) of sheaves of \(k \)-modules on \((C_X, E_X) \) containing all representable sheaves. Objects of the category \(C_{Xe} \) are sheaves \(\mathcal{F} \) such that there exists a finite filtration

\[
0 = \mathcal{F}_0 \to \mathcal{F}_1 \to \ldots \to \mathcal{F}_n = \mathcal{F}
\]

such that \(\mathcal{F}_m/\mathcal{F}_{m-1} \) is representable for \(1 \leq m \leq n \). The subcategory \(C_{Xe} \), being a fully exact subcategory of an abelian category, is exact. The remaining details are left as an exercise. \(\blacksquare \)
3. Satellites in right exact categories.

3.1. Preliminaries: trivial morphisms, pointed objects, and complexes. Let C_X be a category with initial objects. We call a morphism of C_X trivial if it factors through an initial object. It follows that an object M is initial iff id_M is a trivial morphism. If C_X is a pointed category, then the trivial morphisms are usually called zero morphisms.

3.1.1. Trivial compositions and pointed objects. If the composition of arrows $L \xrightarrow{f} M \xrightarrow{g} N$ is trivial, i.e. there is a commutative square

$$
\begin{array}{ccc}
L & \xrightarrow{f} & M \\
\downarrow{\xi} & & \downarrow{g} \\
x & \xrightarrow{i_N} & N \\
\end{array}
$$

where x is an initial object, and the morphism g has a kernel, then f is the composition of the canonical arrow $Ker(g) \xrightarrow{\xi(g)} M$ and a morphism $L \xrightarrow{f_g} Ker(g)$ uniquely determined by f and ξ. If the arrow $x \xrightarrow{i_N} N$ is a monomorphism, then the morphism ξ is uniquely determined by f and g; therefore in this case, the arrow f_g does not depend on ξ.

3.1.1.1. Pointed objects. In particular, f_g does not depend on ξ, if N is a pointed object. The latter means that there exists an arrow $N \rightarrow x$.

3.1.2. Complexes. A sequence of arrows

$$
\ldots \xrightarrow{f_{n+1}} M_{n+1} \xrightarrow{f_n} M_n \xrightarrow{f_{n-1}} M_{n-1} \xrightarrow{f_{n-2}} \ldots
$$

is called a complex if each its arrow has a kernel and the next arrow factors uniquely through this kernel.

3.1.3. Lemma. Let each arrow in the sequence

$$
\ldots \xrightarrow{f_3} M_3 \xrightarrow{f_2} M_2 \xrightarrow{f_1} M_1 \xrightarrow{f_0} M_0
$$

of arrows have a kernel and the composition of any two consecutive arrows is trivial. Then

$$
\ldots \xrightarrow{f_4} M_4 \xrightarrow{f_3} M_3 \xrightarrow{f_2} M_2
$$

is a complex. If M_0 is a pointed object, then (2) is a complex.
Proof. The objects M_i are pointed for $i \geq 2$, which implies that
$(\text{Ker}(f_i) \xrightarrow{t(f_i)} M_{i+1} \text{ are monomorphisms for all } i \geq 2, \text{ hence}) (3)$ is a complex
(see 3.1.1).

3.1.4. Corollary. A sequence of morphisms
\[\cdots \xrightarrow{f_{n+1}} M_{n+1} \xrightarrow{f_n} M_n \xrightarrow{f_{n-1}} M_{n-1} \xrightarrow{f_{n-2}} \cdots \]
unbounded on the right is a complex iff the composition of any pair of its
consecutive arrows is trivial and for every i, there exists a kernel of the
morphism f_i.

3.1.5. Example. Let C_X be the category Alg_k of unital associative
k-algebras. The algebra k is its initial object, and every morphism of k-
algebras has a kernel. Pointed objects of C_X which have a morphism to
initial object are precisely augmented k-algebras. If the composition of pairs
of consecutive arrows in the sequence
\[\cdots \xrightarrow{f_3} A_3 \xrightarrow{f_2} A_2 \xrightarrow{f_1} A_1 \xrightarrow{f_0} A_0 \]
is trivial, then it follows from the argument of 3.1.2 that A_i is an augmented
k-algebra for all $i \geq 2$. And any unbounded on the right sequence of alge-ras with trivial compositions of pairs of consecutive arrows is formed by
augmented algebras.

3.1.6. ‘Exact’ complexes. Let (C_X, \mathcal{E}_X) be a right exact category with
an initial object. We call a sequence of two arrows $L \xrightarrow{f} M \xrightarrow{g} N$ in C_X
‘exact’ if the arrow g has a kernel, and f is the composition of $\text{Ker}(g) \xrightarrow{t(g)} M$
and a deflation $L \xrightarrow{f_0} \text{Ker}(g)$. A complex is called ‘exact’ if any pair of its
consecutive arrows forms an ‘exact’ sequence.

3.2. ∂^*-functors. Fix a right exact category (C_X, \mathcal{E}_X) with an
initial object x and a category C_Y with an initial object. A ∂^*-functor from
(C_X, \mathcal{E}_X) to C_Y is a system of functors $C_X \xrightarrow{T_i} C_Y, \ i \geq 0$, together with a
functorial assignment to every conflation $E = (N \xrightarrow{j} M \xrightarrow{e} L)$ and every
$i \geq 0$ a morphism $T_{i+1}(L) \xrightarrow{\partial(E)} T_i(N)$ which depends functorially on the
conflation E and such that the sequence of arrows
\[\cdots \xrightarrow{T_2(e)} T_2(L) \xrightarrow{\partial_1(E)} T_1(N) \xrightarrow{T_1(i)} T_1(M) \]
\[\xrightarrow{T_1(e)} T_1(L) \xrightarrow{\partial_0(E)} T_0(N) \xrightarrow{T_0(i)} T_0(M) \]
is a complex. Taking the trivial conflation $x \rightarrow x \rightarrow x$, we obtain that $T_i(x) \xrightarrow{id_{T_i(x)}} T_i(x)$ is a trivial morphism, or, equivalently, $T_i(x)$ is an initial object, for every $i \geq 1$.

Let $T = (T_i, \partial_i | i \geq 0)$ and $T' = (T'_i, \partial'_i | i \geq 0)$ be a pair of ∂^*-functors from (C_X, \mathcal{E}_X) to C_Y. A morphism from T to T' is a family $f = (T_i \xrightarrow{f_i} T'_i | i \geq 0)$ of functor morphisms such that for any conflation $E = (N \xrightarrow{j} M \xrightarrow{e} L)$ of the exact category C_X and every $i \geq 0$, the diagram

$$
\begin{array}{ccc}
T_{i+1}(L) & \xrightarrow{\partial_i(E)} & T_i(N) \\
\downarrow f_{i+1}(L) & & \downarrow f_i(N) \\
T'_{i+1}(L) & \xrightarrow{\partial'_i(E)} & T'_i(N)
\end{array}
$$

commutes. The composition of morphisms is naturally defined. Thus, we have the category $\mathcal{H}om^*((C_X, \mathcal{E}_X), C_Y)$ of ∂^*-functors from (C_X, \mathcal{E}_X) to C_Y.

3.2.1. **Trivial ∂^*-functors.** We call a ∂^*-functor $T = (T_i, \partial_i | i \geq 0)$ trivial if all T_i are functors with values in initial objects. One can see that trivial ∂^*-functors are precisely initial objects of the category $\mathcal{H}om^*((C_X, \mathcal{E}_X), C_Y)$. Once an initial object y of the category C_Y is fixed, we have a canonical trivial functor whose components equal to the constant functor with value in y – it maps all arrows of C_X to id_{y}.

3.2.2. **Some natural functorialities.** Let (C_X, \mathcal{E}_X) be a right exact category with an initial object and C_Y a category with initial object. If C_Z is another category with an initial object and $C_Y \xrightarrow{F} C_Z$ a functor which maps initial objects to initial objects, then for any ∂^*-functor $T = (T_i, \partial_i | i \geq 0)$, the composition $F \circ T = (F \circ T_i, F\partial_i | i \geq 0)$ of T with F is a ∂^*-functor. The map $(F, T) \mapsto F \circ T$ is functorial in both variables; i.e. it extends to a functor

$$
\text{Cat}_*(C_Y, C_Z) \times \mathcal{H}om^*((C_X, \mathcal{E}_X), C_Y) \longrightarrow \mathcal{H}om^*((C_X, \mathcal{E}_X), C_Z).
$$

(1)

Here Cat_* denotes the subcategory of Cat whose objects are categories with initial objects and morphisms are functors which map initial objects to initial objects.

On the other hand, let (C_X, \mathcal{E}_X) be another right exact category with an initial object and Φ a functor $C_X \rightarrow C_X$ which maps conflations to
conflations. In particular, it maps initial objects to initial objects (because if \(x \) is an initial object of \(C_X \), then \(x \rightarrow M \stackrel{id_M}{\rightarrow} M \) is a conflation; and \(\Phi(x \rightarrow M \stackrel{id_M}{\rightarrow} M) \) being a conflation implies that \(\Phi(x) \) is an initial object). For any \(\partial^* \)-functor \(T = (T_i, \partial_i | i \geq 0) \) from \((C_X, \mathcal{E}_X) \) to \(C_Y \), the composition \(T \circ \Phi = (T_i \circ \Phi, \partial_i \Phi | i \geq 0) \) is a \(\partial^* \)-functor from \((C_X, \mathcal{E}_X) \) to \(C_Y \). The map \((T, \Phi) \rightarrow T \circ \Phi \) extends to a functor

\[
\text{Hom}^*(C_X, C_Y) \times \text{Ex}((C_X, \mathcal{E}_X), (C_X, \mathcal{E}_X)) \rightarrow \text{Hom}^*(C_X, C_Y),
\]

(2)

where \(\text{Ex}((C_X, \mathcal{E}_X), (C_X, \mathcal{E}_X)) \) denotes the full subcategory of \(\text{Hom}(C_X, C_X) \) whose objects are preserving conflations functors \(C_X \rightarrow C_X \).

3.3. Universal \(\partial^* \)-functors

Fix a right exact category \((C_X, \mathcal{E}_X) \) with an initial object \(x \) and a category \(C_Y \) with an initial object \(y \).

A \(\partial^* \)-functor \(T = (T_i, \partial_i | i \geq 0) \) from \((C_X, \mathcal{E}_X) \) to \(C_Y \) is called universal if for every \(\partial^* \)-functor \(T' = (T'_i, \partial'_i | i \geq 0) \) from \((C_X, \mathcal{E}_X) \) to \(C_Y \) and every functor morphism \(T'_0 \stackrel{g}{\rightarrow} T_0 \), there exists a unique morphism \(f = (T'_i \stackrel{f_i}{\rightarrow} T_i | i \geq 0) \) from \(T' \) to \(T \) such that \(f_0 = g \).

3.3.1. Interpretation

Consider the functor

\[
\text{Hom}^*((C_X, \mathcal{E}_X), C_Y) \xrightarrow{\Psi^*} \text{Hom}(C_X, C_Y)
\]

(3)

which assigns to every \(\partial^* \)-functor (resp. every morphism of \(\partial^* \)-functors) its zero component. For any functor \(C_X \xrightarrow{F} C_Y \), we have a presheaf of sets \(\text{Hom}(\Psi^*(-), F) \) on the category \(\text{Hom}^*((C_X, \mathcal{E}_X), C_Y) \). Suppose that this presheaf is representable by an object (i.e. a \(\partial^* \)-functor) \(\Psi_*(F) \). Then \(\Psi_*(F) \) is a universal \(\partial^* \)-functor.

Conversely, if \(T = (T_i, \partial_i | i \geq 0) \) is a universal \(\partial^* \)-functor, then \(T \simeq \Psi_*(T_0) \).

3.3.2. Proposition

Let \((C_X, \mathcal{E}_X) \) be a right exact category with an initial object \(x \); and let \(C_Y \) be a category with initial objects, kernels of morphisms, and limits of filtered systems. Then, for any functor \(C_X \xrightarrow{F} C_Y \), there exists a unique up to isomorphism universal \(\partial^* \)-functor \(T = (T_i, \partial_i | i \geq 0) \) such that \(T_0 = F \).

In other words, the functor

\[
\text{Hom}^*((C_X, \mathcal{E}_X), C_Y) \xrightarrow{\Psi^*} \text{Hom}(C_X, C_Y)
\]

(3)
which assigns to each morphism of ∂^*-functors its zero component has a right adjoint, Ψ^*.

Proof. For an arbitrary functor $C_X \xrightarrow{F} C_Y$, we set

$$S_-(F)(L) = \lim Ker(F(\xi)), $$

where the limit is taken by the (filtered) system of all deflations $M \xrightarrow{\xi} L$. Since deflations form a pretopology, the map $L \mapsto S_-(F)(L)$ extends naturally to a functor $C_X \xrightarrow{S_-(F)} C_Y$. By the definition of $S_-(F)$, for any conflation $E = (N \xrightarrow{i} M \xrightarrow{\xi} L)$, there exists a unique morphism $S_-(F)(L) \xrightarrow{\delta^0_F(E)} Ker(F(j))$. We denote by $\delta^0_F(E)$ the composition of $\delta^0_F(E)$ and the canonical morphism $Ker(F(j)) \rightarrow F(N)$.

Notice that the correspondence $F \mapsto (S_-(F), \delta^0_F)$ is functorial. Applying the iterations of the functor S_- to F, we obtain a ∂^*-functor $S^*_-(F) = (S^0_-(F)|i \geq 0)$. This ∂^*-functor is universal. ■

3.3.3. **Remark.** Let the assumptions of 3.3.2 hold. Then we have a pair of adjoint functors

$$\mathcal{H}om^*((C_X, \mathcal{E}_X), C_Y) \xrightarrow{\Psi^*} \mathcal{H}om(C_X, C_Y) \xrightarrow{\Psi^*} \mathcal{H}om^*((C_X, \mathcal{E}_X), C_Y)$$

By 3.3.2, the adjunction morphism $\Psi^*\Psi_* \rightarrow Id$ is an isomorphism which means that Ψ_* is a fully faithful functor and Ψ^* is a localization functor at a left multiplicative system.

3.3.4. **Proposition.** Let (C_X, \mathcal{E}_X) be a right exact category with an initial object and $T = (T_i, \mathcal{F}_i | i \geq 0)$ a ∂^*-functor from (C_X, \mathcal{E}_X) to C_Y. Let C_Z be another category with an initial object and F a functor from C_Y to C_Z which preserves initial objects, kernels of morphisms and limits of filtered systems. Then

(a) If T is a universal ∂^*-functor, then $F \circ T = (F \circ T_i, F\mathcal{F}_i | i \geq 0)$ is universal.

(b) If, in addition, the functor F is fully faithful, then the ∂^*-functor $F \circ T$ is universal iff T is universal.

Proof. (a) Since the functor F preserves kernels of morphisms and filtered limits (that is all types of limits which appear in the construction of $S_-(G)(L)$), the natural morphism

$$F \circ S_-(G)(L) \rightarrow S_-(F \circ G)(L)$$
is an isomorphism for any functor $C_X \xrightarrow{G} C_Y$ such that $S_-(G)(L) = \lim Ker(G(t(\varepsilon)))$ exists. Moreover, \mathfrak{d}^G_0 is naturally isomorphic to $F\mathfrak{d}^G_0$. Here \textit{naturally isomorphic} means that for any conflation $E = (N \xrightarrow{1} M \xrightarrow{1} L)$, there is a commutative diagram

$$
\begin{array}{ccc}
F \circ S_-(G)(L) & \xrightarrow{F \mathfrak{d}^G_0(E)} & F \circ G(N) \\
\downarrow {\sim} & & \downarrow {\sim} \\
S_-(F \circ G)(L) & \xrightarrow{\mathfrak{d}^F_0(E)} & F \circ G(N)
\end{array}
$$

commutes. Therefore, the natural morphisms $F \circ S^i_i (T_0) \xrightarrow{\varphi_i} S^i_i (F \circ T_0)$ are are isomorphisms for all $i \geq 0$ and $\varphi = (\varphi_i | i \geq 0)$ is an isomorphism of ∂^*-functors

$$(F \circ S^i_i (T_0), F\mathfrak{d}^T_i | i \geq 0) \xrightarrow{\sim} (S^i_i (F \circ T_0), \mathfrak{d}^{F \circ T_0}_i | i \geq 0).$$

(b) By (a), we have a functor isomorphism $F \circ T_{i+1} \xrightarrow{\sim} F \circ S_-(T_i)$ for all $i \geq 0$. Since the functor F is fully faithful, this isomorphism is the image of a uniquely determined isomorphism $T_{i+1} \xrightarrow{\sim} S_-(T_i)$. The assertion follows now from (the argument of) 3.3.2. Details are left as an exercise. [\bbox]

3.3.5. An application. Let (C_X, \mathfrak{E}_X) be a right exact category and C_Y a category. We assume that both categories, C_X and C_Y have initial objects. Consider the Yoneda embedding

$$C_Y \xrightarrow{h_Y} C^\wedge_Y, \ M \mapsto \widehat{M} = C_Y(-, M).$$

of the category C_Y into the category C^\wedge_Y of presheaves of sets on C_Y. The functor h_Y is fully faithful and preserves all limits. In particular, it satisfies the conditions of 3.3.4(b). Therefore, a ∂^*-functor $T = (T_i, \mathfrak{d}_i | i \geq 0)$ from (C_X, \mathfrak{E}_X) to C_Y is universal iff the ∂^*-functor $\widehat{T} \overset{\text{def}}{=} h_Y \circ T = (\widehat{T}_i, \widehat{\mathfrak{d}}_i | i \geq 0)$ from (C_X, \mathfrak{E}_X) to C^\wedge_Y is universal.

Since the category C^\wedge_Y has all limits (and colimits), it follows from 3.3.2 that, for any functor $C_X \xrightarrow{G} C^\wedge_Y$, there exists a unique up to isomorphism universal ∂^*-functor $T = (T_i, \mathfrak{d}_i | i \geq 0) = \Psi_*(G)$ whose zero component coincides with G. In particular, for every functor $C_X \xrightarrow{F} C_Y$, there exists a unique up to isomorphism universal ∂^*-functor $T = (T_i, \mathfrak{d}_i | i \geq 0)$ from (C_X, \mathfrak{E}_X) such that $T_0 = h_Y \circ F = \widehat{F}$. It follows from 3.3.4(b) that a universal
∂*-functor whose zero component coincides with F exists if and only if for all $L \in Ob_{CX}$ and all $i \geq 1$, the presheaves of sets $T_i(L)$ are representable.

3.3.6. Remark. Let (C_X, \mathcal{E}_X) be a svelte right exact category with an initial object x and C_Y a category with an initial object y and limits. Then, by the argument of 3.3.2, we have an endofunctor S_- of the category $\mathcal{H}om(C_X, C_Y)$ of functors from C_X to C_Y, together with a cone $S_- \xrightarrow{\lambda} \eta$, where η is the constant functor with the values in the initial object y of the category C_Y. For any conflation $E = (N \xrightarrow{j} M \xrightarrow{\epsilon} L)$ of (C_X, \mathcal{E}_X) and any functor $C_X \xrightarrow{F} C_Y$, we have a commutative diagram

$$
\begin{array}{ccc}
S_- F(L) & \xrightarrow{\lambda(L)} & y \\
\downarrow \varphi_0(E) & \downarrow & \downarrow \\
F(N) & \xrightarrow{Fj} & F(M) & \xrightarrow{F\epsilon} & F(L)
\end{array}
$$

3.4. The dual picture: ∂-functors and universal ∂-functors. Let (C_X, \mathcal{I}_X) be a left exact category, which means by definition that $(C_X^{op}, \mathcal{I}_X^{op})$ is a right exact category. A ∂-functor on (C_X, \mathcal{I}_X) is the data which becomes a ∂^*-functor in the dual right exact category. A ∂-functor on (C_X, \mathcal{I}_X) is universal if its dualization is a universal ∂^*-functor. We leave to the reader the reformulation in the context of ∂-functors of all notions and facts about ∂^*-functors.

3.5. Universal ∂^*-functors and ‘exactness’.

3.5.1. The properties $(CE5)$ and $(CE5^*)$. Let (C_X, \mathcal{E}_X) be a right exact category. We say that it satisfies $(CE5^*)$ (resp. $(CE5)$) if the limit of a filtered system (resp. the colimit of a cofiltered system) of conflations in (C_Y, \mathcal{E}_Y) exists and is a conflation.

In particular, if (C_X, \mathcal{E}_X) satisfies $(CE5^*)$ (resp. $(CE5)$), then the limit of any filtered system (resp. the colimit of any cofiltered system) of deflations is a deflation.

The properties $(CE5)$ and $(CE5^*)$ make sense for left exact categories as well. Notice that a right exact category satisfies $(CE5^*)$ (resp. $(CE5)$) iff the dual left exact category satisfies $(CE5)$ (resp. $(CE5^*)$).

3.5.2. Note. If (C_X, \mathcal{E}_X) is an abelian category with the canonical exact structure, then the property $(CE5)$ for (C_X, \mathcal{E}_X) is equivalent to the Grothendieck’s property $(AB5)$ and, therefore, the property $(CE5^*)$ is equivalent to $(AB5^*)$ (see [Gr, 1.5]).
The property (CE5) holds for Grothendieck toposes.

In what follows, we use (CE5*) for right exact categories and the dual property (CE5) for left exact categories.

3.5.3. Proposition. Let \((C_X, \mathcal{E}_X), (C_Y, \mathcal{E}_Y)\) be right exact categories, and \((C_Y, \mathcal{E}_Y)\) satisfy (CE5*). Let \(F\) be a weakly right ‘exact’ functor \((C_X, \mathcal{E}_X) \to (C_Y, \mathcal{E}_Y)\) such that \(S_-(F)\) exists. Then for any conflation \(E = (N \xrightarrow{j} M \xrightarrow{\xi} L)\) in \((C_X, \mathcal{E}_X)\), the sequence

\[
S_-(F)(N) \xrightarrow{S_-(F)(j)} S_-(F)(M) \xrightarrow{S_-(F)(\xi)} S_-(F)(L) \xrightarrow{\varphi_0(E)} F(N) \xrightarrow{F(j)} F(M)
\]

is ‘exact’. The functor \(S_-(F)\) is a weakly right ‘exact’ functor from \((C_X, \mathcal{E}_X)\) to \((C_Y, \mathcal{E}_Y)\).

3.5.4. ‘Exact’ \(\partial^*\)-functors and universal \(\partial^*\)-functors. Fix right exact categories \((C_X, \mathcal{E}_X)\) and \((C_Y, \mathcal{E}_Y)\), both with initial objects. A \(\partial^*\)-functor \(T = (T_i, \vartheta_i)_{i \geq 0}\) from \((C_X, \mathcal{E}_X)\) to \(C_Y\) is called ‘exact’ if for every conflation \(E = (N \xrightarrow{j} M \xrightarrow{\xi} L)\) in \((C_X, \mathcal{E}_X)\), the complex

\[
\ldots \xrightarrow{T_2(\xi)} T_2(L) \xrightarrow{\vartheta_1(E)} T_1(N) \xrightarrow{T_1(j)} T_1(M) \xrightarrow{T_1(\xi)} T_1(L) \xrightarrow{\varphi_0(E)} T_0(N) \xrightarrow{T_0(j)} T_0(M)
\]

is ‘exact’.

3.5.4.1. Proposition. Let \((C_X, \mathcal{E}_X), (C_Y, \mathcal{E}_Y)\) be right exact categories. Suppose that \((C_Y, \mathcal{E}_Y)\) satisfies (CE5*). Let \(T = (T_i, \vartheta_i)_{i \geq 0}\) be a universal \(\partial^*\)-functor from \((C_X, \mathcal{E}_X)\) to \((C_Y, \mathcal{E}_Y)\). If the functor \(T_0\) is right ‘exact’, then the universal \(\partial^*\)-functor \(T\) is ‘exact’.

Proof. If \(T_0\) is right ‘exact’, then, by 3.5.3, the functor \(T_1 \simeq S_-(T_0)\) is right ‘exact’ and for any conflation \(E = (N \xrightarrow{j} M \xrightarrow{\xi} L)\), the sequence

\[
T_1(N) \xrightarrow{T_1(j)} T_1(M) \xrightarrow{T_1(\xi)} T_1(L) \xrightarrow{\varphi_0(E)} T_0(N) \xrightarrow{T_0(j)} T_0(M)
\]

is ‘exact’. Since \(T_{n+1} = S_-(T_n)\), the assertion follows from 3.5.3 by induction.

3.5.4.2. Corollary. Let \((C_X, \mathcal{E}_X)\) be a right exact category. For each object \(L\) of \(C_X\), the \(\partial\)-functor \(\text{Ext}^*_X(L) = (\text{Ext}^*_X(L) \mid i \geq 0)\) is ‘exact’.
Suppose that the category C_X is k-linear. Then for each $L \in \text{Ob}C_X$, the ∂-functor $\text{Ext}^\bullet_X(L) = (\text{Ext}^i_X(L) \mid i \geq 0)$ is ‘exact’.

Proof. In fact, the ∂-functor $\text{Ext}^\bullet_X(L)$ is universal by definition (see 3.4.1), and the functor $\text{Ext}^0_X(L) = C_X(-, L)$ is left exact. In particular, it is left ‘exact’.

If C_X is a k-linear category, then the universal ∂-functors $\text{Ext}^\bullet_X(L)$, $L \in \text{Ob}C_X$, with the values in the category of k-modules (defined in 3.4.2) are ‘exact’ by a similar reason. ■

4. Coefficientable functors, universal ∂^*-functors, and pointed projectives.

4.1. Projectives and projective deflations. Fix a right exact category (C_X, \mathfrak{E}_X). We call an object P of C_X projective if every deflation $M \to P$ splits. Equivalently, any morphism $P \xrightarrow{f} N$ factors through any deflation $M \xrightarrow{\epsilon} N$.

We denote by $\mathcal{P}_{\mathfrak{E}_X}$ the full subcategory of C_X generated by projective objects.

4.1.1. Example. Let (C_X, \mathfrak{E}_X) be a right exact category whose deflations split. Then every object of C_X is a projective object of (C_X, \mathfrak{E}_X).

A deflation $M \to L$ is called projective if it factors through any deflation of L.

Any deflation $P \to L$ with P projective is a projective deflation. On the other hand, an object P is projective iff the identical morphism $P \to P$ is a projective deflation.

4.2. Coefficientable functors and projectives. Let (C_X, \mathfrak{E}_X) be a right exact category and C_Y a category with an initial object. We call a functor $C_X \xrightarrow{F} C_Y$ coefficientable, or \mathfrak{E}_X-coefficientable, if for any object L of C_X, there exists a deflation $M \xrightarrow{\epsilon} L$ such that $F(\epsilon)$ is a trivial morphism.

It follows that if a functor $C_X \xrightarrow{F} C_Y$ is \mathfrak{E}_X-coefficientable, then it maps all projectives to initial objects and all projective deflations to trivial arrows.

So that if the right exact category (C_X, \mathfrak{E}_X) has enough projective deflations (resp. enough projectives), then a functor $C_X \xrightarrow{F} C_Y$ is \mathfrak{E}_X-coefficientable iff $F(\epsilon)$ is trivial for any projective deflation ϵ (resp. $F(M)$ is an initial object for every projective object M).

4.3. Proposition. Let (C_X, \mathfrak{E}_X) be a right exact category with initial objects and $T = (T_i, 0_i \mid i \geq 0)$ a universal ∂^*-functor from (C_X, \mathfrak{E}_X) to C_Y.

Then $T_i(P)$ is an initial object for any pointed projective object P and for all $i \geq 1$.

4.3.1. Corollary. Let (C_X, \mathcal{E}_X) be a right exact category with initial objects and $T = (T_i, \delta_i \mid i \geq 0)$ a universal ∂^*-functor from (C_X, \mathcal{E}_X) to C_Y. Suppose that (C_X, \mathcal{E}_X) has enough projectives and projectives of (C_X, \mathcal{E}_X) are pointed objects. Then the functors T_i are cofaceable for all $i \geq 1$.

Proof. The assertion follows from 4.3 and 4.2. ■

4.4. Proposition. Let (C_X, \mathcal{E}_X) and (C_Y, \mathcal{E}_Y) be right exact categories with initial objects; and let $T = (T_i, \delta_i \mid i \geq 0)$ be an ‘exact’ ∂^*-functor from (C_X, \mathcal{E}_X) to (C_Y, \mathcal{E}_Y).

If the functors T_i are \mathcal{E}_X-cofaceable for $i \geq 1$, then T is a universal ∂^*-functor.

Proof. The argument is similar to the proof in [Gr] of the corresponding assertion for abelian categories. ■

4.5. Proposition. Let (C_X, \mathcal{E}_X), (C_Y, \mathcal{E}_Y), and (C_Z, \mathcal{E}_Z) be right exact categories. Suppose that (C_X, \mathcal{E}_X) has enough projectives and C_Y has kernels of all morphisms. If $T = (T_i \mid i \geq 0)$ is a universal, ‘exact’ ∂^*-functor from (C_X, \mathcal{E}_X) to (C_Y, \mathcal{E}_Y) and F a functor from (C_Y, \mathcal{E}_Y) to (C_Z, \mathcal{E}_Z) which respects conflations, then the composition $F \circ T = (F \circ T_i \mid i \geq 0)$ is a universal ‘exact’ ∂^*-functor.

Proof. Under the conditions of the proposition, the composition $F \circ T$ is an ‘exact’ functor such that the functors $F \circ T_i$, $i \geq 1$, map pointed projectives of (C_X, \mathcal{E}_X) to trivial objects (because T_i map pointed projectives to trivial objects by 4.3 and F maps trivial objects to trivial objects). Since there are enough pointed projectives (hence all projectives are pointed), this implies that the functors $F \circ T_i$ are cofaceable for $i \geq 1$. Therefore, by 4.4, $F \circ T$ is a universal ∂^*-functor. ■

4.6. Sufficient conditions for having enough pointed projectives.

4.6.1. Proposition. Let (C_X, \mathcal{E}_X) and (C_Z, \mathcal{E}_Z) be right exact categories and $C_Z \xrightarrow{f^*} C_X$ a functor having a right adjoint f_*. Suppose that f^* maps deflations of the form $N \rightarrow f_*(M)$ to deflations and the adjunction arrow $f^*f_*(M) \xrightarrow{c(M)} M$ is a deflation for all M (which is the case if any morphism t of C_X such that $f_*(t)$ is a split epimorphism belongs to \mathcal{E}_X). Let (C_Z, \mathcal{E}_Z) have enough projectives, and all projectives are pointed objects. Then each projective of (C_X, \mathcal{E}_X) is a pointed object.
If, in addition, f_* maps deflations to deflations, then (C_X, \mathcal{E}_X) has enough projectives.

4.6.2. Note. The conditions of 4.6.1 can be replaced by the requirement that if $N \to f_*(M)$ is a deflation, then the corresponding morphism $f^*(N) \to M$ is a deflation. This requirement follows from the conditions of 4.6.1, because the morphism $f^*(N) \to M$ corresponding to $N \xrightarrow{1} f_*(M)$ is the composition of $f^*(t)$ and the adjunction arrow $f^*f_*(M) \xrightarrow{\epsilon(M)} M$.

4.6.3. Example. Let (C_X, \mathcal{E}_X) be the category Alg of associative k-algebras endowed with the canonical (that is the finest) right exact structure. This means that class \mathcal{E}_X of deflations coincides with the class of all are strict epimorphisms of k-algebras. Let (C_Y, \mathcal{E}_Y) be the category of k-modules with the canonical exact structure, and f_* the forgetful functor $\text{Alg} \to k-\text{mod}$. Its left adjoint, f^* preserves strict epimorphisms, and the functor f_* preserves and reflects deflations; i.e. a k-algebra morphism t is a strict epimorphism iff $f_*(t)$ is an epimorphism. In particular, the adjunction arrow $f^*f_*(A) \to A$ is a strict epimorphism for all A. By 4.6.1, (C_X, \mathcal{E}_X) has enough projectives and each projective has a morphism to the initial object k; that is each projective has a structure of an augmented k-algebra.

4.7. Acyclic objects and the universality of ∂^*-functors. Given a ∂^*-functor $T = (T_i | i \geq 0)$ from a right exact category (C_X, \mathcal{E}_X) to a category C_Y, we call an object M of C_X T-acyclic if $T_i(M)$ is a trivial object for all $i \geq 1$.

4.7.1. Proposition. Let (C_X, \mathcal{E}_X) and (C_Y, \mathcal{E}_Y) be right exact categories with initial objects and $C_X \xrightarrow{G} C_X$ a functor which preserves conflations. Let $T = (T_i | i \geq 0)$ be an ‘exact’ ∂^*-functor from (C_X, \mathcal{E}_X) to a category C_Z with initial objects. If there are enough objects M of C_X such that $G(M)$ is a T-acyclic object, then $T \circ G$ is a universal ∂^*-functor.

Proof. Since the functor G maps conflation to conflations, and the ∂^*-functor T is ‘exact’, its composition $T \circ G$ is an ‘exact’ ∂^*-functor. Since there are enough objects in C_X which the functor G maps to acyclic objects (i.e. for each object L of $C_\mathfrak{A}$, there is a deflation $M \to L$ such that $G(M)$ is T-acyclic), the functor $T_i \circ G$ is effeable for all $i \geq 1$. Therefore, by 4.6, the composition $T \circ G$ is a universal ∂^*-functor.
5. Universal problems for universal ∂^*- and ∂-functors.

5.1. The categories of universal ∂^*- and ∂-functors. Fix a right exact svelte category (C_X, \mathcal{E}_X) with an initial object. Let $\partial^*\mathcal{U}(X, \mathcal{E}_X)$ denote the category whose objects are universal ∂^*-functors from (C_X, \mathcal{E}_X) to categories C_Y (with initial objects). Let T be a universal ∂^*-functor from (C_X, \mathcal{E}_X) to C_Y and T' a universal ∂^*-functor from (C_X, \mathcal{E}_X) to C_Z. A morphism from T to T' is a pair (F, ϕ), where F is a functor from C_Y to C_Z and ϕ is a ∂^*-functor isomorphism $F \circ T \to T'$. If (F', ϕ') is a morphism from T' to T'', then the composition of (F, ϕ) and (F', ϕ') is defined by $(F', \phi') \circ (F, \phi) = (F' \circ F, \phi' \circ F' \phi)$.

Dually, for a left exact category (C_X, \mathcal{I}_X) with a final object, we denote by $\partial\mathcal{U}(X, \mathcal{I}_X)$ the category whose objects are universal ∂-functors from (C_X, \mathcal{I}_X) to categories with final object. Given two universal ∂-functors T and T' from (C_X, \mathcal{I}_X) to respectively C_Y and C_Z, a morphism from T to T' is a pair (F, ψ), where F is a functor from C_Y to C_Z and ψ is a functor isomorphism $T' \to T \circ F$. The composition is defined by $(F', \psi') \circ (F, \psi) = (F' \circ F, F'\psi \circ \psi')$.

5.2. Universal problems for universal ∂-functors with values in complete categories and ∂^*-functors with values in cocomplete categories.

Let (C_X, \mathcal{E}_X) be a svelte right exact category. We denote by $\partial^*\mathcal{U}_c(X, \mathcal{E}_X)$ the subcategory of $\partial^*\mathcal{U}(X, \mathcal{E}_X)$ whose objects are universal ∂^*-functors from (C_X, \mathcal{E}_X) to complete (i.e. having limits of small diagrams) categories C_Y and morphisms between these universal ∂^*-functors are pairs (F, ϕ), where the functor F preserves limits.

For a svelte left exact category (C_X, \mathcal{I}_X), we denote by $\partial\mathcal{U}_c(X, \mathcal{I}_X)$ the subcategory of $\partial\mathcal{U}(X, \mathcal{I}_X)$ whose objects are ∂-functors with values in cocomplete categories and morphisms are pairs (F, ψ) such that the functor F preserves small colimits.

5.2.1. Proposition. Let (C_X, \mathcal{E}_X) be a svelte right exact category with initial objects and (C_X, \mathcal{I}_X) a svelte left exact category with final objects. The categories $\partial^*\mathcal{U}_c(X, \mathcal{E}_X)$ and $\partial\mathcal{U}_c(X, \mathcal{I}_X)$ have initial objects.

Proof. It suffices to prove the assertion about $\partial\mathcal{U}_c(X, \mathcal{I}_X)$, because the assertion about ∂^*-functors is obtained via dualization.

Consider the Yoneda embedding

$$C_X \xrightarrow{h_X} C_X^\wedge, \quad M \mapsto C_X(\cdot, M).$$
We denote by $\text{Ext}^\bullet_{X, J_X}$ the universal ∂-functor from (C_X, J_X) to C^\wedge_X such that $\text{Ext}^0_{X, J_X} = h_X$. The claim is that $\text{Ext}^\bullet_{X, J_X}$ is an initial object of the category $\mathcal{P}(X, J_X)$. In fact, let C_Y be a cocomplete category. By [GZ, II.1.3], the composition with the Yoneda embedding $C_X \xrightarrow{h_X} C^\wedge_X$ is an equivalence between the category $\text{Hom}_c(C^\wedge_X, C_Y)$ of continuous (that is having a right adjoint, or, equivalently, preserving colimits) functors $C^\wedge_X \to C_Y$ and the category $\text{Hom}(C_X, C_Y)$ of functors from C_X to C_Y. Let $C_X \xrightarrow{F} C_Y$ be an arbitrary functor and $C^\wedge_X \xrightarrow{F^\wedge} C_Y$ the corresponding continuous functor. By definition, $S_+ F(L) = \text{colim}(\text{Cok}(F(M \to \text{Cok}(j))),$ where $L \xrightarrow{\gamma} M$ runs through inflations of L. Since F_γ preserves colimits, it follows from (the dual version of) 3.3.4(a) that $F_\gamma \circ \text{Ext}^\bullet_{X, J_X}$ is a universal ∂-functor whose zero component is $F_\gamma \circ \text{Ext}^0_{X, J_X} = F_\gamma \circ h_X = F$. Therefore, by (the dual part of the argument of) 3.3.2, the universal ∂-functor $F_\gamma \circ \text{Ext}^\bullet_{X, J_X}$ is isomorphic to the right satellite $S^\gamma_+ F$ of the functor F. This shows that $\text{Ext}^\bullet_{X, J_X}$ is an initial object of the category $\mathcal{P}(X, J_X)$.}\blacksquare

5.3. The universal problem for arbitrary universal ∂- and ∂'-functors. Let (C_X, J_X) be a svext left exact category with final objects. Let C_X denote the smallest strictly full subcategory of the category C^\wedge_X containing all presheaves $\text{Ext}^n_{X, J_X}(L)$, $L \in \text{Ob} C_X$, $n \geq 0$. Let $\mathcal{F} \text{xt}^\bullet_{X, J_X}$ denote the corestriction of the ∂-functor $\text{Ext}^\bullet_{X, J_X}$ to the subcategory C_X. Thus, $\text{Ext}^\bullet_{X, J_X}$ is the composition of the ∂-functor $\mathcal{F} \text{xt}^\bullet_{X, J_X}$ and the inclusion functor $C_X \xrightarrow{j_X} C^\wedge_X$. It follows that $\mathcal{F} \text{xt}^\bullet_{X, J_X}$ is a universal ∂-functor.

5.3.1. Proposition. Let (C_X, J_X) a svext left exact category with final objects. For any universal ∂-functor $T = (T_i, \delta_i | i \geq 0)$ from (C_X, J_X) to a category C_Y (with final objects), there exists a unique (up to isomorphism) functor $C_X \xrightarrow{T^\wedge} C_Y$ such that $T = T^\wedge \circ \mathcal{F} \text{xt}^\bullet_{X, J_X}$ and the diagram

$$
\begin{array}{ccc}
C^\wedge_X & \xrightarrow{T^\wedge} & C_Y^\wedge \\
\downarrow j_X & & \downarrow h_Y \\
C_X & \xrightarrow{T^\wedge} & C_Y
\end{array}
$$

commutes. Here C_Y^\wedge denote the category of presheaves of sets on C_Y (i.e. functors $C_Y \to \text{Sets}$) and h_Y the (dual) Yoneda functor $C_Y \to$.
C_Y^{op}, $L \mapsto C_Y(L, -)$; and T_0^* is a unique continuous (i.e., having a right adjoint) functor such that $T_0^* \circ h_X = h_Y^0 \circ T_0$.

Proof. The category C_Y^{op} is cocomplete (and complete) and the functor h_Y^0 preserves colimits. Therefore, by 3.3.4, the composition $h_Y^0 \circ T$ is a universal ∂-functor from (C_X, \mathbb{J}_X) to C_Y^{op}. By 5.2.1, the ∂-functor $h_Y^0 \circ T$ is the composition of the universal ∂-functor Ext_{X, \mathbb{J}_X}^* from (C_X, \mathbb{J}_X) to $C_X^{\mathbb{J}_X}$ and the unique continuous functor $C_X^{\mathbb{J}_X} \xrightarrow{T_0^*} C_Y^{op}$ such that $T_0^* \circ h_X = h_Y^0 \circ T_0$.

Since the functor h_Y^0 is fully faithful, this implies that the universal ∂-functor $T = (T_i, \mathbb{J}_i | i \geq 0)$ is isomorphic to the composition of the corestriction of Ext_{X, \mathbb{J}_X}^* to the subcategory $C_{X_{m+1}}$ and a unique functor $C_{X_{m+1}} \xrightarrow{T^*} C_Y$ such that the composition $h_Y^0 \circ T^*$ coincides with the restriction of the functor T_0^* to the subcategory $C_{X_{m+1}}$.

5.3.2. Note. The formulation of the dual assertion about the universal ∂^*-functors is left to the reader.

5.4. The k-linear version. Fix a right exact svelte k-linear additive category (C_X, \mathcal{E}_X). Let $\partial_k^* \mathcal{U}_n(X, \mathcal{E}_X)$ denote the category whose objects are universal k-linear ∂^*-functors from (C_X, \mathcal{E}_X) to k-linear additive categories C_Y. Let T be a universal k-linear ∂^*-functor from (C_X, \mathcal{E}_X) to C_Y and \bar{T} a universal k-linear ∂^*-functor from (C_X, \mathcal{E}_X) to C_Z. A morphism from T to T' is a pair (F, ϕ), where F is a k-linear functor from C_Y to C_Z and ϕ is a ∂^*-functor isomorphism $F \circ T \xrightarrow{\sim} T'$. If (F', ϕ') is a morphism from T' to T'', then the composition of (F, ϕ) and (F', ϕ') is defined by $(F', \phi') \circ (F, \phi) = (F' \circ F, \phi' \circ F' \phi)$.

We denote by $\partial_k^* \mathcal{U}_n(X, \mathcal{E}_X)$ the subcategory of $\partial_k^* \mathcal{U}_n(X, \mathcal{E}_X)$ whose objects are k-linear ∂^*-functors with values in complete categories and morphisms are pairs (F, ϕ) such that the functor F preserves small limits.

Dually, for a left exact svelte k-linear additive category (C_X, \mathbb{J}_X), we denote by $\partial_\mathbb{J} \mathcal{U}_n(X, \mathbb{J}_X)$ the category whose objects are universal k-linear ∂-functors from (C_X, \mathbb{J}_X) to additive k-linear categories. Given two universal ∂-functors T and T' from (C_X, \mathbb{J}_X) to respectively C_Y and C_Z, a morphism from T to T' is a pair (F, ψ), where F is a k-linear functor from C_Y to C_Z and ψ a functor isomorphism $T' \xrightarrow{\sim} F \circ T$. The composition is defined by $(F', \psi') \circ (F, \psi) = (F' \circ F, F' \psi \circ \psi')$.

We denote by $\partial_\mathbb{J} \mathcal{U}_n(X, \mathbb{J}_X)$ the subcategory of $\partial_\mathbb{J} \mathcal{U}_n(X, \mathbb{J}_X)$ whose objects are k-linear ∂-functors with values in cocomplete categories and morphisms are pairs (F, ψ) such that the functor F preserves small colimits.
5.4.1. **Proposition.** Let \((C_X, \mathcal{E}_X)\) (resp. \((C_X, \mathcal{J}_X)\)) be a svelte right (resp. left) exact additive \(k\)-linear category. The categories \(\partial_k \mathcal{Un}^e(X, \mathcal{E}_X)\) and \(\partial_k \mathcal{Un}^e(X, \mathcal{J}_X)\) have initial objects.

Proof. By duality, it suffices to prove that the category \(\partial_k \mathcal{Un}^e(X, \mathcal{J}_X)\) has an initial object. The argument is similar to the argument of 5.2.1, except for the category \(C_X^2\) of presheaves of sets on the category \(C_X\) is replaced by the category \(\mathcal{M}_k(X)\) of presheaves of \(k\)-modules on \(C_X\). The initial object of the category \(\partial_k \mathcal{Un}^e(X, \mathcal{J}_X)\) is the universal \(k\)-linear \(\partial\)-functor \(\mathcal{Ext}_{(X, \mathcal{J}_X)}^\bullet\) from \((C_X, \mathcal{J}_X)\) to the category \(\mathcal{M}_k(X)\) whose zero component is the \((k\)-linear\) Yoneda embedding \(C_X \rightarrow \mathcal{M}_k(X), \ L \mapsto C_X(-, L)\).

Let \((C_X, \mathcal{J}_X)\) be a svelte \(k\)-linear additive left exact category. Let \(\mathcal{M}_k^e(X)\) denote the smallest additive strictly full subcategory of the category \(\mathcal{M}_k(X)\) containing all presheaves \(\mathcal{Ext}_{(X, \mathcal{J}_X)}^n(L),\ L \in \text{Ob}C_X,\ n \geq 0\). Let \(\mathcal{Ext}_{(X, \mathcal{J}_X)}^\bullet\) denote the co-restriction of the \(\partial\)-functor \(\mathcal{Ext}_{(X, \mathcal{J}_X)}^\bullet\) to the subcategory \(\mathcal{M}_k^e(X)\). Thus, \(\mathcal{Ext}_{(X, \mathcal{J}_X)}^\bullet\) is the composition of the \(k\)-linear \(\partial\)-functor \(\mathcal{Ext}_{(X, \mathcal{J}_X)}^\bullet\) and the inclusion functor

\[\mathcal{M}_k^e(X) \rightarrow \mathcal{M}_k(X)\]

It follows that \(\mathcal{Ext}_{(X, \mathcal{J}_X)}^\bullet\) is a universal \(\partial\)-functor.

5.4.2. **Proposition.** Let \((C_X, \mathcal{J}_X)\) be a svelte left exact category with final objects. For any universal \(\partial\)-functor \(T = (T_i, \mathfrak{a}_i | i \geq 0)\) from \((C_X, \mathcal{J}_X)\) to a category \(C_Y\) (with final objects), there exists a unique (up to isomorphism) functor \(C_{X_\diamond} \xrightarrow{T^\circ} C_Y\) such that \(T = T^\circ \circ \mathcal{Ext}_{(X, \mathcal{J}_X)}^\bullet\) and the diagram

\[
\begin{array}{ccc}
C_{X_\diamond} & \xrightarrow{T^\circ} & C_Y^{op} \\
\mathfrak{J}_X \downarrow & & \downarrow h_Y^{op} \\
C_{X_\diamond} & \xrightarrow{T^\circ} & C_Y
\end{array}
\]

commutes. Here \(C_Y^{op}\) denote the category of presheaves of sets on \(C_Y^{op}\) (i.e. functors \(C_Y \rightarrow \text{Sets}\)) and \(h_Y^{op}\) the (dual) Yoneda functor \(C_Y \rightarrow C_Y^{op}, \ L \mapsto C_Y(L, -)\); and \(T^\circ\) is a unique continuous (i.e. having a right adjoint) functor such that \(T^\circ \circ h_X = h_Y^{op} \circ T_0\).

Proof. The argument is similar to that of 5.3.1. ■
6. The stable category of a left exact category.

6.1. Reformulations. Fix a svelte left exact category \((C_X, \mathcal{J}_X)\). Let \(\hat{\Theta}_X^*\) denote the continuous (that is having a right adjoint) functor \(C_X^\Lambda \to C_X^\Lambda\) determined (uniquely up to isomorphism) by the equality \(\text{Ext}_X^* = \hat{\Theta}_X^* \circ h_X\).

To any conflation \(N \xrightarrow{j} M \xrightarrow{\epsilon} L\), corresponds the diagram

\[
\begin{array}{ccc}
\hat{N} & \xrightarrow{j} & \hat{M} \\
\downarrow & & \downarrow \delta_0(E) \\
\hat{x} & \xrightarrow{\lambda(\hat{N})} & \hat{\Theta}_X^*(\hat{N})
\end{array}
\]

where \(\hat{L} = h_X(L)\) and \(\hat{x}\) is the final object of the category \(C_X^\Lambda\) of presheaves on \(C_X\).

Due to the universality of \(\text{Ext}_X^*\), all the information about universal \(\partial\)-functors from the left exact category \((C_X, \mathcal{J}_X)\), is encoded in the diagrams (1), where \(N \xrightarrow{j} M \xrightarrow{\epsilon} L\) runs through the class of conflations of \((C_X, \mathcal{J}_X)\).

In fact, it follows from the (argument of) 3.3.4(a) that the universal \(\partial\)-functor \(\text{Ext}_X^*\) is isomorphic to the \(\partial\)-functor of the form \((\hat{\Theta}_X^* \circ h_X, \hat{\Theta}_X^*(\delta_0) \mid n \geq 0)\); and for any functor \(F\) from \(C_X\) to a category \(C_Y\) with colimits and final objects, the universal \(\partial\)-functor \((T_i, \delta_i \mid i \geq 0)\) from \((C_X, \mathcal{J}_X)\) to \(C_Y\) with \(T_0 = F\) is isomorphic to

\[
F^* \circ \text{Ext}_X^* = (F^* \hat{\Theta}_X^* \circ h_X, F^* \hat{\Theta}_X^*(\delta_0) \mid n \geq 0).
\]

6.2. Note. If \(C_X\) is a pointed category, then the presheaf \(\hat{x} = C_X(-, x)\) is both a final and an initial object of the category \(C_X^\Lambda\). In particular, the morphism \(\hat{x} \xrightarrow{\lambda(\hat{N})} \hat{\Theta}_X^*(\hat{N})\) in (1) is uniquely defined, hence is not a part of the data. In this case, the data consists of the diagrams

\[
\begin{array}{ccc}
\hat{N} & \xrightarrow{j} & \hat{M} \\
& & \downarrow \delta_0(E) \\
& \xrightarrow{\hat{\Theta}_X^*(\hat{N})} & \end{array}
\]

where \(E = (N \xrightarrow{j} M \xrightarrow{\epsilon} L)\) runs through conflations of \((C_X, \mathcal{J}_X)\).

6.3. Stable category of \((C_X, \mathcal{J}_X)\). Consider the full subcategory \(C_{X^\Lambda}\) of the category \(C_X^\Lambda\) whose objects are \(\hat{\Theta}_X^*(\mathcal{M})\), where \(\mathcal{M}\) runs through representable presheaves and \(n\) through nonnegative integers. We denote by \(\theta_{X^\Lambda}\) the endofunctor \(C_{X^\Lambda} \to C_{X^\Lambda}\) induced by \(\hat{\Theta}_X^*\). It follows that \(C_{X^\Lambda}\) is the
smallest Θ^*_X-stable strictly full subcategory of the category C^\wedge_X containing all presheaves $\hat{M} = C_X(-, M), \ M \in \text{Ob}C_X$.

6.3.1. Triangles. We call the diagram

$$\hat{N} \xrightarrow{j} \hat{M} \xrightarrow{\epsilon} \hat{L} \xrightarrow{\delta_0(E)} \Theta^*_X(\hat{N}),$$

where $E = (N \xrightarrow{i} M \xrightarrow{e} L)$ is a conflation in (C_X, J_X), a *standard triangle*. A *triangle* is any diagram in C_{Xs} of the form

$$\mathcal{N} \xrightarrow{j} \mathcal{M} \xrightarrow{\epsilon} \mathcal{L} \xrightarrow{\delta} \theta_{Xs}(\mathcal{N}),$$

which is isomorphic to a standard triangle. It follows that for every triangle, the diagram

$$\begin{array}{ccc}
\mathcal{M} & \xrightarrow{\epsilon} & \mathcal{L} \\
\downarrow & & \downarrow \\
\hat{\mathcal{L}} & \xrightarrow{\lambda(\mathcal{N})} & \hat{\Theta}^*_X(\mathcal{N})
\end{array}$$

commutes. Triangles form a category $\mathcal{F}r_{Xs}$: morphisms from

$$\mathcal{N} \xrightarrow{j} \mathcal{M} \xrightarrow{\epsilon} \mathcal{L} \xrightarrow{\delta} \theta_{Xs}(\mathcal{N})$$

to

$$\mathcal{N}' \xrightarrow{j'} \mathcal{M}' \xrightarrow{\epsilon'} \mathcal{L}' \xrightarrow{\delta'} \theta_{Xs}(\mathcal{N}')$$

are given by commutative diagrams

$$\begin{array}{ccc}
\mathcal{N} & \xrightarrow{j} & \mathcal{M} \\
\downarrow f & & \downarrow g \\
\mathcal{N}' & \xrightarrow{j'} & \mathcal{M}'
\end{array} \quad \begin{array}{ccc}
\mathcal{M} & \xrightarrow{\epsilon} & \mathcal{L} \\
\downarrow h & & \downarrow i \\
\mathcal{M}' & \xrightarrow{\epsilon'} & \mathcal{L}'
\end{array} \quad \begin{array}{c}
\mathcal{L} \xrightarrow{\delta} \theta_{Xs}(\mathcal{N}) \\
\mathcal{L}' \xrightarrow{\delta'} \theta_{Xs}(\mathcal{N}')
\end{array}$$

The composition is obvious.

6.3.2. The prestable category of a left exact category. Thus, we have obtained a data $(C_{Xs}, (\theta_{Xs}, \lambda), \mathcal{F}r_{Xs})$. We call this data the *prestable category* of the left exact category (C_X, J_X).

6.3.3. The stable category of a left exact category with final objects. Let (C_X, J_X) be a left exact category with a final object x and $(C_{Xs}, \theta_{Xs}, \lambda; \mathcal{F}r_{Xs})$ the associated with (C_X, J_X) presuspended category. Let
$\Sigma = \Sigma_{\theta X_s}$ be the class of all arrows t of C_{X_s} such that $\theta_{X_s}(t)$ is an isomorphism.

We call the quotient category $C_{X_s} = \Sigma^{-1}C_{X_s}$ the stable category of the left exact category (C_{X_s}, \mathcal{J}_X). The endofunctor θ_{X_s} determines a conservative endofunctor θ_{X_s} of the stable category C_{X_s}. The localization functor $C_{X_s} \xrightarrow{q_s^*} C_{X_s}$ maps final objects to final objects. Let λ_s denote the image $\tilde{x} = q^*_s(\tilde{x}) \rightarrow \theta_{X_s}$ of the cone $\tilde{x} \xrightarrow{\lambda} \theta_{X_s}$.

Finally, we denote by $\mathcal{I}r_{X_s}$ the strictly full subcategory of the category of diagrams of the form $\mathcal{N} \rightarrow \mathcal{M} \rightarrow \mathcal{L} \rightarrow \theta_{X_s}(\mathcal{N})$ generated by $q^*_s(\mathcal{I}r_{X_s})$.

The data $(C_{X_s}, \theta_{X_s}, \lambda_s; \mathcal{I}r_{X_s})$ will be called the stable category of (C_{X_s}, \mathcal{J}_X).

6.4. Dual notions. If (C_{X_s}, \mathcal{E}_X) is a right exact category with an initial object, one obtains, dualizing the definitions of 6.3.2 and 6.3.3, the notions of the precostable and costable category of (C_{X_s}, \mathcal{E}_X).

6.5. The k-linear version. Let (C_{X_s}, \mathcal{J}_X) be a k-linear additive svelte left exact category. Replacing the category of C_{X_s} of presheaves of sets by the category $\mathcal{M}_k(X)$ of presheaves of k-modules on C_{X_s} and the functor $\text{Ext}^1_{(X_s, \mathcal{J}_X)}$ by its k-linear version, $\mathcal{Ext}^1_{(X_s, \mathcal{J}_X)}$, we obtain the k-linear versions of prestable and stable categories of the left exact category (C_{X_s}, \mathcal{J}_X).

6.5.1. Note. If (C_{X_s}, \mathcal{J}_X) is a k-linear exact category (that is \mathcal{J}_X happen to be the class of inflations of a k-linear exact category) with enough injectives, than its stable category defined above is equivalent to the conventional stable category of (C_{X_s}, \mathcal{J}_X). Recall that the latter has the same objects as C_{X_s} and its morphisms are homotopy classes of morphisms of C_{X_s}:

two morphisms $M \xrightarrow{f} N$ are homotopy equivalent to each other if their difference $f - g$ factors through an injective object.

Notice that our construction of stable category of (C, \mathcal{J}_X) does not require any additional hypothesis. In particular, it extends the notion of the stable category to arbitrary exact categories.

It is tempting to follow Keller’s example [Ke1], [KeV] and turn essential properties of prestable and stable categories of a left exact category into axioms. We call the corresponding notions respectively presuspended and quasi-suspended categories.

7.1. Presuspended and quasi-suspended categories. Fix a category C_{X_s} with a final object x and a functor $C_{X_s} \xrightarrow{\theta_x} x\backslash C_{X_s}$, or, what is the
same, a pair \((\theta_X, \lambda)\), where \(\theta_X\) is an endofunctor \(C_X \rightarrow C_X\) and \(\lambda\) is a cone \(x \rightarrow \theta_X\). We denote by \(\tilde{\mathcal{T}}X\) the category whose objects are all diagrams of the form
\[
\mathcal{N} \xrightarrow{j} \mathcal{M} \xrightarrow{\epsilon} \mathcal{L} \xrightarrow{\circ} \theta_X(N)
\]
such that the square
\[
\begin{array}{ccc}
\mathcal{M} & \xrightarrow{\epsilon} & \mathcal{L} \\
\downarrow & & \downarrow \circ \\
x & \xrightarrow{\lambda(N)} & \theta_X(N)
\end{array}
\]
commutes. Morphisms from
\[
\mathcal{N} \xrightarrow{j} \mathcal{M} \xrightarrow{\epsilon} \mathcal{L} \xrightarrow{\circ} \theta_X(N)
\]
to
\[
\mathcal{N}' \xrightarrow{j'} \mathcal{M}' \xrightarrow{\epsilon'} \mathcal{L}' \xrightarrow{\circ'} \theta_X(N')
\]
are triples \((\mathcal{N} \xrightarrow{f} \mathcal{N}', \mathcal{M} \xrightarrow{g} \mathcal{M}', \mathcal{L} \xrightarrow{h} \mathcal{L}')\) such that the diagram
\[
\begin{array}{ccc}
\mathcal{N} & \xrightarrow{j} & \mathcal{M} & \xrightarrow{\epsilon} & \mathcal{L} & \xrightarrow{\circ} & \theta_X(N) \\
\downarrow f & & \downarrow g & & \downarrow h & & \downarrow \theta_X(f) \\
\mathcal{N}' & \xrightarrow{j'} & \mathcal{M}' & \xrightarrow{\epsilon'} & \mathcal{L}' & \xrightarrow{\circ'} & \theta_X(N')
\end{array}
\]
commutes. The composition of morphisms is natural.

7.1.1. **Presuspended categories.** A **presuspended** category is a triple \((C_X, \tilde{\theta}_X, \tilde{\mathcal{T}}X)\), where \(C_X\) and \(\tilde{\theta}_X = (\theta_X, \lambda)\) are as above and \(\tilde{\mathcal{T}}X\) is a strictly full subcategory of the category \(\tilde{\mathcal{T}}X\) whose objects are called **triangles**, which satisfies the following conditions:

(PS1) Let \(C_{X_0}\) denote the full subcategory of \(C_X\) generated by objects \(\mathcal{N}\) such that there exists a triangle \(\mathcal{N} \xrightarrow{j} \mathcal{M} \xrightarrow{\epsilon} \mathcal{L} \xrightarrow{\circ} \theta_X(N)\). For every \(\mathcal{N} \in \text{Ob}C_{X_0}\), the diagram
\[
\mathcal{N} \xrightarrow{id_N} \mathcal{N} \xrightarrow{x} \theta_X(N)
\]
is a triangle.
(PS2) For any triangle $\mathcal{N} \xrightarrow{i} \mathcal{M} \xrightarrow{\epsilon} \mathcal{L} \xrightarrow{\theta_X(\mathcal{N})}$ and any morphism $\mathcal{N} \xrightarrow{f} \mathcal{N}'$ with $\mathcal{N}' \in \text{Ob}_{\mathcal{C}_0}$, there is a triangle $\mathcal{N}' \xrightarrow{j'} \mathcal{M}' \xrightarrow{\epsilon'} \mathcal{L} \xrightarrow{\theta_X(\mathcal{N}')} \theta_X(\mathcal{N}')$ such that f extends to a morphism of triangles

$$(\mathcal{N} \xrightarrow{i} \mathcal{M} \xrightarrow{\epsilon} \mathcal{L} \xrightarrow{\theta_X(\mathcal{N})}) \xrightarrow{(f, g, h)} (\mathcal{N}' \xrightarrow{j'} \mathcal{M}' \xrightarrow{\epsilon'} \mathcal{L} \xrightarrow{\theta_X(\mathcal{N}')}).$$

(PS3) For any pair of triangles

$$\mathcal{N} \xrightarrow{i} \mathcal{M} \xrightarrow{\epsilon} \mathcal{L} \xrightarrow{\theta_X(\mathcal{N})} \theta_X(\mathcal{N}) \quad \text{and} \quad \mathcal{N}' \xrightarrow{j'} \mathcal{M}' \xrightarrow{\epsilon'} \mathcal{L}' \xrightarrow{\theta_X(\mathcal{N}')} \theta_X(\mathcal{N}')$$

and any commutative square

$$\begin{array}{ccc}
\mathcal{N} & \xrightarrow{i} & \mathcal{M} \\
\downarrow f & & \downarrow g \\
\mathcal{N}' & \xrightarrow{j'} & \mathcal{M}'
\end{array}$$

there exists a morphism $\mathcal{L} \xrightarrow{h} \mathcal{L}'$ such that (f, g, h) is a morphism of triangles, i.e. the diagram

$$\begin{array}{ccc}
\mathcal{N} & \xrightarrow{i} & \mathcal{M} \\
\downarrow f & & \downarrow g \\
\mathcal{N}' & \xrightarrow{j'} & \mathcal{M}'
\end{array} \xrightarrow{\theta_X(\mathcal{N})} \xrightarrow{\theta_X(\mathcal{M})}
$$

commutes.

(PS4) For any pair of triangles

$$\mathcal{N} \xrightarrow{u} \mathcal{M} \xrightarrow{v} \mathcal{L} \xrightarrow{w} \theta_X(\mathcal{N}) \quad \text{and} \quad \mathcal{M} \xrightarrow{x} \mathcal{M}' \xrightarrow{s} \mathcal{L}' \xrightarrow{\theta_X(\mathcal{M})} \theta_X(\mathcal{M}),$$

there exists a commutative diagram

$$\begin{array}{ccccccc}
\mathcal{N} & \xrightarrow{u} & \mathcal{M} & \xrightarrow{v} & \mathcal{L} & \xrightarrow{w} & \theta_X(\mathcal{N}) \\
id & \downarrow x & \downarrow y & \downarrow \theta_X(\mathcal{N}) & & & \\
\mathcal{N}' & \xrightarrow{u'} & \mathcal{M}' & \xrightarrow{v'} & \mathcal{L}' & \xrightarrow{w'} & \theta_X(\mathcal{N}') \\
\downarrow s & \downarrow \theta_X(\mathcal{N}) & \downarrow t & \downarrow \theta_X(\mathcal{N}') & & & \\
\mathcal{M} & \xrightarrow{s} & \mathcal{M} & \xrightarrow{s} & \mathcal{L} & \xrightarrow{s} & \theta_X(\mathcal{M}) \\
\downarrow r & \downarrow \theta_X(\mathcal{M}) & \downarrow r' & \downarrow \theta_X(\mathcal{M}) & & & \\
\theta_X(\mathcal{M}) & \xrightarrow{\theta_X(v)} & \theta_X(\mathcal{L})
\end{array}$$

(2)
whose two upper rows and two central columns are triangles.

(PS5) For every triangle \(\mathcal{N} \xrightarrow{i} \mathcal{M} \xrightarrow{\epsilon} \mathcal{L} \xrightarrow{\sigma} \theta_X(\mathcal{N}) \), the sequence

\[
\cdots \longrightarrow C_X(\theta_X(\mathcal{N}), -) \longrightarrow C_X(\mathcal{L}, -) \\
\longrightarrow C_X(\mathcal{M}, -) \longrightarrow C_X(\mathcal{N}, -)
\]

is exact.

7.1.2. Remarks. (a) If \(C_X \) is an additive category, then three of the axioms above coincide with the corresponding Verdier’s axioms of triangulated category (under condition that \(C_{X_0} = C_X \)). Namely, (PS1) coincides with the first half of the axiom (TRI), the axiom (PS3) coincides with the axiom (TRIII), and (PS4) with (TRIV) (see [Ve2, Ch.II]).

(b) It follows from (PS4) that if \(\mathcal{N} \xrightarrow{} \mathcal{M} \xrightarrow{} \mathcal{L} \xrightarrow{} \theta_X(\mathcal{N}) \) is a triangle, then all three objects, \(\mathcal{N} \), \(\mathcal{M} \), and \(\mathcal{L} \), belong to the subcategory \(C_{X_0} \).

(c) The axiom (PS2) can be regarded as a base change property, and axiom (PS4) expresses the stability of triangles under composition. So that the axioms (PS1), (PS2) and (PS4) say that triangles form a ‘pretopology’ on the subcategory \(C_{X_0} \). The axiom (PS5) says that this pretopology is \textit{subcanonical}: the representable presheaves are sheaves.

These interpretations (as well as the axioms themselves) come from the main examples: prestable and stable categories of a left exact category.

7.1.3. Quasi-suspended categories. A presuspended category \((C_X, \theta_X, \lambda; \mathfrak{T}_X) \) will be called \textit{quasi-suspended} if the functor \(\theta_X \) is conservative. We denote by \(\mathfrak{S}\text{Cat} \) the full subcategory of the category \(\mathfrak{P}\text{Cat} \) of presuspended categories whose objects are conservative presuspended svelte categories.

7.2. Examples.

7.2.1. The presuspended category of presheaves of sets on a left exact category. Fix a left exact category \((C_X, \mathcal{I}_X) \). Let \(\hat{\Theta}_X^* \) be a continuous endofunctor of \(C_X^\alpha = C_X \) determined uniquely up to isomorphism by the equality \(Ext^1_{X, \mathcal{I}} = \hat{\Theta}_X^* \circ h_X \). We call a \textit{standard} triangle all diagrams of the form

\[
\hat{N} \xrightarrow{i} \hat{M} \xrightarrow{\epsilon} \hat{L} \xrightarrow{\delta_0(E)} \hat{\Theta}_X^*(\hat{N}),
\]

where \(E = (N \xrightarrow{i} M \xrightarrow{\epsilon} L) \) is any conflation in \((C_X, \mathcal{I}_X) \). Triangle is an object of the category \(\mathfrak{T}_{\mathcal{I}X}^\alpha \) which is isomorphic to a standard triangle. We
denote by \mathcal{T}_X the full subcategory of the category $\mathcal{T}_{X^\triangle}$ whose objects are triangles. One can see that $\mathcal{C}_{X^\triangle} = (C_{X^\triangle}, \Theta_{X^\triangle}^*, \lambda_X; \mathcal{T}_X)$ is a presuspended category.

In fact, C_{X_0} is the full subcategory of C_{X^\triangle} generated by all representable functors. The property (PS1) holds, because $N \xrightarrow{id_N} N \to x$ is a conflaction for any object N of C_X. The property (PS2) holds, because for any conflaction $E = (N \xrightarrow{j} M \xrightarrow{\epsilon} L)$ and any morphism $N \xrightarrow{f} N'$, we have a commutative diagram

$$
\begin{array}{ccc}
N & \xrightarrow{j} & M & \xrightarrow{\epsilon} & L \\
\downarrow{f} & & \downarrow{\tilde{f}} & & \downarrow{id_L} \\
N' & \xrightarrow{j'} & M' & \xrightarrow{\epsilon'} & L
\end{array}
$$

whose rows are conflations and left square is cocartesian. The property (PS3) holds, because for any commutative diagram

$$
\begin{array}{ccc}
N & \xrightarrow{j} & M & \xrightarrow{\epsilon} & L \\
\downarrow{f} & & \downarrow{g} & & \downarrow{h} \\
N' & \xrightarrow{j'} & M' & \xrightarrow{\epsilon'} & L'
\end{array}
$$

whose rows are conflations, there exists a unique arrow $L \xrightarrow{h} L'$ which makes the diagram commute, i.e. (f, g, h) is a morphism of conflations. Since $Ext_{\mathcal{T}_X}^*$ is a ∂-functor, this implies the commutativity of the diagram

$$
\begin{array}{ccc}
N & \xrightarrow{j} & M & \xrightarrow{\epsilon} & L & \xrightarrow{\partial_0(E)} & \Theta_{X^\triangle}^*(N) \\
\downarrow{f} & & \downarrow{g} & & \downarrow{h} & & \downarrow{\Theta_{X^\triangle}^*(f)} \\
N' & \xrightarrow{j'} & M' & \xrightarrow{\epsilon'} & L' & \xrightarrow{\partial_0(E')} & \Theta_{X^\triangle}^*(N')
\end{array}
$$

where E' denotes the conflation $N' \xrightarrow{j'} M' \xrightarrow{\epsilon'} L'$.
For any conflation $E = (N \xrightarrow{j} M \xrightarrow{\epsilon} L)$, the sequence
\[
\hat{N} \xrightarrow{j} \hat{M} \xrightarrow{\epsilon} \hat{L} \xrightarrow{\partial_0(E)} \hat{\Theta}_X^*(\hat{N}) \xrightarrow{\hat{\Theta}_X^*(j)} \ldots
\]
is exact, because $E \text{si}^* \text{is an 'exact' } \partial \text{-functor. This implies the property (PS5), that is the exactness of}
\[
\ldots \longrightarrow C_X(\hat{\Theta}_X^*(N), -) \longrightarrow C_X(L, -) \longrightarrow C_X(M, -) \longrightarrow C_X(N, -).
\]

7.2.2. The associated quasi-suspended category. It is obtained via localization of the suspended category $\mathfrak{T}C_X^\wedge = (C_X^\wedge, \hat{\Theta}_X^*, \lambda_X; \mathfrak{T}r_X)$ (see 7.2.1) at the class of arrows $\Sigma_{\hat{\Theta}_X^*} = \{ s \in \text{Hom}_{C_X^\wedge} | \hat{\Theta}_X^*(s) \text{ is an isomorphism} \}$.

Since $\hat{\Theta}_X^*$ is a continuous functor, the localization q_X^* at $\Sigma_{\hat{\Theta}_X^*}$ is a continuous (that is having a right adjoint) functor too. In particular, the functor q_X^* preserves colimits of small diagrams. The fact that q_X^* is right exact implies that the category $\mathfrak{T}C_X$ obtained by applying the localization functor q_X^* to $\mathfrak{T}C_X^\wedge$ inherits all the properties of $\mathfrak{T}C_X^\wedge$, including the exactness of the sequence
\[
q_X^*(\hat{N} \xrightarrow{j} \hat{M} \xrightarrow{\epsilon} \hat{L} \xrightarrow{\partial_0(E)} \hat{\Theta}_X^*(\hat{N}) \xrightarrow{\hat{\Theta}_X^*(j)} \ldots).
\]

By construction, the suspension functor θ_X induced by $\hat{\Theta}_X^*$ on the quotient category $C_X = \Sigma_{\hat{\Theta}_X^*-1} C_X^\wedge$ (it is uniquely determined by the equality $\theta_X \circ q_X^* = q_X^* \circ \hat{\Theta}_X^*$) is conservative; i.e. $\mathfrak{T}C_X = (C_X, \theta_X, \lambda_X; \mathfrak{T}r_X)$ is a quasi-suspended category.

Notice that the category C_X^\wedge is cocomplete and complete. This follows from the corresponding properties of the category $C_X^\wedge = C_X^\wedge$ of presheaves of sets on C_X and the fact that the localization functor q_X^* has a right adjoint [GZ, I.1].

7.2.3. Reduced suspended categories. Let $\mathfrak{T}C_X = (C_X, \theta_X, \lambda_X; \mathfrak{T}r_X)$ be a suspended category and C_{X_0} the full subcategory of C_X generated by objects N such that there exists a triangle $N \xrightarrow{j} M \xrightarrow{\epsilon} L \xrightarrow{\delta} \theta_X(N)$. Let C_{X_1} be the smallest θ_X-stable strictly full subcategory of C_X containing the subcategory C_{X_0} and θ_X, the endofunctor of C_{X_0} induced by θ_X. One can see that $\mathfrak{T}C_{X_1} = (C_{X_1}, \theta_{X_1}, \lambda_{X_1}; \mathfrak{T}r_X)$ is a suspended category. It is quasi-suspended if $\mathfrak{T}C_X$ is quasi-suspended.
We call \mathcal{X}_X the reduced presuspended category associated with \mathcal{X}_X. In particular, we call the presuspended category \mathcal{X}_X reduced if it coincides with \mathcal{X}_X.

7.2.4. Prestable and stable categories of a left exact category.

The reduced presuspended category associated with the presuspended category \mathcal{X}_X of presheaves of sets on a left exact category (C_X, \mathcal{I}) (see 7.2.1) coincides with the prestable category of (C_X, \mathcal{I}) defined in 6.3.2.

The reduced presuspended (actually, quasi-suspended) category associated with the quasi-suspended category associated with \mathcal{X}_X (see 7.2.2) is naturally equivalent to the stable category of (C_X, \mathcal{I}) introduced in 6.3.3.

7.3. The category of presuspended categories.

Let $\mathcal{X}_X = (C_X, \theta_X, \lambda_X; Tr_X)$ and $\mathcal{X}_\mathcal{Y} = (C_{\mathcal{Y}}, \theta_{\mathcal{Y}}, \lambda_{\mathcal{Y}}; Tr_{\mathcal{Y}})$ be presuspended categories. A triangle functor from \mathcal{X}_X to $\mathcal{X}_\mathcal{Y}$ is a pair (F, ϕ), where F is a functor $C_X \to C_{\mathcal{Y}}$ which maps initial object to an initial object and ϕ is a functor isomorphism $F \circ \theta_X \simeq \theta_{\mathcal{Y}} \circ F$ such that for every triangle $\mathcal{N} \xrightarrow{u} \mathcal{M} \xrightarrow{v} \mathcal{L} \xrightarrow{w} \theta_X(\mathcal{N})$ of \mathcal{X}_X, the sequence

$$F(\mathcal{N}) \xrightarrow{F(u)} F(\mathcal{M}) \xrightarrow{F(v)} F(\mathcal{L}) \xrightarrow{\phi(\mathcal{N})F(w)} \theta_{\mathcal{Y}}(F(\mathcal{N}))$$

is a triangle of $\mathcal{X}_\mathcal{Y}$. The composition of triangle functors is defined naturally:

$$(G, \psi) \circ (F, \phi) = (G \circ F, \psi F \circ G \phi).$$

Let (F, ϕ) and (F', ϕ') be triangle functors from \mathcal{X}_X to $\mathcal{X}_\mathcal{Y}$. A morphism from (F, ϕ) to (F', ϕ') is given by a functor morphism $F \xrightarrow{\lambda} F'$ such that the diagram

$$\begin{array}{ccc}
\theta_{\mathcal{Y}} \circ F & \xrightarrow{\phi} & F \circ \theta_X \\
\theta_{\mathcal{Y}} \lambda \downarrow & & \downarrow \lambda \theta_X \\
\theta_{\mathcal{Y}} \circ F' & \xrightarrow{\phi'} & F' \circ \theta_X
\end{array}$$

commutes. The composition is the composition of the functor morphisms.

Altogether gives the definition of a bicategory \mathcal{PCat} formed by svelte presuspended categories, triangle functors as 1-morphisms and morphisms between them as 2-morphisms.

As usual, the term “category \mathcal{PCat}” means that we forget about 2-morphisms.
Dualizing (i.e. inverting all arrows in the constructions above), we obtain
the bicategory $\mathcal{P}^a\mathbf{Cat}$ formed by precosuspended svelte categories
as objects, triangular functors as 1-morphisms, and morphisms between them
as 2-morphisms.

7.3.1. The subcategory of quasi-suspended categories. We denote by \mathcal{SCat}
the full subcategory of the category \mathcal{PCat} of presuspended svelte categories
whose objects are quasi-suspended categories.

7.3.2. From presuspended categories to quasi-suspended categories. Let $(C_X, \theta_X, \lambda; \mathcal{T}_X)$ be
a presuspended category and $\Sigma = \Sigma_{\theta_X}$ the class of all arrows s
of the category C_X such that $\theta_X(s)$ is an isomorphism.
Let Θ_X denote the endofunctor of the quotient category $\Sigma^{-1}C_X$
uniquely determined by the equality $\Theta_X \circ q_{\Sigma}^* = q_{\Sigma}^* \circ \theta_X$,
where q_{Σ}^* denotes the localization functor $C_X \rightarrow \Sigma^{-1}C_X$.
Notice that the functor q_{Σ}^* maps final objects to
final objects. Let $\bar{\lambda}$ denote the morphism $q_{\Sigma}^*(x) \rightarrow \Theta_X$ induced by
$x \xrightarrow{\lambda} \theta_X$ (that is by $q_{\Sigma}^*(x) \xrightarrow{q_{\Sigma}^*(\lambda)} q_{\Sigma}^* \circ \theta_X$
$= \Theta_X \circ q_{\Sigma}^*(x))$ and \mathcal{T}_X the essential image of \mathcal{T}_X.
Then the data $(\Sigma^{-1}C_X, \Theta_X, \bar{\lambda}; \mathcal{T}_X)$ is a quasi-suspended category.

The constructed above map $(C_X, \theta_X, \lambda; \mathcal{T}_X) \mapsto (\Sigma^{-1}C_X, \Theta_X, \bar{\lambda}; \mathcal{T}_X)$
extends to a functor $\mathcal{PCat} \xrightarrow{\Delta^*} \mathcal{SCat}$
which is a left adjoint to the inclusion functor $\mathcal{SCat} \xrightarrow{\Delta} \mathcal{PCat}$.
The natural triangle (localization) functors $(C_X, \theta_X, \lambda; \mathcal{T}_X) \xrightarrow{q_{\Sigma}^*}
(\Sigma^{-1}C_X, \Theta_X, \bar{\lambda}; \mathcal{T}_X)$ form an adjunction arrow
$\text{Id}_{\mathcal{PCat}} \rightarrow \Delta \Delta^*$. The other adjunction arrow is identical.

7.4. Quasi-triangulated categories. Let $(C_X, \theta_X, \lambda; \mathcal{T}_X)$ be a
presuspended category. We call it quasi-triangulated, if the endofunctor θ_X
is an auto-equivalence.

In particular, every quasi-triangulated category is quasi-suspended. Let
\mathcal{QTR} denote the full subcategory of \mathcal{PCat} (or \mathcal{SCat}) whose objects
are quasi-triangulated subcategories. We call a quasi-triangulated category
strict if θ_X is an isomorphism of categories.

7.4.1. Proposition. The inclusion functor $\mathcal{QTR} \rightarrow \mathcal{PCat}$ has a left
adjoint. More precisely, for each prestable category, $\mathcal{QC}_X = (C_X, \theta_X, \lambda; \mathcal{T}_X)$,
there is a triangle functor from \mathcal{QC}_X to a strict quasi-triangulated category
such that any triangle functor to a quasi-triangulated category factors
uniquely through this functor.

Proof. The argument is a standard procedure of inverting a functor,
which was originated, probably, in Grothendieck’s work on derivators. One
can mimic the argument of the similar theorem (from suspended to strict triangulated categories) from [KeV].

7.5. **The k-linear version.** It is obtained by restricting to k-linear additive categories and k-linear functors. Otherwise all axioms and facts look similarly. Details are left to the reader.

7.5.1. **Remark.** Notice that the notion of a quasi-suspended k-linear category presented here differs from the notion of suspended category proposed by Keller and Vossieck [KeV1]. In particular, the notion of a quasi-triangulated k-linear category is different from the notion of a triangulated k-linear category.

7.6. **Dual notions.** Dualizing the notion of a presuspended category, we obtain the notion of a precosuspended category. The corresponding, dual, axioms will be denoted by (PS1*), ..., (PS5*). A precosuspended category \(\mathcal{C}_X = (C_X, \theta_X, \lambda; \Sigma X) \) will be called quasi-cosuspended if the functor \(\theta_X \) is conservative and quasi-cotriangulated if \(\theta_X \) is an auto-equivalence.

8. **Complement: cohomological and homological functors.**

8.1. **Cohomological functors.**

Fix a svelte presuspended category \(\mathcal{C}_X = (C_X, \theta_X, \lambda; \Sigma X) \). Let \((C_Y, \mathcal{I}_Y) \) be a left exact category. We say that a functor \(C_X \xrightarrow{F} C_Y \) is a cohomological functor from \(\mathcal{C}_X \) to \((C_Y, \mathcal{I}_Y) \), if for any triangle \(\mathcal{N} \xrightarrow{u} \mathcal{M} \xrightarrow{v} \mathcal{L} \xrightarrow{w} \) \(\theta_X(\mathcal{N}) \) of \(\mathcal{C}_X \), the sequence

\[
F(\mathcal{N}) \xrightarrow{F(u)} F(\mathcal{M}) \xrightarrow{F(v)} F(\mathcal{L}) \xrightarrow{F(w)} F\theta_X(\mathcal{N}) \xrightarrow{F\theta_X(u)} \ldots
\]

is ‘exact’. We denote by \(\mathcal{C}(X) \) the category whose objects are cohomological functors from the presuspended category \(\mathcal{C}_X \) to svelte left exact categories. Morphisms from a cohomological functor \(\mathcal{C}_X \xrightarrow{\mathcal{H}} (C_Y, \mathcal{I}_Y) \) to a cohomological functor \(\mathcal{C}_X \xrightarrow{\mathcal{G}} (C_Z, \mathcal{I}_Z) \) is a pair \((F, \phi) \), where \(F \) is a functor \(C_Y \rightarrow C_Z \) and \(\phi \) a functor isomorphism \(F \circ \mathcal{H} \xrightarrow{\sim} \mathcal{G} \). The composition is defined in a standard way.

8.1.1. **Note.** The axiom (PS5) says that the (dual) Yoneda functor

\[
C_X \xrightarrow{h^*_X} (C_X)^{\text{op}}, \quad \mathcal{M} \mapsto \mathcal{C}(\mathcal{M}, -),
\]
is cohomological. Equivalently, all representable functors, $C_X(-, V)$, are cohomological functors from \mathcal{C}_X to Sets^{op}, or homological functors from the presuspended category $\mathfrak{C}_X^{op} = \mathfrak{C}_X$ to Sets.

8.2. Universal ‘exact’ ∂-functors and cohomological functors.

Fix a svelte left exact category (C_X, \mathcal{J}_X) and consider the category $\partial \mathfrak{An}^s(X, I)$ of ∂-functors from (C_X, \mathcal{J}_X) to complete categories (cf. 5.2 and 5.1). By 5.2.1, every universal ∂-functor $T = (T_i, \partial_i \mid i \geq 0)$ from (C_X, \mathcal{J}_X) to a complete category C_Y is the composition of the universal ∂-functor $\text{Ext}^\bullet_{C_X, I}$ from (C_X, \mathcal{J}_X) to $C_X^\partial = C_X^\wedge$ and a continuous (i.e. having a right adjoint) functor $C_X^\wedge \to C_Y$ which is determined uniquely up to isomorphism by the equality $T_0 = T_0^\circ h_X$, where h_X is the Yoneda embedding $C_X \to C_X^\partial = C_X^\wedge$.

Suppose now that T is an ‘exact’ ∂-functor from (C_X, \mathcal{J}_X) to (C_Y, \mathcal{J}_Y) for some left exact structure \mathcal{J}_Y on the category C_Y. Then the functor T_0^\ast maps the exact sequence

$$\hat{N} \to \hat{M} \to \hat{L} \to \hat{\Theta}(\hat{N}) \to \hat{\Theta}(\hat{M}) \to \hat{\Theta}(\hat{L}) \to \cdots$$

to an ‘exact’ sequence, i.e. T_0^\ast is a cohomological functor from the presuspended category $\mathfrak{C}_X^\partial = (C_X^\partial, \hat{\Theta}^\ast, \lambda_X; \hat{\mathfrak{r}}_X)$ to the left exact category (C_Y, \mathcal{J}_Y).

Set $T^+ \overset{\text{def}}{=} (T_i, \partial_i \mid i \geq 1)$. It follows that T^+ is the composition of

$$\text{Ext}^\ast_{C_X, I} = (\hat{\Theta}^\ast, \hat{\Theta}^\ast \circ \Theta^\ast \circ \partial \mid i \geq 1) \circ h_X = \hat{\Theta}^\ast \circ \text{Ext}^\ast_{C_X, I} = \hat{\Theta}^\ast \circ \hat{\Theta}^\ast \circ \partial \mid i \geq 0) \circ h_X$$

and the continuous functor T_0^\ast. Thus,

$$\text{Ext}^\ast_{C_X, I} \simeq (\theta^\ast, \theta^\ast \circ \partial \mid i \geq 1) \circ (q^\ast \circ h_X) = \theta^\ast \circ (\theta^\ast \circ \theta^\ast \circ \partial \mid i \geq 0) \circ (q^\ast \circ h_X),$$

where θ_X is the suspension endofunctor of the category $C_X = \Sigma^{-1}C_X^\wedge$ (cf. 7.2.2) which is uniquely determined by the equality $\theta_X \circ q^\ast = q^\ast \circ \hat{\Theta}^\ast_X$ and $\hat{\partial}$ is uniquely determined by the equality $\hat{\partial} \circ q^\ast = q^\ast \circ \hat{\Theta}^\ast_X$.

This shows that T^+ determines uniquely up to isomorphism (and is determined by) a continuous cohomological functor $T_0^\ast \circ \theta_X$ from the quasi-suspended category $\mathfrak{C}_X = (C_X, \theta_X, \lambda_X; \hat{\mathfrak{r}}_X)$ associated with the presuspended category \mathfrak{C}_X^∂ of presheaves of sets on the left exact category (C_X, \mathcal{J}_X) (see 7.2.2).

It follows from 7.2.3 and 7.2.4 that T^+ determines a cohomological functor \mathcal{H}_T from the stable category C_X^\wedge of the left exact category of (C_X, \mathcal{J}_X).
The functor \mathcal{H}_T is the restriction of the functor $T_0^\ast \circ \theta_X$ to the stable category C_X, which is a subcategory of the category C_X.

8.3. Homological functors. Homological functors from a precosuspended category $\mathcal{X}C_X$ are defined dually. We denote by $\mathcal{S}(\mathcal{X})$ the category of homological functors from $\mathcal{X}C_X$ to svelte right exact categories with initial objects.

8.4. Homological functors to cocomplete right exact categories.

8.4.1. Cocomplete right exact categories. We call a right exact category (C_Y, \mathcal{E}_Y) cocomplete if C_Y has colimits and initial objects, and \mathcal{E}_Y consists of all strict epimorphisms (in particular, \mathcal{E}_Y is the finest right exact structure on C_Y).

8.4.2. Examples. (a) Any Grothendieck topos endowed with the canonical pretopology is a cocomplete right exact category.

(b) If (C_Y, \mathcal{E}_Y) is an abelian (or a quasi-abelian) category with the canonical right exact structure, then it is cocomplete iff the category C_Y has small coproducts.

8.4.3. The category $\mathcal{S}(\mathcal{X})$. Let $\mathcal{X}C_X = (\mathcal{C}_X, \theta_X, \lambda; \mathcal{X}C_X)$ be a svelte precosuspended category. We denote by $\mathcal{S}(\mathcal{X})$ the subcategory of the category $\mathcal{S}(\mathcal{X})$ of homological functors from $\mathcal{X}C_X$ (cf. 8.3) whose objects are homological functors from $\mathcal{X}C_X$ to svelte cocomplete right exact categories and morphisms are morphisms (F, ϕ) of $\mathcal{S}(\mathcal{X})$ such that F is a continuous (i.e. having a right adjoint) functor.

8.4.4. Proposition. The category $\mathcal{S}(\mathcal{X})$ has an initial object.

Proof. By the axiom (PS5*) (dual to (PS5)), the Yoneda functor

$$C_X \xrightarrow{h_X} C_X^\wedge, \quad \mathcal{M} \mapsto \mathcal{C}_X(-, \mathcal{M}),$$

is a homological functor from $\mathcal{X}C_X$ to the category C_X^\wedge endowed with the canonical pretopology. The claim is that the cohomological functor $\mathcal{X}C_X \xrightarrow{h_X} C_X^\wedge$ is universal; i.e. it is an initial object of the category $\mathcal{S}(\mathcal{X})$.

In fact, for any functor $C_X \xrightarrow{F} C_Y$, where C_Y is a cocomplete category, there is a continuous functor $C_X^\wedge \xrightarrow{F^*} C_Y$ which is determined uniquely up to isomorphism by the equality $F^* \circ h_X^\wedge = F$. By [GZ, II.1.3], the map $F \mapsto F_*$ extends to an equivalence between the category $\mathcal{N}(\mathcal{X}, C_Y)$.
8.5. Homological functors to fully right exact categories.

8.5.1. Fully right exact and fully left exact categories. We call a right exact category \((C_Y, \mathcal{E}_Y)\) fully right exact if the Yoneda embedding of \(C_Y\) into the category \(C_{Y\mathbf{e}}\) of sheaves of sets on \((C_Y, \mathcal{E}_Y)\) establishes an equivalence between \((C_Y, \mathcal{E}_Y)\) and a fully exact subcategory of the category \(C_{Y\mathbf{e}}\).

A fully left exact category is defined dually.

8.5.2. Note. The additive version of these notions coincides with the notion of an exact category, because, in additive case, any fully right (or left) exact category is a fully exact subcategory of an abelian category.

8.5.3. Proposition. (a) Any Grothendieck topos is a fully right exact category.

(b) Any fully exact (that is full and closed under extensions) subcategory of a fully right exact category is a fully right exact category.

Proof. (a) A right exact category \((C_X, \mathcal{E}_X)\) is a Grothendieck topos iff the canonical functor \((C_X, \mathcal{E}_X) \xrightarrow{\mathcal{Y}\mathbf{e}} (C_{X\mathbf{e}}, \mathcal{E}_{X\mathbf{e}})\) is an equivalence of right exact categories.

(b) The argument is left to the reader.

8.5.4. The category of homological functors to fully right exact categories. Let \(\mathcal{H}\mathcal{F}(\mathcal{X})\) denote the subcategory of the category \(\mathcal{H}\mathcal{F}(\mathcal{X})\) of homological functors whose objects are homological functors with values in fully right exact categories and morphisms from a homological functor \(\mathcal{X}C_X \xrightarrow{\mathcal{X}\mathbf{e}} (C_Y, \mathcal{E}_Y)\) to a homological functor \(\mathcal{X}C_X \xrightarrow{\mathcal{X}\mathbf{e}} (C_Z, \mathcal{E}_Z)\) is a pair \((F, \phi)\) such that the functor \(C_Y \xrightarrow{F} C_Z\) maps deflations to deflations and conflations to ‘exact’ sequences.

8.5.5. Proposition. The category \(\mathcal{H}\mathcal{F}(\mathcal{X})\) has an initial object.

Proof. Let \(\mathcal{C}_X\) denote the smallest \(\theta_X\)-stable fully exact subcategory of the category \(C_X\) (endowed with the canonical right exact structure) containing all representable presheaves. The Yoneda embedding induces a homological functor \(\mathcal{C}_X \xrightarrow{\mathcal{Y}\mathbf{e}} \mathcal{C}_X\). The claim is that this homological functor is an initial object of the category \(\mathcal{H}\mathcal{F}(\mathcal{X})\).
In fact, let \((C_Y, \mathcal{E}_Y)\) be a right exact category and \(\mathcal{G}\) a homological functor from \(\mathcal{C}_X\) to \((C_Y, \mathcal{E}_Y)\). The composition of \(\mathcal{G}\) with the Yoneda embedding \((C_Y, \mathcal{E}_Y) \xrightarrow{j_Y} (C_{Y^e}, \mathcal{E}_{Y^e})\) (cf. 2.8) is a homological functor. Since the category of sheaves \(C_{Y^e}\) is cocomplete, there is a quasi-commutative diagram

\[
\begin{array}{ccc}
C_X & \xrightarrow{\mathcal{G}} & C_Y \\
\downarrow{h_X} & & \downarrow{j_Y^*} \\
C_{Y^e} & \xrightarrow{\mathcal{G}^*} & C_{Y^e}
\end{array}
\]

(1)

where \(\mathcal{G}^*\) is a continuous functor determined uniquely up to isomorphism by the quasi-commutativity of the diagram (1). Since the functor \(\mathcal{G}^*\) is right exact, the preimage \(\mathcal{G}^{-1}(C_Z)\) of any fully exact subcategory \(C_Z\) of \(C_{Y^e}\), is a fully exact subcategory of \(C_X\). In particular, the preimage of \(C_Y\) is a fully exact subcategory of \(C_X\). By hypothesis, \(C_Y\) is a fully exact category, i.e. the full subcategory \(\bar{C}_Y\) of \(C_{Y^e}\) generated by all representable functors is a fully exact subcategory of \(C_X\). Therefore, \(\mathcal{G}^{-1}(\bar{C}_Y)\) is a fully exact subcategory of \(C_X\) containing all representable functors; so that it contains the subcategory \(\bar{C}_{X^e}\); i.e. the restriction of the functor \(\mathcal{G}\) to the subcategory \(\mathcal{C}_{X^e}\), takes values in the subcategory \(\bar{C}_Y\). Therefore, \(\mathcal{G}^*\) the composition of \(\mathcal{G}^*\) and the inclusion functor \(\bar{C}_{X^e} \hookrightarrow C_{X^e}\) is isomorphic to the composition \(j_Y^* \circ \mathcal{G}^*\), where the functor \(C_{X^e} \hookrightarrow C_Y\) is determined uniquely up to isomorphism. ■

8.6. Universal cohomological functors. For the reader’s convenience, we sketch some details of the dual picture. Fix a svelte presuspended category \(\mathcal{C}_X = (C_X, \theta_X, \lambda; \mathcal{X}_X)\). We denote by \(\mathcal{CH}^*(X)\) the category whose objects are cohomological functors from \(\mathcal{C}_X\) to svelte complete categories. Morphisms from a cohomological functor \(C_X \xrightarrow{\mathcal{H}} C_Y\) to a cohomological functor \(C_X \xrightarrow{\mathcal{G}} C_Z\) is a pair \((F, \phi)\), where \(F\) is a cocontinuous (that is having a left adjoint) functor \(C_Y \rightarrow C_Z\) and \(\phi\) a functor isomorphism \(F \circ \mathcal{H} \cong \mathcal{G}\). The composition is defined in a standard way.

8.6.1. Proposition. The category \(\mathcal{CH}^*(X)\) has an initial object.

Proof. By the axiom (PS5), the dual Yoneda functor

\[
C_X \xrightarrow{h_X^* (C_X)} (C_X)^{op}, \quad \mathcal{M} \mapsto \mathcal{C}_X(\mathcal{M}, -),
\]

is cohomological. The claim is that the cohomological functor \(h_X^*\) is universal; i.e. it is an initial object of the category \(\mathcal{CH}^*(X)\).
In fact, for any functor $C_X \xrightarrow{F} C_Y$, where C_Y is a complete category, there is a cocontinuous functor $(C_Y)^{\text{op}} \xrightarrow{F^*} C_Y$ which is determined uniquely up to isomorphism by the equality $F_\circ h^*_k = F$. By (the dual version of) [GZ, II.1.3], the map $F \mapsto F_\circ$ extends to an equivalence between the category $\mathcal{H}om(C_X, C_Y)$ of functors from C_X to C_Y and the category $\mathcal{H}om^c((C_X)^{\text{op}}, C_Y)$ of cocontinuous functors from $(C_X)^{\text{op}}$ to C_Y. ■

8.6.2. Cohomological functors to fully left exact categories. Let $\mathcal{E}H\mathcal{F}_k(\mathcal{X})$ denote the subcategory of the category $\mathcal{E}H\mathcal{F}(\mathcal{X})$ of cohomological functors whose objects are cohomological functors with values in fully left exact svelte categories and morphisms from a cohomological functor $\mathcal{X}C_X \xrightarrow{H} (C_Y, \mathcal{E}_Y)$ to a cohomological functor $\mathcal{X}C_X \xrightarrow{G} (C_Z, \mathcal{E}_Z)$ is a morphism (F, ϕ) of $\mathcal{E}H\mathcal{F}(\mathcal{X})$ such that the functor $C_Y \xrightarrow{F} C_Z$ maps inflations to inflations and conflations to ‘exact’ sequences.

8.6.3. Proposition. The category $\mathcal{E}H\mathcal{F}_k(\mathcal{X})$ has an initial object.

Proof. The assertion follows from 8.5.5 by duality. ■

8.7. Universal homological and cohomological functors in k-linear case. Let $\mathcal{X}C_X = (C_X, \theta_X, \lambda; \mathcal{X}t_X)$ be a k-linear precosuspended category. We denote by $\mathcal{H}\mathcal{F}_k(\mathcal{X})$ the category whose objects are k-linear homological functors from $\mathcal{X}C_X$ to svelte exact k-linear categories and morphisms are morphisms (F, ϕ) of homological functors (that is morphisms of the category $\mathcal{H}\mathcal{F}(\mathcal{X}))$ such that the (right ‘exact’) functor F is k-linear.

8.7.1. Proposition. The category $\mathcal{H}\mathcal{F}_k(\mathcal{X})$ has an initial object.

Proof. (a) Let $C_X k$ denote the smallest θ_X-stable fully exact subcategory of the category $\mathcal{M}_k(\mathcal{X})$ of presheaves of k-modules on C_X containing all representable functors. The Yoneda embedding induces a k-linear homological functor $\mathcal{X}C_X \xrightarrow{h_k} (C_X k, \mathcal{E}_X k)$, where $\mathcal{E}_X k$ is the (right) exact structure induced by the canonical right exact structure on $\mathcal{M}_k(\mathcal{X})$. The claim is that the homological functor $h_k C_X$ is an initial object of the category $\mathcal{H}\mathcal{F}_k(\mathcal{X})$. The argument follows is similar to the argument of 8.5.5. ■

8.7.2. The k-linear additive categories and exact categories with enough projectives. For any k-linear additive category C_Y, let C_Y^s denote the full subcategory of the category $\mathcal{M}_k(Y)$ of presheaves of k-modules on C_Y whose objects are those presheaves of k-modules which have a left resolution formed by representable presheaves. One can deduce from [Ba, I.6.7]
that C_{Y_a} is a fully exact subcategory of the abelian k-linear category $\mathcal{M}_k(Y)$. Since every representable functor is a projective object of the abelian category $\mathcal{M}_k(Y)$ and every deflation is a strict epimorphism, it follows one that representable functors are projectives of the exact category C_{Y_a}. It follows from the definition of C_{Y_a} that it has enough projectives with respect to the exact structure induced from $\mathcal{M}_k(Y)$.

8.7.2.1. Proposition. The correspondence $C_Y \hookrightarrow C_{Y_a}$ is a functor from the category Add_k of svelte k-linear additive categories and k-linear functors to the category $\mathfrak{P}_k \mathfrak{E}_k$ of svelte exact categories with enough projectives and right exact functors which map projectives to projectives.

Proof. In fact, any k-linear functor $C_Y \longrightarrow C_Z$ extends uniquely up to isomorphism to a continuous k-linear functor $\mathcal{M}_k(Y) \xrightarrow{\varphi^*} \mathcal{M}_k(Z)$ such that the diagram

\[
\begin{array}{ccc}
C_Y & \xrightarrow{\varphi} & C_Z \\
\downarrow h_Y & & \downarrow h_Z \\
\mathcal{M}_k(Y) & \xrightarrow{\varphi^*} & \mathcal{M}_k(Z)
\end{array}
\]

commutes. Since the functor φ^* is right exact and maps representable functors to representable functors, it induces a functor $C_{Y_a} \xrightarrow{\varphi_a} C_{Z_a}$ which is right ‘exact’. ■

8.7.2.2. Remarks. (a) Let C_Y be a k-linear additive svelte category. Each projective of the associated exact category C_{Y_a} is a direct summand of a representable functor. Therefore, if the category C_Y is Karoubian, then the canonical embedding $C_Y \xrightarrow{h_{Y_a}} C_{Y_a}$ induces an equivalence of the category C_Y and the full subcategory of C_{Y_a} generated by all projectives of $(C_{Y_a}, \mathfrak{E}_{Y_a})$.

(b) Suppose that C_Y is a k-linear additive category endowed with an action

\[
\mathfrak{M} \times C_Y \xrightarrow{\tilde{\Phi}} C_Y
\]

of a monoidal category $\tilde{\mathfrak{M}} = (\mathfrak{M}, \circ, \mathbb{1})$. Then the category C_{Y_a} is endowed with a natural action of $\tilde{\mathfrak{M}}$ by right exact endofunctors which preserve projectives.

In fact, the action $\mathfrak{M} \times C_Y \longrightarrow C_Y$ extends uniquely up to isomorphism to a continuous action (i.e. an action by continuous endofunctors) of \mathfrak{M} on the category $\mathcal{M}_k(Y)$ of sheaves of k-modules on C_Y which is compatible with the Yoneda embedding. This action induces an action $\tilde{\Phi}_a$ of \mathfrak{M} on C_{Y_a}.
such that the diagram

\[
\begin{array}{c}
\mathcal{M} \times C_Y \\
\Phi \downarrow \\
C_Y
\end{array} \xrightarrow{\text{Id}_\mathcal{M} \times h_{\Phi}} \begin{array}{c}
\mathcal{M} \times C_{Y_a} \\
\Phi \downarrow \\
C_{Y_a}
\end{array}
\]

quasi-commutes. Notice that the action \(\Phi\) preserves projectives.

(b1) It follows from (a) above that if the category \(C_Y\) is Karoubian, then the functor \(C_Y \xrightarrow{h_{\Phi}} C_{Y_a}\) induces an equivalence of \(\mathcal{M}\)-category \((C_Y, \Phi)\) and the full \(\mathcal{M}\)-subcategory of the exact \(\mathcal{M}\)-category \((C_{Y_a}, \Phi_a)\) generated by all its projectives.

(c) Let \(\mathfrak{T}_X = (\mathcal{C}_X, \theta_X, \lambda; \mathfrak{F}_X)\) be a svelte additive \(k\)-linear precosuspended category. It follows from (b) that \(\mathcal{C}_{X_a}\) is a svelte exact \(k\)-linear \(\mathbb{Z}_+\)-category, which has enough projectives. It follows that the canonical embedding \(\mathcal{C}_X \xrightarrow{h_{\Phi}} \mathcal{C}_{X_a}\) is a \(k\)-linear homological functor from \(\mathfrak{T}_X\) to the exact \(k\)-linear category \(\mathcal{C}_{X_a}\).

By (b1), if the category \(\mathcal{C}_X\) is Karoubian, then it is equivalent to the full \(\mathbb{Z}_+\)-subcategory of \(\mathcal{C}_{X_a}\) generated by all projectives of the right exact category \((\mathcal{C}_{X_a}, \mathcal{E}_{X_a})\).

8.7.3. The subcategory \(\mathfrak{H}_k^F(\mathfrak{X})\) of homological functors. For a \(k\)-linear precosuspended category \(\mathfrak{T}_X\), we denote by \(\mathfrak{H}_k^F(\mathfrak{X})\) the subcategory of the category \(\mathfrak{H}_k(\mathfrak{X})\) whose objects are \(k\)-linear homological functors \(\mathfrak{T}_X \xrightarrow{\varphi} (\mathcal{C}_X, \mathcal{E}_X)\) such that for any arrow \(f\) of the category \(\mathcal{C}_X\), there exists a cokernel of \(\varphi(f)\). Morphisms of \(\mathfrak{H}_k^F(\mathfrak{X})\) are morphisms \((F, \phi)\) such that the \(k\)-linear functor \(F\) is ‘exact’.

8.7.4. Proposition. (a) Let \(\mathfrak{T}_X = (\mathcal{C}_X, \theta_X, \lambda; \mathfrak{F}_X)\) be a precosuspended category having the following property: any morphism \(M \xrightarrow{f} L\) of \(\mathcal{C}_X\) extends to a triangle \(\theta_X(L) \xrightarrow{\vartheta} N \xrightarrow{\varphi} M \xrightarrow{f} L\). Then the homological functor \(\mathcal{C}_X \xrightarrow{h_{\Phi}} \mathcal{C}_{X_a}\) (see 8.7.2.2(c)) is an initial object of the category \(\mathfrak{H}_k^F(\mathfrak{X})\).

(b) Suppose that \(\mathfrak{T}_X\) is a quasi-triangulated \(k\)-linear category satisfying the condition of (b). Then the exact category \(\mathcal{C}_{X_a}\) is abelian.

Proof. (a) Suppose that \(\mathfrak{T}_X = (\mathcal{C}_X, \theta_X, \lambda; \mathfrak{F}_X)\) is a \(k\)-linear precosuspended category satisfying the condition of (a). Then the corestriction \(\mathcal{C}_X \xrightarrow{h_{\Phi}} \mathcal{C}_{X_a}\) of the Yoneda embedding to the subcategory \(\mathcal{C}_{X_a}\) is an initial object of the category \(\mathfrak{H}_k^F(\mathfrak{X})\).
The proof of this fact is the same as the argument of [R8, C4.3.4].

(b) If the translation functor \(\theta_X \) is an auto-equivalence, then the category \(C_X \) is abelian. The proof of this fact follows the arguments of [R8, C4.4].

8.7.5. Remark. If \(\mathcal{T}C_X \) is a triangulated category, then, by 8.7.4(b), the category \(\mathcal{C}_a \) is abelian. In this case, the universal homological functor \(\mathcal{T}C_X \xrightarrow{h_X} C_a \) is equivalent to the ‘abelianization’ functor of Verdier [Ve2, II.3]. The latter follows from the fact that the Verdier’s \textit{abelianization} functor is universal among the homological functors to abelian categories. More precisely, it is an initial object of the full subcategory of the category \(\mathcal{D}^+_X(\mathcal{X}) \) whose objects are homological functors from the triangulated category \(\mathcal{T}C_X \) to abelian categories.

8.7.6. Cohomological functors. The formulation of the corresponding facts about \(k \)-linear cohomological functors is left to the reader.

Appendix: some properties of kernels.

A.1. Proposition. Let \(M \xrightarrow{f} N \) be a morphism of \(C_X \) which has a kernel pair, \(M \times_N M \xrightarrow{p_1} M \). Then the morphism \(f \) has a kernel iff \(p_1 \) has a kernel, and these two kernels are naturally isomorphic to each other.

Proof. Suppose that \(f \) has a kernel, i.e. there is a cartesian square

\[
\begin{array}{ccc}
Ker(f) & \xrightarrow{i(f)} & M \\
\downarrow{f'} & & \downarrow{f} \\
x & \xrightarrow{i_N} & N
\end{array}
\]

(1)

Then we have the commutative diagram

\[
\begin{array}{ccc}
Ker(f) & \xrightarrow{\gamma} & M \times_N M & \xrightarrow{p_2} & M \\
\downarrow{f'} & & \downarrow{p_1} & & \downarrow{f} \\
x & \xrightarrow{i_M} & M & \xrightarrow{f} & N
\end{array}
\]

(2)

which is due to the commutativity of (1) and the fact that the unique morphism \(x \xrightarrow{i_N} N \) factors through the morphism \(M \xrightarrow{f} N \). The morphism \(\gamma \) is uniquely determined by the equality \(p_2 \circ \gamma = i(f) \). The fact that the square (1) is cartesian and the equalities \(p_2 \circ \gamma = i(f) \) and \(i_N = f \circ i_M \) imply that
the left square of the diagram (2) is cartesian, i.e. \(\text{Ker}(f) \xrightarrow{\gamma} M \times_N M \) is the kernel of the morphism \(p_1 \).

Conversely, if \(p_1 \) has a kernel, then we have a diagram

\[
\begin{array}{cccccc}
\text{Ker}(p_1) & \xrightarrow{t(p_1)} & M \times_N M & \xrightarrow{p_2} & M \\
p_1' \downarrow & \text{cart} & p_1 \downarrow & \text{cart} & \downarrow f \\
x & \xrightarrow{i_M} & M & \xrightarrow{f} & N \\
\end{array}
\]

which consists of two cartesian squares. Therefore the square

\[
\begin{array}{cccc}
\text{Ker}(p_1) & \xrightarrow{t(f)} & M \\
p_1' \downarrow & \text{cart} & \downarrow f \\
x & \xrightarrow{i_N} & N \\
\end{array}
\]

with \(t(f) = p_2 \circ t(p_1) \) is cartesian. ■

A.2. Remarks. (a) Needless to say that the picture obtained in (the argument of) A.1 is symmetric, i.e. there is an isomorphism \(\text{Ker}(p_1) \xrightarrow{\tau_f} \text{Ker}(p_2) \) which is an arrow in the commutative diagram

\[
\begin{array}{cccccc}
\text{Ker}(p_1) & \xrightarrow{t(p_1)} & M \times_N M & \xrightarrow{p_1} & M \\
\tau_f \downarrow & \downarrow \tau_f & \downarrow \downarrow & \downarrow \text{id}_M \\
\text{Ker}(p_2) & \xrightarrow{t(p_2)} & M \times_N M & \xrightarrow{p_2} & M \\
\end{array}
\]

(b) Let a morphism \(M \xrightarrow{f} N \) have a kernel pair, \(M \times_N M \xrightarrow{p_1} M \), and a kernel. Then, by A.1, there exists a kernel of \(p_1 \), so that we have a morphism \(\text{Ker}(p_1) \xrightarrow{t(p_1)} M \times_N M \) and the diagonal morphism \(M \xrightarrow{\Delta_M} M \times_N M \). Since the left square of the commutative diagram

\[
\begin{array}{cccccc}
x & \xrightarrow{t(p_1)} & \text{Ker}(p_1) & \xrightarrow{p_1'} & x \\
\downarrow & \text{cart} & c(p_1) \downarrow & \downarrow \\
M & \xrightarrow{\Delta_M} & M \times_N M & \xrightarrow{p_1} & M \\
\end{array}
\]

is cartesian and compositions of the horizontal arrows are identical morphisms, it follows that its left square is cartesian too. Loosely, one can say
that the intersection of $\text{Ker}(p_1)$ with the diagonal of $M \times_N M$ is zero. If there exists a coproduct $\text{Ker}(p_1) \coprod M$, then the pair of morphisms $\text{Ker}(p_1) \xrightarrow{t_{(p_1)}} M \times_N M \xleftarrow{\Delta M} M$ determine a morphism

$$\text{Ker}(p_1) \coprod M \longrightarrow M \times_N M.$$

If the category C_X is additive, then this morphism is an isomorphism, or, what is the same, $\text{Ker}(f) \coprod M \cong M \times_N M$. In general, it is rarely the case, as the reader can find out looking at the examples of 1.4.

A.3. Proposition. Let

$$
\begin{array}{ccc}
\tilde{M} & \xrightarrow{\tilde{f}} & \tilde{N} \\
\downarrow \tilde{g} & \text{cart} & \downarrow g \\
M & \xrightarrow{f} & N
\end{array}
$$

be a cartesian square. Then $\text{Ker}(f)$ exists iff $\text{Ker}(\tilde{f})$ exists, and they are naturally isomorphic to each other.

A.4. The kernel of a composition and related facts. Fix a category C_X with an initial object x.

A.4.1. The kernel of a composition. Let $L \xrightarrow{f} M$ and $M \xrightarrow{g} N$ be morphisms such that there exist kernels of g and $g \circ f$. Then the argument similar to that of A.3 shows that we have a commutative diagram

$$
\begin{array}{ccc}
\text{Ker}(gf) & \xrightarrow{\tilde{f}} & \text{Ker}(g) & \xrightarrow{g'} & x \\
\downarrow \triangleright \text{cart} & \downarrow \triangleright \text{cart} & \downarrow \text{cart} & \downarrow i_N \\
L & \xrightarrow{f} & M & \xrightarrow{g} & N
\end{array}
$$

whose both squares are cartesian and all morphisms are uniquely determined by f, g and the (unique up to isomorphism) choice of the objects $\text{Ker}(g)$ and $\text{Ker}(gf)$.

Conversely, if there is a commutative diagram

$$
\begin{array}{ccc}
K & \xrightarrow{u} & \text{Ker}(g) & \xrightarrow{g'} & x \\
t & \text{cart} & \downarrow \triangleright \text{cart} & \downarrow i_N \\
L & \xrightarrow{f} & M & \xrightarrow{g} & N
\end{array}
$$
whose left square is cartesian, then its left vertical arrow, $K \xrightarrow{t} L$, is the kernel of the composition $L \xrightarrow{gf} N$.

A.4.2. Remarks. (a) It follows from A.3 that the kernel of $L \xrightarrow{f} M$ exists iff the kernel of $Ker(gf) \xrightarrow{\tilde{f}} Ker(g)$ exists and they are isomorphic to each other. More precisely, we have a commutative diagram

$$\begin{array}{cccc}
Ker(\tilde{f}) & \xrightarrow{\nu(\tilde{f})} & Ker(gf) & \xrightarrow{\tilde{f}} Ker(g) & \xrightarrow{g'} x \\
\downarrow & & \downarrow & \downarrow & \\
Ker(f) & \xrightarrow{\nu(f)} & L & \xrightarrow{f} M & \xrightarrow{g} N \\
\end{array}$$

whose left vertical arrow is an isomorphism.

(b) Suppose that (C_X, \mathfrak{E}_X) is a right exact category (with an initial object x). If the morphism f above is a deflation, then it follows from this observation that the canonical morphism $Ker(gf) \xrightarrow{\tilde{f}} Ker(g)$ is a deflation too. In this case, $Ker(f)$ exists, and we have a commutative diagram

$$\begin{array}{ccc}
Ker(\tilde{f}) & \xrightarrow{\nu(\tilde{f})} & Ker(gf) & \xrightarrow{\tilde{f}} Ker(g) \\
\downarrow & \downarrow & \downarrow & \\
Ker(f) & \xrightarrow{\nu(f)} & L & \xrightarrow{f} M \\
\end{array}$$

whose rows are conflations.

The following observations is useful (and are used) for analysing diagrams.

A.4.3. Proposition. (a) Let $M \xrightarrow{g} N$ be a morphism with a trivial kernel. Then a morphism $L \xrightarrow{f} M$ has a kernel iff the composition $g \circ f$ has a kernel, and these two kernels are naturally isomorphic one to another.

(b) Let

$$\begin{array}{ll}
L & \xrightarrow{f} M \\
\gamma & \downarrow \quad \downarrow g \\
\tilde{M} & \xrightarrow{\phi} N \\
\end{array}$$

be a commutative square such that the kernels of the arrows f and ϕ exist and the kernel of g is trivial. Then the kernel of the composition $\phi \circ \gamma$
is isomorphic to the kernel of the morphism \(f \), and the left square of the commutative diagram

\[
\begin{array}{c}
\text{Ker}(f) \xrightarrow{\sim} \text{Ker}(\phi \gamma) \\
\gamma \downarrow \quad \text{cart} \quad \gamma \downarrow \quad \text{cart} \\
\text{Ker}(\phi) \xrightarrow{\varepsilon(\phi)} M \xrightarrow{\phi} N
\end{array}
\]

is cartesian.

Proof. (a) Since the kernel of \(g \) is trivial, the diagram A.4.1(1) specializes to the diagram

\[
\begin{array}{c}
\text{Ker}(gf) \xrightarrow{\tilde{f}} x \xrightarrow{id_x} x \\
\varepsilon(gf) \downarrow \quad \text{cart} \quad \varepsilon(g) \downarrow \quad \text{cart} \\
L \xrightarrow{f} M \xrightarrow{g} N
\end{array}
\]

with cartesian squares. The left cartesian square of this diagram is the definition of \(\text{Ker}(f) \). The assertion follows from A.4.1.

(b) Since the kernel of \(g \) is trivial, it follows from (a) that \(\text{Ker}(f) \) is naturally isomorphic to the kernel of \(g \circ f = \phi \circ \gamma \). The assertion follows now from A.4.1. \(\blacksquare \)

A.4.4. Corollary. Let \(C_X \) be a category with an initial object \(x \). Let \(L \xrightarrow{f} M \) be a strict epimorphism and \(M \xrightarrow{g} N \) a morphism such that \(\text{Ker}(g) \xrightarrow{\varepsilon(g)} M \) exists and is a monomorphism. Then the composition \(g \circ f \) is a trivial morphism iff \(g \) is trivial.

A.4.4.1. Note. The following example shows that the requirement "\(\text{Ker}(g) \xrightarrow{\varepsilon(g)} M \) is a monomorphism" in A.4.4 cannot be omitted.

Let \(C_X \) be the category \(\text{Alg}_k \) of associative unital \(k \)-algebras, and let \(\mathfrak{m} \) be an ideal of the ring \(k \) such that the epimorphism \(k \twoheadrightarrow k/\mathfrak{m} \) does not split. Then the identical morphism \(k/\mathfrak{m} \twoheadrightarrow k/\mathfrak{m} \) is non-trivial, while its composition with the projection \(k \twoheadrightarrow k/\mathfrak{m} \) is a trivial morphism.

A.5. The noimage of a morphism. Let \(M \xrightarrow{f} N \) be an arrow which has a kernel, i.e. we have a cartesian square

\[
\begin{array}{c}
\text{Ker}(f) \xrightarrow{\varepsilon(f)} M \\
f' \downarrow \quad \text{cart} \quad f' \downarrow \\
x \xrightarrow{i_N} N
\end{array}
\]

with which one can associate a pair of arrows $\text{Ker}(f) \xrightarrow{id} M$, where 0_f is the composition of the projection f' and the unique morphism $x \xrightarrow{i_M} M$. Since $i_N = f \circ i_M$, the morphism f equalizes the pair $\text{Ker}(f) \xrightarrow{0_f} M$. If the cokernel of this pair of arrows exists, it will be called the coimage of f and denoted by $\text{Coim}(f)$, or. loosely, $M/\text{Ker}(f)$.

Let $M \xrightarrow{f} N$ be a morphism such that $\text{Ker}(f)$ and $\text{Coim}(f)$ exist. Then f is the composition of the canonical strict epimorphism $M \xrightarrow{p_f} \text{Coim}(f)$ and a uniquely defined morphism $\text{Coim}(f) \xrightarrow{j_f} N$.

A.5.1. Lemma. Let $M \xrightarrow{f} N$ be a morphism such that $\text{Ker}(f)$ and $\text{Coim}(f)$ exist. There is a natural isomorphism $\text{Ker}(f) \xrightarrow{\sim} \text{Ker}(p_f)$.

Proof. The outer square of the commutative diagram

\[
\begin{array}{cccc}
\text{Ker}(f) & \xrightarrow{f'} & x & \xrightarrow{id} x \\
\text{Ker}(p_f) & \xrightarrow{id} & \text{Ker}(j_f) & \xrightarrow{id} x \\
M & \xrightarrow{p_f} & \text{Coim}(f) & \xrightarrow{j_f} L \\
\end{array}
\]

is cartesian. Therefore, its left square is cartesian which implies, by A.3, that $\text{Ker}(p_f)$ is isomorphic to $\text{Ker}(f')$. But, $\text{Ker}(f') \simeq \text{Ker}(f)$. \[\square\]

A.5.2. Note. By A.4.1, all squares of the commutative diagram

\[
\begin{array}{cccc}
\text{Ker}(f) & \xrightarrow{f'} & x \\
\text{Ker}(p_f) & \xrightarrow{id} & \text{Ker}(j_f) & \xrightarrow{id} x \\
M & \xrightarrow{p_f} & \text{Coim}(f) & \xrightarrow{j_f} L \\
\end{array}
\]

are cartesian.

If C_X is an additive category and $M \xrightarrow{f} L$ is an arrow of C_X having a kernel and a coimage, then the canonical morphism $\text{Coim}(f) \xrightarrow{j_f} L$ is a monomorphism. Quite a few non-additive categories have this property.
A.5.3. Example. Let C_X be the category Alg_k of associative unital k-algebras. Since cokernels of pairs of arrows exist in Alg_k, any algebra morphism has a coinage. It follows from 1.4.1 that the coinage of an algebra morphism $A \to B$ is $A/K(\varphi)$, where $K(\varphi)$ is the kernel of φ in the usual sense (i.e. in the category of non-unital algebras). The canonical decomposition $\varphi = j_\varphi \circ p_\varphi$ coincides with the standard presentation of φ as the composition of the projection $A \to A/K(\varphi)$ and the monomorphism $A/K(\varphi) \to B$. In particular, φ is strict epimorphism of k-algebras iff it is isomorphic to the associated coinage map $A \to \text{Coim}(\varphi) = A/K(\varphi)$.

Lecture 4
Universal K-functors

1. Preliminaries: left exact categories of right exact ‘spaces’.

We start with left exact stuctures formed by localizations of ‘spaces’ represented by svetle categories. Then the obtained facts are used to define natural left exact structures on the category of ‘spaces’ represented by right exact categories.

The following proposition is a refinement of [R3, 1.4.1].

1.1. Proposition. Let $Z \leftarrow X \overset{q}{\to} Y$ be morphisms of ‘spaces’ such that q (i.e. its inverse image functor $C_Y \overset{q^*}{\to} C_X$) is a localization. Then

(a) The canonical morphism $Z \overset{\tilde{q}}{\to} Z \prod_{f\tilde{q}} Y$ is a localization.

(b) If q is a continuous localization, then \tilde{q} is a continuous localization.

(c) If $\Sigma q^* = \{s \in \text{Hom}_{C_Y} \mid q^*(s) \text{ is invertible}\}$ is a left (resp. right) multiplicative system, then $\Sigma \tilde{q}^*$ has the same property.

1.2. Corollary. Let $Z \leftarrow X \overset{q}{\to} Y$ be morphisms of ‘spaces’ such that q is a localization, and let $Z \overset{\tilde{q}}{\to} Z \prod_{f\tilde{q}} Y$ be a canonical morphism. Suppose that the category C_Y has finite limits (resp. finite colimits). Then \tilde{q}^* is a left (resp. right) exact localization, if the localization q^* is left (resp. right) exact.

Proof. By 1.1(a), \tilde{q}^* is a localization functor.
Suppose that the category C_Y has finite limits and the localization functor $C_Y \xrightarrow{q^*} C_X$ is left exact. Then it follows from [GZ, I.3.4] that $\Sigma_{q^*} = \{ s \in \text{Hom}_{C_Y} \mid q^*(s) \text{ is invertible} \}$ is a right multiplicative system. The latter implies, by 1.1(c), that Σ_{q^*} is a right multiplicative system. Therefore, by [GZ, I.3.1], the localization functor \tilde{q}^* is left exact. ■

The following assertion is a refinement of [R3, 1.4.2].

1.3. Proposition. Let $X \xleftarrow{p} Z \xrightarrow{q} Y$ be morphisms of ‘spaces’ such that p^* and q^* are localization functors. Then the square

$$
\begin{array}{ccc}
Z & \xrightarrow{q} & Y \\
\downarrow{p} & & \downarrow{p_1} \\
X & \xrightarrow{q_1} & X \prod_{p,q} Y
\end{array}
$$

is cartesian.

1.4. Left exact structures on the category of ‘spaces’. Let \mathcal{L} denote the class of all localizations of ‘spaces’ (i.e. morphisms whose inverse image functors are localizations). We denote by \mathcal{L}_ℓ (resp. \mathcal{L}_c) the class of localizations $X \xrightarrow{q} Y$ of ‘spaces’ such that $\Sigma_{q^*} = \{ s \in \text{Hom}_{C_Y} \mid q^*(s) \text{ is invertible} \}$ is a left (resp. right) multiplicative system. We denote by \mathcal{L}_ℓ and \mathcal{L}_c (i.e. the class of localizations q such that Σ_{q^*} is a multiplicative system) and by \mathcal{L}^c the class of continuous (i.e. having a direct image functor) localizations of ‘spaces’. Finally, we set $\mathcal{L}_c^\ell = \mathcal{L}^c \cap \mathcal{L}_c$; i.e. \mathcal{L}_c^ℓ is the class of continuous localizations $X \xrightarrow{q} Y$ such that Σ_{q^*} is a multiplicative system.

1.4.1. Proposition. Each of the classes of morphisms \mathcal{L}, \mathcal{L}_ℓ, \mathcal{L}_c, \mathcal{L}^ℓ, and \mathcal{L}_c^ℓ are structures of a left exact category on the category $|\text{Cat}|$ of ‘spaces’.

Proof. It is immediate that each of these classes is closed under composition and contains all isomorphisms of the category $|\text{Cat}|$. It follows from 1.1 that each of the classes is stable under cobase change. In other words, the arrows of each class can be regarded as cocovers of a copre topology. It remains to show that these copre topologies are subcanonical. Since \mathcal{L} is the finest copre topology, it suffices to show that \mathcal{L} is subcanonical.

The copre topology \mathcal{L} being subcanonical means precisely that for any
localization \(X \xrightarrow{q} Y \), the square

\[
\begin{array}{ccc}
X & \xrightarrow{q} & Y \\
\downarrow{q} & & \downarrow{q_1} \\
Y & \xrightarrow{q_2} & Y \prod_{q,q} Y
\end{array}
\]

is cartesian. But, this follows from 1.3. \(\blacksquare \)

1.5. **Observation.** Each object of the left exact category \((|\mathbf{Cat}|^0, \mathcal{L}^e)\) is injective.

In fact, a ‘space’ \(X \) is an injective object of \((|\mathbf{Cat}|^0, \mathcal{L}^e)\) iff each inflation \(X \xrightarrow{q} Y \) is split; i.e. there is a morphism \(Y \xrightarrow{t} X \) such that \(t \circ q = id_X \). Since the morphism \(q \) is continuous, it has a direct image functor, \(q_* \), which is fully faithful, because \(q^* \) is a localization functor. The latter means precisely that the adjunction arrow \(q^*q_* \xin Id_{C_X} \) is an isomorphism; i.e. the morphism \(Y \xrightarrow{t} X \) whose inverse image functor coincides with \(q_* \) satisfies the equality \(t \circ q = id_X \).

1.6. **Left exact structures on the category of right (or left) exact ‘spaces’.** A right exact ‘space’ is a pair \((X, \mathfrak{E}_X)\), where \(X \) is a ‘space’ and \(\mathfrak{E}_X \) is a right exact structure on the category \(C_X \). We denote by \(\mathfrak{Esp}_r \) the category whose objects are right exact ‘spaces’ \((X, \mathfrak{E}_X)\) and morphisms from \((X, \mathfrak{E}_X)\) to \((Y, \mathfrak{E}_Y)\) are given by morphisms \(X \xrightarrow{f} Y \) of ‘spaces’ whose inverse image functor, \(f^* \), is ‘exact’; i.e. \(f^* \) maps deflations to deflations and preserves pull-backs of deflations.

Dually, a left exact ‘space’ is a pair \((Y, \mathfrak{I}_Y)\), where \((C_Y, \mathfrak{I}_Y)\) is a left exact category. We denote by \(\mathfrak{Esp}_l \) the category whose objects are left exact ‘spaces’ \((Y, \mathfrak{I}_Y)\) and morphisms \((Y, \mathfrak{I}_Y) \xrightarrow{f} (Z, \mathfrak{I}_Z)\) are given by morphisms \(Y \xrightarrow{f} Z \) whose inverse image functors are ‘coexact’, which means that they preserve inflations and their push-forwards.

1.6.1. **Note.** The categories \(\mathfrak{Esp}_r \) and \(\mathfrak{Esp}_l \) are naturally isomorphic to each other: the isomorphism is given by the dualization functor \((X, \mathfrak{E}_X) \xrightarrow{\mathfrak{E}_X^0} (X^0, \mathfrak{E}_X^0)\). Therefore, every assertion about the category \(\mathfrak{Esp}_r \) of right exact ‘spaces’ translates into an assertion about the category \(\mathfrak{Esp}_l \) of left exact ‘spaces’ and vice versa.

1.6.2. **Proposition.** The category \(\mathfrak{Esp}_l \) has fibered coproducts.
1.6.3. Canonical left exact structures on the category $\mathcal{E}sp_t$. Let \mathcal{L}_{es} denote the class of all morphisms $(X, \mathcal{E}_X) \to (Y, \mathcal{E}_Y)$ of right exact ‘spaces’ such that q^* is a localization functor and each arrow of \mathcal{E}_X is isomorphic to an arrow $q^*(c)$ for some $c \in \mathcal{E}_Y$.

If Σq^* is a left or right multiplicative system, then this condition means that \mathcal{E}_X is the smallest right exact structure containing $q^*(\mathcal{E}_Y)$.

1.6.3.1. Proposition. The class \mathcal{L}_{es} is a left exact structure on the category $\mathcal{E}sp_t$ of right exact ‘spaces’.

1.6.3.2. Corollary. Each of the classes of morphisms of ‘spaces’ \mathcal{L}_l, \mathcal{L}_t, \mathcal{L}_e, \mathcal{L}_c, and \mathcal{L}_r^i (cf. 1.4, 1.4.1) induces a structure of a left exact category on the category $\mathcal{E}sp_t$ of right exact ‘spaces’.

Proof. The class \mathcal{L}_l induces the class \mathcal{L}_l^{es} of morphisms of the category $\mathcal{E}sp_t$ formed by all arrows $(X, \mathcal{E}_X) \to (Y, \mathcal{E}_Y)$ from \mathcal{L}_{es} such that the morphism of ‘spaces’ $X \to Y$ belongs to \mathcal{L}_l. Similarly, we define the classes \mathcal{L}_l^{es}, \mathcal{L}_t^{es}, \mathcal{L}_e^{es}, and \mathcal{L}_r^{es}.

1.6.3.3. The left exact structure \mathcal{L}_{es}^{sq}. For a right exact ‘space’ (X, \mathcal{E}_X), let $Sq(X, \mathcal{E}_X)$ denote the class of all cartesian squares in the category C_X some of the arrows of which (at least two) belong to \mathcal{E}_X.

The class \mathcal{L}_{sq}^{es} consists of all morphisms $(X, \mathcal{E}_X) \to (Y, \mathcal{E}_Y)$ of right exact ‘spaces’ such that its inverse image functor, q^*, is equivalent to a localization functor and each square of $Sq(X, \mathcal{E}_X)$ is isomorphic to some square of $q^*(Sq(Y, \mathcal{E}_Y))$.

1.6.3.4. Proposition. The class \mathcal{L}_{sq}^{es} is a left exact structure on the category $\mathcal{E}sp_t$ of right exact ‘spaces’ which is coarser than \mathcal{L}_{es} and finer than \mathcal{L}_l^{es}.

Proof. The argument is left to the reader.

1.7. Relative right exact ‘spaces’. The category $\mathcal{E}sp_t$ of right exact ‘spaces’ has initial objects and no final object. Final objects appear if we fix a right exact ‘space’ $S = (S, \mathcal{E}_S)$ and consider the category $\mathcal{E}sp_t/S$ instead of $\mathcal{E}sp_t$. The category $\mathcal{E}sp_t/S$ has a natural final object and cokernels of all morphisms. It also inherits left exact structures from $\mathcal{E}sp_t$, in particular those defined above (see 1.6.3.2). Therefore, our theory of derived functors (satellites) can be applied to functors from $\mathcal{E}sp_t/S$.

1.8. The category of right exact k-‘spaces’. For a commutative unital ring k, we denote by $\mathcal{E}sp_k$ the category whose objects are right exact
spaces’ \((X, \mathcal{E}_X) \) such that \(C_X \) is a \(k \)-linear additive category and morphisms are morphisms of right exact ‘spaces’ whose inverse image functors are \(k \)-linear.

Each of the left exact structures \(\mathcal{L}_{cs}, \mathcal{L}_{i}^{cs}, \mathcal{L}_{t}^{cs}, \mathcal{L}_{ct}^{cs} \), and \(\mathcal{L}_{cs}^{ct} \) induces a left exact structure on the category \(\text{Esp}_k^X \) of right exact \(k \)–‘spaces’. We denote them by respectively \(\mathcal{L}_{cs}(k), \mathcal{L}_{i}^{cs}(k), \mathcal{L}_{t}^{cs}(k), \mathcal{L}_{ct}^{cs}(k), \) and \(\mathcal{L}_{cs}^{ct}(k) \).

2. The group \(K_0 \) of a right (or left) exact ‘space’.

2.1. The group \(Z_0|C_X| \). For a svelte category \(C_X \), we denote by \(|C_X| \) the set of isomorphism classes of objects of \(C_X \), by \(Z|C_X| \) the free abelian group generated by \(|C_X| \), and by \(Z_0(C_X) \) the subgroup of \(Z|C_X| \) generated by differences \([M] - [N] \) for all arrows \(M \to N \) of the category \(C_X \). Here \([M] \) denotes the isomorphism class of an object \(M \).

2.2. Proposition. (a) The maps \(X \mapsto Z|C_X| \) and \(X \mapsto Z_0(C_X) \) extend naturally to presheaves of \(\mathbb{Z} \)-modules on the category of ‘spaces’ \(\text{Cat}^o \) (i.e. to functors from \((|\text{Cat}|)^{op} \) to \(\mathbb{Z} - \text{mod} \)).

(b) If the category \(C_X \) has an initial (resp. final) object \(x \), then \(Z_0(C_X) \) is the subgroup of \(Z|C_X| \) generated by differences \([M] - [x] \), where \([M] \) runs through the set \(|C_X| \) of isomorphism classes of objects of \(C_X \).

Proof. The argument is left to the reader. \(\blacksquare \)

2.3. Note. Evidently, \(Z|C_X| \simeq Z|C_X|^{op} \) and \(Z_0(C_X) \simeq Z_0(C_X^{op}) \).

2.4. The group \(K_0 \) of a right exact ‘space’. Let \((X, \mathcal{E}_X) \) be a right exact ‘space’. We denote by \(K_0(X, \mathcal{E}_X) \) the quotient of the group \(Z_0|C_X| \) by the subgroup generated by the expressions \([M'] - [L'] + [L] - [M] \) for all cartesian squares

\[
\begin{array}{ccc}
M' & \xrightarrow{\tilde{f}} & M \\
\epsilon' & \searrow & \downarrow \epsilon \\
L' & \xrightarrow{f} & L
\end{array}
\]

whose vertical arrows are deflations.

We call \(K_0(X, \mathcal{E}_X) \) the group \(K_0 \) of the right exact ‘space’ \((X, \mathcal{E}_X) \).

2.4.1. Example: the group \(K_0 \) of a ‘space’. Any ‘space’ \(X \) is identified with the trivial right exact ‘space’ \((X, \text{Iso}(C_X)) \). We set \(K_0(X) = K_0(X, \text{Iso}(C_X)) \). That is \(K_0(X) \) coincides with the group \(Z_0(C_X) \).

2.4.2. Proposition. Let \((X, \mathcal{E}_X) \) be a right exact ‘space’ such that the category \(C_X \) has initial objects. Then \(K_0(X, \mathcal{E}_X) \) is isomorphic to the
quotient of the group $Z_0(X)$ by the subgroup generated by the expressions

2.5. Proposition. (a) The map $(X, \mathcal{C}_X) \mapsto K_0(X, \mathcal{C}_X)$ extends to a
covariant functor, K_0, from the category \mathcal{C}_X of right exact ‘spaces’ to
the category $Z - \text{mod}$.

(b) Let $(X, \mathcal{C}_X) \xrightarrow{f} (Y, \mathcal{C}_Y)$ be a morphism of \mathcal{C}_X
such that every object of the category C_X is isomorphic to the inverse image of an object of C_Y.
Then the map $K_0(Y, \mathcal{C}_Y) \xrightarrow{K_0(f)} K_0(X, \mathcal{C}_X)$ is a group epimorphism.

In particular, the functor K_0 maps ‘exact’ localizations to epimorphisms.

3. Higher K-groups of right exact ‘spaces’.

3.1. The relative functors K_0 and their derived functors. Fix a
right exact ‘space’ $\mathcal{Y} = (Y, \mathcal{C}_Y)$. The functor $(\mathcal{C}_X)^{op} \xrightarrow{K_0} Z - \text{mod}$ induces
a functor

$$(\mathcal{C}_X/\mathcal{Y})^{op} \xrightarrow{K_0(\mathcal{Y})} Z - \text{mod}$$

defined by

$$K_0^\mathcal{Y}(\mathcal{X}, \xi) = K_0^\mathcal{Y}(\mathcal{X}, \mathcal{X} \xrightarrow{\xi} \mathcal{Y}) = \text{Cok}(K_0(\mathcal{Y}) \xrightarrow{K_0(\xi)} K_0(\mathcal{X}))$$

and acting correspondingly on morphisms.

The main advantage of the functor $K_0^\mathcal{Y}$ is that its domain, the category
$\mathcal{C}_X/\mathcal{Y}$ has a final object, cokernels of morphisms, and natural left exact
structures induced by left exact structures on \mathcal{C}_X. Fix a left exact structure \mathcal{I} on \mathcal{C}_X (say, one of those defined in 6.8.3.2) and denote by \mathcal{I}_Y the left exact
structure on $\mathcal{C}_X/\mathcal{Y}$ induced by \mathcal{I}. Notice that, since the category $Z - \text{mod}$
is complete (and cocomplete), there is a well defined satellite endofunctor
of $\text{Hom}(\mathcal{C}_X/\mathcal{Y})^{op}, Z - \text{mod}$, $F \mapsto S_{\mathcal{I}_Y}F$. So that for every functor F
from $(\mathcal{C}_X/\mathcal{Y})^{op}$ to $Z - \text{mod}$, there is a unique up to isomorphism universal
∂^*-functor $(S_{\mathcal{I}_Y} F, \partial_i | i \geq 0)$.

In particular, there is a universal contravariant ∂^*-functor $K_0^{\mathcal{Y},\mathcal{I}} = (K_i^{\mathcal{Y},\mathcal{I}}, \partial_i | i \geq 0)$ from the right exact category $(\mathcal{C}_X/\mathcal{Y}, \mathcal{I}_Y)$ of right exact ‘spaces’
over \mathcal{Y} to the category $Z - \text{mod}$ of abelian groups; that is $K_i^{\mathcal{Y},\mathcal{I}} = S_{\mathcal{I}_Y} K_0^{\mathcal{Y},\mathcal{I}}$
for all $i \geq 0$.

We call the groups $K_i^{\mathcal{Y},\mathcal{I}}(\mathcal{X}, \xi)$ universal K-groups of the right exact
‘space’ (\mathcal{X}, ξ) over \mathcal{Y} with respect to the left exact structure \mathcal{I}.
3.2. ‘Exactness’ properties. In general, the ∂^*-functor K^Y_* is not ‘exact’. The purpose of this section is to find some natural left exact structures \mathcal{J} on the category \mathcal{Csp}_r/Y of right exact ‘spaces’ over Y and some of its subcategories for which the ∂^*-functor K^Y_* is ‘exact’.

3.2.1. Proposition. Let $(X, \xi) \longrightarrow (X', \xi')$ be a morphism of the category \mathcal{Csp}_r/Y such that $X \longrightarrow X'$ belongs to \mathcal{L}_{es} (cf. 6.8.3) and has the following property:

(#{}) if $M \rightarrow \xrightarrow{s} L$ is a morphism of $C_{X'}$ such that $q^*(s)$ is invertible, then the element $[M] - [L]$ of the group $K_0(X')$ belongs to the image of the map $K_0(X'') \rightarrow K_0(X')$, where $(X', \xi') \xrightarrow{q} (X'', \xi'')$ is the cokernel of the morphism $(X, \xi) \longrightarrow (X', \xi')$.

Suppose, in addition, that one of the following two conditions holds:
(i) the category $C_{X'}$ has an initial object;
(ii) for any pair of arrows $N \xrightarrow{f} L \xrightarrow{s} M$, of the category $C_{X'}$ such that $q^*(s)$ is invertible, there exists a commutative square

\[
\begin{array}{ccc}
\tilde{N} & \xrightarrow{\tilde{f}} & M \\
\downarrow t & & \downarrow s \\
N & \xrightarrow{f} & L
\end{array}
\]

such that $q^*(t)$ is invertible.

Then for every conflation $(X, \xi) \xrightarrow{q} (X', \xi') \xrightarrow{\xi} (X'', \xi'')$ of the left exact category \mathcal{Csp}_r/Y the sequence

\[
K^Y_0(X'', \xi'') \xrightarrow{K^Y_0(\xi)} K^Y_0(X', \xi') \xrightarrow{K^Y_0(q)} K^Y_0(X, \xi) \longrightarrow 0
\]

of morphisms of abelian groups is exact.

3.2.2. Proposition. The class \mathcal{L}^Y_{es} of all morphisms $(X, \xi) \longrightarrow (X', \xi')$ of \mathcal{Csp}_r/Y such that $X \longrightarrow X'$ belongs to \mathcal{L}_{es} and satisfies the condition $(${})$)$ of 3.2.1, is a left exact structure on the category \mathcal{Csp}_r/Y.

3.2.2.1. Proposition. The class $\mathcal{L}^Y_{es, t}$ of all morphisms $(X, \xi) \longrightarrow (X', \xi')$ of \mathcal{L}^Y_{es} such that the functor $C_{X'} : \mathcal{Q} \longrightarrow C_X$ satisfies the condition $(${})$)$ of 3.2.1, is a left exact structure on the category \mathcal{Csp}_r/Y.

3.2.3. Proposition. Let $\mathcal{Y} = (Y, C_Y)$ be a right exact ‘space’, and let \mathcal{J} be a left exact structure on the category \mathcal{Csp}_r/Y which is coarser than
$\mathcal{L}^\gamma_{\text{ex}}$ (cf. 3.2.2). Then the universal ∂^*-functor $K^\gamma_\bullet = (K^\gamma_i, \sigma | i \geq 0)$ from the left exact category $(\mathcal{E}sp_r/\mathcal{Y}, \mathcal{J}_\gamma)$ to the category $\mathbb{Z} - \text{mod}$ of abelian groups is 'exact'; i.e. for any conflation $(X, \xi) \xrightarrow{q} (X', \xi') \xrightarrow{c} (X'', \xi'')$, the associated long sequence

\[
\ldots \xrightarrow{K^\gamma_1(q)} K^\gamma_0(X, \xi) \xrightarrow{\sigma_0} K^\gamma_0(X'', \xi'') \xrightarrow{K^\gamma_0(c)} K^\gamma_0(X', \xi') \xrightarrow{K^\gamma_0(q)} K^\gamma_0(X, \xi) \xrightarrow{0}
\]

is exact.

Proof. Since the left exact structure \mathcal{J}_γ is coarser than $\mathcal{L}^\gamma_{\text{ex}}$, it satisfies the condition (3) of 3.2.1. Therefore, by 3.2.1, for any conflation $(X, \xi) \xrightarrow{q} (X', \xi') \xrightarrow{c} (X'', \xi'')$ of the left exact category $(\mathcal{E}sp_r^\circ/\mathcal{Y}, \mathcal{J}_\gamma)$, the sequence

\[
K^\gamma_0(X'', \xi'') \xrightarrow{K^\gamma_0(c)} K^\gamma_0(X', \xi') \xrightarrow{K^\gamma_0(q)} K^\gamma_0(X, \xi) \xrightarrow{0}
\]

of \mathbb{Z}-modules is exact. Therefore, by [Lecture III, 3.5.4.1], the universal ∂^*-functor $K^\gamma_\bullet = (K^\gamma_i, \sigma | i \geq 0)$ from $(\mathcal{E}sp_r^\circ/\mathcal{Y}, \mathcal{J}_\gamma)^{\text{op}}$ to $\mathbb{Z} - \text{mod}$ is 'exact'.

The following proposition can be regarded as a machine for producing universal 'exact' K-functors.

3.2.4. Proposition. Let $\mathcal{Y} = (Y, \mathcal{E}_\mathcal{Y})$ be a right exact 'space', $(\mathcal{C}_\mathcal{E}, \mathcal{J}_\mathcal{E})$ a left exact category with final objects, and \mathcal{G} a functor $\mathcal{C}_\mathcal{E} \rightarrow \mathcal{E}sp_r/\mathcal{Y}$ which maps conflations of $(\mathcal{C}_\mathcal{E}, \mathcal{J}_\mathcal{E})$ to conflations of the left exact category $(\mathcal{E}sp_r/\mathcal{Y}, \mathcal{L}^\gamma_{\text{ex}})$. Then there exists a (unique up to isomorphism) universal ∂^*-functor $K^{\mathcal{G}, \mathcal{E}}_\bullet = (K^{\mathcal{G}, \mathcal{E}}_i, \sigma | i \geq 0)$ from the right exact category $(\mathcal{C}_\mathcal{E}, \mathcal{J}_\mathcal{E})^{\text{op}}$ to $\mathbb{Z} - \text{mod}$ whose zero component, $K^{\mathcal{G}, \mathcal{E}}_0^{\text{op}}$, is the composition of the functor $\mathcal{C}_\mathcal{E}^{\text{op}} \xrightarrow{\mathcal{G}^{\text{op}}} \mathcal{E}sp_r/\mathcal{Y}^{\text{op}}$ and the functor K^γ_0.

The ∂^*-functor $K^{\mathcal{G}, \mathcal{E}}_\bullet$ is 'exact'.

Proof. The existence of the ∂^*-functor $K^{\mathcal{G}, \mathcal{E}}_\bullet$ follows, by [Lecture III, 3.3.2], from the completeness (existence of limits of small diagrams) of the category $\mathbb{Z} - \text{mod}$ of abelian groups. The main thrust of the proposition is the 'exactness' of $K^{\mathcal{G}, \mathcal{E}}_\bullet$.

By hypothesis, the functor \mathcal{G} maps conflations to conflations. Therefore, it follows from 3.2.1 that for any conflation $\mathcal{X} \rightarrow \mathcal{X}' \rightarrow \mathcal{X}''$ of the
left exact category \((\mathcal{C}_\Theta, \mathcal{I}_\Theta)\), the sequence of abelian groups \(K_0^{\mathcal{I}_\Theta}(X') \rightarrow K_0^{\mathcal{I}_\Theta}(X) \rightarrow K_0^{\mathcal{I}_\Theta}(X) \rightarrow 0\) is exact. By [Lecture III, 3.5.4.1], this implies the ‘exactness’ of the \(\partial^\ast\)-functor \(K_0^Y\).

3.3. The ‘absolute’ case.

Let \(|\text{Cat}_\ast|^0\) denote the subcategory of the category \(|\text{Cat}|^0\) of ‘spaces’ whose objects are ‘spaces’ represented by categories with initial objects and morphisms are those morphisms of ‘spaces’ whose inverse image functors map initial objects to initial objects. The category \(|\text{Cat}_\ast|^0\) is pointed: it has a canonical zero (that is both initial and final) object, \(x\), which is represented by the category with one (identical) morphism. Thus, the initial objects of the category \(|\text{Cat}|^0\) of all ‘spaces’ are zero objects of the subcategory \(|\text{Cat}_\ast|^0\).

Each morphism \(X \xrightarrow{f} Y\) of the category \(|\text{Cat}_\ast|^0\) has a cokernel, \(Y \xrightarrow{\iota} C(f)\), where the category \(C(f)\) representing the ‘space’ \(C(f)\) is the kernel \(\text{Ker}(f)\) of the functor \(f\). By definition, \(\text{Ker}(f)\) is the full subcategory of the category \(C_Y\) generated by all objects of \(C_Y\) which the functor \(f\) maps to initial objects. The inverse image functor \(\iota^\ast\) of the canonical morphism \(\iota^\ast\) is the natural embedding \(\text{Ker}(f) \rightarrow C_Y\).

Let \(\mathfrak{Sp}_\ast^\ast\) denote the category formed by right exact ‘spaces’ with initial objects and those morphisms of right exact ‘spaces’ whose inverse image functor is ‘exact’ and maps initial objects to initial objects. The category \(\mathfrak{Sp}_\ast^\ast\) is pointed and the forgetful functor

\[
\mathfrak{Sp}_\ast^\ast \xrightarrow{3^\ast} |\text{Cat}_\ast|^0, \quad (X, \mathfrak{C}_X) \mapsto X,
\]

is a left adjoint to the canonical full embedding \(|\text{Cat}_\ast|^0 \xrightarrow{3^\ast} \mathfrak{Sp}_\ast^\ast\) which assigns to every ‘space’ \(X\) the right exact category \((X, \text{Iso}(C_X))\). Both functors, \(3^\ast\) and \(3_\ast\), map zero objects to zero objects.

Let \(x\) be a zero object of the category \(\mathfrak{Sp}_\ast^\ast\). Then \(\mathfrak{Sp}_\ast^\ast/x\) is naturally isomorphic to \(\mathfrak{Sp}_\ast^\ast\) and the relative \(K_0\)-functor \(K_0^x\) coincides with the functor \(K_0\).

3.3.1. The left exact structure \(\mathfrak{L}_\ast^\ast\).

We denote by \(\mathfrak{L}_\ast^\ast\) the canonical left exact structure \(\mathfrak{L}_\ast^\ast\); it does not depend on the choice of the zero object \(x\). It follows from the definitions above that \(\mathfrak{L}_\ast^\ast\) consists of all morphisms \((X, \mathfrak{C}_X) \xrightarrow{q} (Y, \mathfrak{C}_Y)\) having the following properties:

(a) \(C_Y \xrightarrow{q^\ast} C_X\) is a localization functor (which is ‘exact’), and every arrow of \(\mathfrak{C}_X\) is isomorphic to an arrow of \(q^\ast(\mathfrak{C}_Y)\).
(b) If \(M \xrightarrow{s} M' \) is an arrow of \(C_Y \) such that \(q^*(s) \) is an isomorphism, then \([M] - [M']\) is an element of \(\text{Ker}K_0(q)\).

3.3.2. Proposition

Let \((\mathcal{C}_\Theta, \mathcal{I}_\Theta)\) be a left exact category, and \(C_\Theta \xrightarrow{\mathcal{S}} \mathcal{E} \) a functor which maps conflations of \((\mathcal{C}_\Theta, \mathcal{I}_\Theta)\) to conflations of the left exact category \((\mathcal{E}^*_\Theta, \mathcal{L}^*_\Theta)\). Then there exists a (unique up to isomorphism) universal \(\partial^*\)-functor \(K^{\Theta, \mathcal{S}}_\bullet = (K^{\Theta, \mathcal{S}, \mathcal{I}}_i, \mathcal{I}_i \mid i \geq 0) \) from \((\mathcal{C}_\Theta, \mathcal{I}_\Theta)^{op} \) to \(\mathbb{Z} - \text{mod} \) whose zero component, \(K^{\Theta, \mathcal{S}}_0 \), is the composition of the functor \(\mathcal{E}^{\mathcal{S}}_\Theta \xrightarrow{\mathcal{S}} (\mathcal{E}^*_\Theta)^{op} \) and the functor \(K_0 \).

The \(\partial^*\)-functor \(K^{\Theta, \mathcal{S}}_\bullet \) is ‘exact’. In particular, the \(\partial^*\)-functor \(K_\bullet = (K_i, \mathcal{I}_i \mid i \geq 0) \) from \((\mathcal{E}^*_\Theta, \mathcal{L}^*_\Theta)\) to \(\mathbb{Z} - \text{mod} \) is ‘exact’.

Proof. The assertion is a special case of 3.2.4. ■

3.4. Universal K-theory of abelian categories

Let \(\mathcal{E}sp^K \) denote the category whose objects are ‘spaces’ \(X \) represented by \(k\)-linear abelian categories and morphisms \(X \xrightarrow{f} Y \) are represented by \(k\)-linear exact functors.

There is a natural functor

\[
\mathcal{E}sp^K_0 \xrightarrow{\mathcal{S}} \mathcal{E}sp^K^*
\]

which assigns to each object \(X \) of the category \(\mathcal{E}sp^K \) the right exact (actually, exact) ‘space’ \((X, \mathcal{E}sp^K_X) \), where \(\mathcal{E}sp^K_X \) is the standard (i.e. the finest) right exact structure on the category \(C_X \), and maps each morphism \(X \xrightarrow{f} Y \) to the morphism \((X, \mathcal{E}sp^K_X) \xrightarrow{f} (Y, \mathcal{E}sp^K_Y) \) of right exact ‘spaces’. One can see that the functor \(\mathcal{S} \) maps the zero object of the category \(\mathcal{E}sp^K \) (represented by the zero category) to a zero object of the category \(\mathcal{E}sp^K^* \).

3.4.1. Proposition

Let \(C_X \) and \(C_Y \) be \(k\)-linear localization abelian categories endowed with the standard exact structure. Any exact localization functor \(C_Y \xrightarrow{\pi^*} C_X \) satisfies the conditions (a) and (b) of 3.3.1.

Proof. In fact, each morphism \(\mathcal{q}^*(M) \xrightarrow{\mathcal{h}} \mathcal{q}^*(N) \) is of the form \(\mathcal{q}^*(h)\mathcal{q}^*(s)^{-1} \) for some morphisms \(M' \xrightarrow{h} N \) and \(M' \xrightarrow{s} M \) such that \(\mathcal{q}^*(s) \) is invertible. The morphism \(h \) is a (unique) composition \(j \circ e \), where \(j \) is a monomorphism and \(e \) is an epimorphism. Since the functor \(\mathcal{q}^* \) is exact, \(\mathcal{q}^*(j) \) is a monomorphism and \(\mathcal{q}^*(e) \) is an epimorphism. Therefore, \(\mathcal{h} \) is an epimorphism iff \(\mathcal{q}^*(j) \) is an isomorphism. This shows that the condition (a) holds.
Let $M \xrightarrow{s} M'$ be a morphism and

$$0 \rightarrow \text{Ker}(s) \rightarrow M \xrightarrow{s} M' \rightarrow \text{Cok}(s) \rightarrow 0$$

the associated with s exact sequence. Representing s as the composition, $j \circ e$, of a monomorphism j and an epimorphism e, we obtain two short exact sequences,

$$0 \rightarrow \text{Ker}(s) \rightarrow M \xrightarrow{e} N \rightarrow 0 \quad \text{and} \quad 0 \rightarrow N \xrightarrow{j} M' \rightarrow \text{Cok}(s) \rightarrow 0,$$

hence $[M] = [\text{Ker}(s)] + [N]$ and $[M'] = [N] + [\text{Cok}(s)]$, or $[M'] = [M] + [\text{Ker}(s)] - [\text{Cok}(s)]$ in $K_0(Y)$. It follows from the exactness of the functor q^* that the morphism $q^*(s)$ is an isomorphism iff $\text{Ker}(s)$ and $\text{Cok}(s)$ are objects of the category $\text{Ker}(q^*)$. Therefore, in this case, it follows that $[M'] = [M]$ modulo $\mathbb{Z}[\text{Ker}(q^*)]$ in $K_0(Y)$.

3.4.2. Proposition. (a) The class \mathcal{L}^0 of all morphisms $X \xrightarrow{q} Y$ of the category \mathcal{C}^X such that $C_Y \xrightarrow{q^*} C_X$ is a localization functor, is a left exact structure on \mathcal{C}^X.

(b) The functor $\mathcal{C}^X \xrightarrow{\pi} \mathcal{C}^X$ is an ‘exact’ functor from the left exact category $(\mathcal{C}^X, \mathcal{L}^0)$ to the left exact category $(\mathcal{C}^X, \mathcal{L}^0)$. Moreover, $\mathcal{L}^0 = \pi^{-1}(\mathcal{L}^0)$, that is the left exact structure \mathcal{L}^0 is induced by the left exact structure \mathcal{L}^0 via the functor π.

3.4.3. The universal Grothendieck K-functor. The composition K^0_0 of the functor

$$(\mathcal{C}^X)^{\text{op}} \xrightarrow{\pi^{\text{op}}} (\mathcal{C}^X)^{\text{op}}$$

and the functor $(\mathcal{C}^X)^{\text{op}} \xrightarrow{K^*_0} \mathbb{Z} - \text{mod}$ assigns to each object X of the category \mathcal{C}^X the abelian group $K^*_0(X, \mathcal{C}^X)$. It follows from 2.4.2 that the group $K^*_0(X, \mathcal{C}^X)$ coincides with the Grothendieck group of the abelian category \mathcal{C}_X. Therefore, we call K^*_0 the Grothendieck K_0-functor.

3.4.4. Proposition. There exists a universal ∂^*_0-functor $K^0_0 = (K^0_1, \partial^0_i | i \geq 0)$ from the right exact category $(\mathcal{C}^X, \mathcal{L}^0)^{\text{op}}$ to the category $\mathbb{Z} - \text{mod}$ whose zero component is the Grothendieck functor K_0. The universal ∂^*_0-functor K^0_0 is ‘exact’; that is for any exact localization $X \xrightarrow{q} X'$, the canonical long sequence

$$\ldots \rightarrow K^0_1(X) \rightarrow K^0_1(X') \rightarrow K^0_0(X') \rightarrow K^0_0(X^\prime) \rightarrow K^0_0(X) \rightarrow 0$$

(3)
is exact.

Proof. By 3.4.2(b), the functor $\mathcal{Esp}^a_k \xrightarrow{\Phi} \mathcal{Esp}^a_k$ is an ‘exact’ functor from the left exact category $(\mathcal{Esp}^a_k, \mathcal{L}^a)$ to the left exact category $(\mathcal{Esp}^a_k, \mathcal{L}^a_{\text{res}})$ which maps the zero object of the category \mathcal{Esp}^a_k (the ‘space’ represented by the zero category) to a zero object of the category \mathcal{Esp}^a_k. Therefore, Φ maps conflations to conflations.

The assertion follows now from 3.3.2.1 applied to the functor Φ. ■

3.4.5. The universal ∂^*-functor K^a_\bullet and the Quillen’s K-theory.

For a ‘space’ X represented by a svelte k-linear abelian category C_X, we denote by $K_i^\Omega(X)$ the i-th Quillen’s K-group of the category C_X. For each $i \geq 0$, the map $X \mapsto K_i^\Omega(X)$ extends naturally to a functor

$$((\mathcal{Esp}^a_k)^{\text{op}} \xrightarrow{K_i^\Omega} \mathbb{Z} - \text{mod})$$

It follows from the Quillen’s localization theorem [Q, 5.5] that for any exact localization $X \xrightarrow{\mathfrak{q}} X'$ and each $i \geq 0$, there exists a connecting morphism $K_{i+1}^\Omega(X) \xrightarrow{\delta_i^\Omega(\mathfrak{q})} K_i^\Omega(X'')$, where $C_{X''} = \text{Ker}(\mathfrak{q}^*)$, such that the sequence

$$\ldots \xrightarrow{K_i^\Omega(\mathfrak{q})} K_i^\Omega(X) \xrightarrow{\delta_i^\Omega(\mathfrak{q})} K_i^\Omega(X'') \xrightarrow{K_i^\Omega(\mathfrak{q})} K_i^\Omega(X') \xrightarrow{K_i^\Omega(\mathfrak{q})} K_i^\Omega(X) \xrightarrow{0}$$

is exact. It follows (from the proof of the Quillen’s localization theorem) that the connecting morphisms $\delta_i^\Omega(\mathfrak{q})$, $i \geq 0$, depend functorially on the localization morphism \mathfrak{q}. In other words, $K^\Omega_\bullet = (K_i^\Omega, \delta_i^\Omega
 | i \geq 0)$ is an ‘exact’ ∂^*-functor from the left exact category $(\mathcal{Esp}^a_k, \mathcal{L}^a)^{\text{op}}$ to the category $\mathbb{Z} - \text{mod}$ of abelian groups.

Naturally, we call the ∂^*-functor K^Ω_\bullet the Quillen’s K-functor.

Since $K^a_\bullet = (K^a_i, \delta^a_i | i \geq 0)$ is a universal ∂^*-functor from $(\mathcal{Esp}^a_k, \mathcal{L}^a)^{\text{op}}$ to $\mathbb{Z} - \text{mod}$, the identical isomorphism $K^\Omega_0 \xrightarrow{\sim} K^a_0$ extends uniquely to a ∂^*-functor morphism

$$K^\Omega_\bullet \xrightarrow{\sim} K^a_\bullet.$$

4. The universal K-theory of exact categories. Let \mathcal{Esp}^*_k denote the subcategory of the category \mathcal{Esp}^*_k whose objects are ‘spaces’ represented by svelte exact k-linear categories and inverse image of morphisms are k-linear functors.
There is a natural functor
\[\mathcal{E}sp^c_k \rightarrow \mathcal{E}sp^*_r \]
which maps objects and morphisms of the category \(\mathcal{E}sp^c_k \) to the corresponding objects and morphisms of the category \(\mathcal{E}sp^*_r \).

4.1. Proposition. The functor \(\mathcal{E}sp^c_k \rightarrow \mathcal{E}sp^*_r \) preserves cocartesian squares and maps the zero object of the category \(\mathcal{E}sp^c_k \) to the zero object of the category \(\mathcal{E}sp^*_r \).

Proof. The argument is similar to that of 7.5.2(b). Details are left to the reader. ■

4.2. Corollary. The class of morphisms \(\mathcal{L}^c_k = \mathcal{F}^{-1}(\mathcal{L}^*_e) \) is a left exact structure on the category \(\mathcal{E}sp^c_k \) and \(\mathcal{F} \) is an ‘exact’ functor from the left exact category \((\mathcal{E}sp^c_k, \mathcal{L}^c_k) \) to the left exact category \((\mathcal{E}sp^*_r, \mathcal{L}^*_e) \).

The composition \(K^*_0 \) of the inclusion functor
\[(\mathcal{E}sp^c_k)_{op} \rightarrow (\mathcal{E}sp^*_r)_{op} \]
and the functor \((\mathcal{E}sp^*_r)_{op} \rightarrow \mathbb{Z} \rightarrow \text{mod} \) assigns to each object \(X \) of the category \(\mathcal{E}sp^c \) the abelian group \(K^*_0(X, \mathcal{E}^c_X) \) which coincides with the Quillen’s group \(K_0 \) of the exact category \((C_X, \mathcal{E}_X) \).

4.3. Proposition. There exists a universal \(\partial^*_q \)-functor \(K^*_c = (K^*_c, \partial^*_q \mid i \geq 0) \) from the right exact category \((\mathcal{E}sp^c_k, \mathcal{L}^c)_{op} \) to the category \(\mathbb{Z} \rightarrow \text{mod} \) whose zero component is the functor \(K^*_0 \). The universal \(\partial^*_q \)-functor \(K^*_c \) is ‘exact’; that is for any exact localization \((X, \mathcal{E}_X) \rightarrow (X', \mathcal{E}_{X'}) \) which belongs to \(\mathcal{L}^c \), the canonical long sequence

\[
\begin{align*}
K^*_0(X, \mathcal{E}_X) &\xrightarrow{\partial^*_0(q)} K^*_0(X', \mathcal{E}_{X'}) &\xrightarrow{K^*_0(c q)} K^*_0(X'', \mathcal{E}_{X''}) &\xrightarrow{\partial^*_0(q)} \cdots \\
K^*_0(X'', \mathcal{E}_{X''}) &\xrightarrow{K^*_0(c q)} K^*_0(X', \mathcal{E}_{X'}) &\xrightarrow{K^*_0(c q)} K^*_0(X, \mathcal{E}_X) &\xrightarrow{0}
\end{align*}
\]

is exact.

Proof. The functor \(\mathcal{E}sp^c_k \rightarrow \mathcal{E}sp^*_r \) is an ‘exact’ functor from the left exact category \((\mathcal{E}sp^c_k, \mathcal{L}^c) \) to the left exact category \((\mathcal{E}sp^*_r, \mathcal{L}^*_e) \) which
maps the zero object of the category \mathfrak{Esp}_k^+ (the 'space' represented by the zero category) to a zero object of the category \mathfrak{Esp}_k^*. Therefore, \mathfrak{F} maps conflations to conflations. It remains to apply 3.3.2. □

Lecture 5

Comparison theorems for higher K-theory: reduction by resolution, additivity, devissage. Towards some applications

In the first four sections, we fix a left exact subcategory of the left exact category $(\mathfrak{Esp}_k^*, \mathfrak{E}_{es})$ of right exact 'spaces', or a left exact subcategory of the left exact category \mathfrak{Esp}_k^+ of k-linear right exact 'spaces', endowed with the induced left exact structure. The higher K-functors are computed as satellites of the restriction of the functor K_0 to this left exact subcategory.

1. Reduction by resolution.

1.1. Proposition. Let (C_X, \mathfrak{E}_X) be a right exact category with initial objects and C_Y its fully exact subcategory such that

(a) If $M' \to M \to M''$ is a conflation with $M \in \text{Ob} C_Y$, then $M' \in \text{Ob} C_Y$.

(b) For any $M'' \in \text{Ob} C_X$, there exists a deflation $M \to M''$ with $M \in \text{Ob} C_Y$.

Then the morphism $K_*(Y, \mathfrak{E}_Y) \to K_*(X, \mathfrak{E}_X)$ is an isomorphism.

Proof. The first part of the argument of 1.1 shows that if C_Y is a fully exact subcategory of a right exact category (C_X, \mathfrak{E}_X) satisfying the condition (b) and F_0 is a functor from $\mathfrak{Esp}_k^{\emptyset}$ to a category with filtered limits such that $F_0(Y, \mathfrak{E}_Y) \to F_0(X, \mathfrak{E}_X)$ is an isomorphism, then $S^n F_0(Y, \mathfrak{E}_Y) \to S^n F_0(X, \mathfrak{E}_X)$ is an isomorphism for all $n \geq 0$.

The condition (a) is used only in the proof that $K_0(Y, \mathfrak{E}_Y) \to K_0(X, \mathfrak{E}_X)$ is an isomorphism. □

1.2. Proposition. Let (C_X, \mathfrak{E}_X) and (C_Z, \mathfrak{E}_Z) be right exact categories with initial objects and $T = (T_i, \alpha_i \mid i \geq 0)$ an 'exact' ∂^*-functor from (C_X, \mathfrak{E}_X) to (C_Z, \mathfrak{E}_Z). Let C_Y be the full subcategory of C_X generated by T-acyclic objects (which is objects V such that $T_i(V)$ is an initial object of C_Z for $i \geq 1$). Assume that for every $M \in \text{Ob} C_X$, there is a deflation $P \to M$
with \(P \in \text{Ob} C_\gamma \), and that \(T_n(M) \) is an initial object of \(C_\gamma \) for \(n \) sufficiently large. Then the natural map \(K_\bullet(Y,e_Y) \rightarrow K_\bullet(X,e_X) \) is an isomorphism.

Proof. The assertion is deduced from 1.1 in the usual way (see [Q]). □

1.3. **Proposition.** Let \((C_X,e_X)\) be a right exact category with initial objects; and let

\[
\begin{array}{cccc}
\text{Ker}(f') & \xrightarrow{\beta'_1} & \text{Ker}(f) & \xrightarrow{\alpha'_1} & \text{Ker}(f'') \\
\downarrow \epsilon & & \downarrow \epsilon & & \downarrow \epsilon'' \\
\text{Ker}(\alpha_1) & \xrightarrow{\beta_1} & A_1 & \xrightarrow{\alpha_1} & A''_1 \\
\downarrow f' & & \downarrow f & & \downarrow f'' \\
\text{Ker}(\alpha_2) & \xrightarrow{\beta_2} & A_2 & \xrightarrow{\alpha_2} & A''_2 \\
\end{array}
\]

be a commutative diagram (determined by its lower right square) such that \(\text{Ker}(\epsilon') \) and \(\text{Ker}(\beta_2) \) are trivial. Then

(a) The upper row of (3) is ‘exact’, and the morphism \(\beta'_1 \) is the kernel of \(\alpha'_1 \).

(b) Suppose, in addition, that the arrows \(f' \), \(\alpha_1 \) and \(\alpha_2 \) in (3) are deflations and \((C_X,e_X)\) has the following property:

(\#) If \(M \xrightarrow{\epsilon} N \) is a deflation and \(M \xrightarrow{p} M \) an idempotent morphism (i.e. \(p^2 = p \)) which has a kernel and such that the composition \(\epsilon \circ p \) is a trivial morphism, then the composition of the canonical morphism \(\text{Ker}(p) \xrightarrow{\epsilon(p)} M \) and \(M \xrightarrow{\epsilon} N \) is a deflation.

Then the upper row of (3) is a conflation.

1.4. **Proposition.** Let \((C_X,e_X)\) be a right exact category with initial objects having the property (\#) of 1.3. Let \(C_\gamma \) be a fully exact subcategory of a right exact category \((C_X,e_X)\) which has the following properties:

(a) If \(N \rightarrow M \rightarrow L \) is a conflation in \((C_X,e_X)\) and \(N, M \) are objects of \(C_\gamma \), then \(L \) belongs to \(C_\gamma \) too.

(b) For any deflation \(M \rightarrow \mathcal{L} \) with \(\mathcal{L} \in \text{Ob} C_\gamma \), there exist a deflation \(\mathcal{M} \rightarrow \mathcal{L} \) with \(\mathcal{M} \in \text{Ob} C_\gamma \) and a morphism \(\mathcal{M} \rightarrow M \) such that the diagram

\[
\begin{array}{ccc}
\mathcal{M} & \xrightarrow{f} & \mathcal{L} \\
\downarrow \downarrow & \downarrow & \downarrow \\
M & \rightarrow & \mathcal{L}
\end{array}
\]

commutes.
(c) If P, M are objects of C_Y and $P \to x$ is a morphism to initial object, then $P \coprod M$ exists (in C_X) and the sequence $P \to P \coprod M \to M$ (where the left arrow is the canonical coprojection and the right arrow corresponds to the $M \xrightarrow{id} M$ and the composition of $P \to x \to M$) is a conflation.

Let C_{Y_n} be the full subcategory of C_X generated by all objects L having a C_Y-resolution of the length $\leq n$, and $C_{Y_{\infty}} = \bigcup_{n \geq 0} C_{Y_n}$. Then C_{Y_n} is a fully exact subcategory of (C_X, \mathcal{E}_X) for all $n \leq \infty$ and the natural morphisms

$$K_\bullet(Y, \mathcal{E}_Y) \to K_\bullet(Y_1, \mathcal{E}_{Y_1}) \to \ldots \to K_\bullet(Y_n, \mathcal{E}_{Y_n}) \to K_\bullet(Y_\infty, \mathcal{E}_{Y_\infty})$$

are isomorphisms for all $n \geq 0$.

1.5. Proposition. Let (C_X, \mathcal{E}_X) be a right exact category with initial objects having the property (‡) of 1.3. Let C_Y be a fully exact subcategory of a right exact category (C_X, \mathcal{E}_X) satisfying the conditions (a) and (c) of 1.4. Let $M' \to M \to M''$ be a conflation in (C_X, \mathcal{E}_X), and let $P' \to M'$, $P'' \to M''$ be C_Y-resolutions of the length $n \geq 1$. Suppose that resolution $P'' \to M'$ is projective. Then there exists a C_Y-resolution $P \to M$ of the length n such that $P_i = P'_i \coprod P''_i$ for all $i \geq 1$ and the splitting `exact' sequence $P' \to P \to P''$ is an `exact' sequence of complexes.

2. Additivity of ‘characteristic’ filtrations.

2.1. Characteristic ‘exact’ filtrations and sequences.

2.1.1. The right exact ‘spaces’ (X_n, \mathcal{E}_{X_n}). For a right exact exact ‘space’ (X, \mathcal{E}_X), let C_{X_n} be the category whose objects are sequences $M_n \to M_{n-1} \to \ldots \to M_0$ of n morphisms of \mathcal{E}_X, $n \geq 1$, and morphisms between sequences are commutative diagrams

$$
\begin{array}{cccc}
M_n & \to & M_{n-1} & \to \ldots & \to & M_0 \\
\downarrow f_n & & \downarrow f_{n-1} & & \ldots & \downarrow f_0 \\
M'_n & \to & M'_{n-1} & \to \ldots & \to & M'_0
\end{array}
$$

Notice that if x is an initial object of the category C_X, then $x \to \ldots \to x$ is an initial object of C_{X_n}.

We denote by \mathcal{E}_{X_n} the class of all morphisms (f_i) of the category C_{X_n} such that $f_i \in \mathcal{E}_X$ for all $0 \leq i \leq n$.

2.1.1. Proposition. (a) The pair $(C_{X_n}, \mathcal{E}_{X_n})$ is a right exact category.
(b) The map which assigns to each right exact ‘space’ \((X, \mathcal{E}_X)\) the right exact ‘space’ \((X_n, \mathcal{E}_{X_n})\) extends naturally to an ‘exact’ endofunctor of the left exact category \((\mathcal{E}_{sp}, \mathcal{L}_{es})\) of right ‘exact’ ‘spaces’ which induces an ‘exact’ endofunctor \(P_n\) of its exact subcategory \((\mathcal{E}_{sp}, \mathcal{L}_{es})\).

Proof. The argument is left to the reader.

2.1.2. Proposition. (Additivity of ‘characteristic’ filtrations) Let \((C_X, \mathcal{E}_X)\) and \((C_Y, \mathcal{E}_Y)\) be right exact categories with initial objects and \(f_n^* \xrightarrow{t_n} f_{n-1}^* \xrightarrow{t_{n-1}} \ldots \xrightarrow{t_0} f_0^*\) a sequence of deflations of ‘exact’ functors from \((C_X, \mathcal{E}_X)\) to \((C_Y, \mathcal{E}_Y)\) such that the functors \(t_i^* = \text{Ker}(t_i)\) are ‘exact’ for all \(1 \leq i \leq n\). Then \(K_\bullet(f_n) = K_\bullet(f_0) + \sum_{1 \leq i \leq n} K_\bullet(t_i)\).

Proof. The argument uses facts on kernels (see Appendix A to Lecture 3).

2.1.3. Corollary. Let \((C_X, \mathcal{E}_X)\) and \((C_Y, \mathcal{E}_Y)\) be right exact categories with initial objects and \(g^* \rightarrow f^* \rightarrow h^*\) a conflation of ‘exact’ functors from \((C_X, \mathcal{E}_X)\) to \((C_Y, \mathcal{E}_Y)\). Then \(K_\bullet(f) = K_\bullet(g) + K_\bullet(h)\).

2.1.4. Corollary. (Additivity for ‘characteristic’ ‘exact’ sequences) Let

\[
\begin{align*}
 f_n^* & \rightarrow f_{n-1}^* \rightarrow \ldots \rightarrow f_1^* \rightarrow f_0^*
\end{align*}
\]

be an ‘exact’ sequence of ‘exact’ functors from \((C_X, \mathcal{E}_X)\) to \((C_Y, \mathcal{E}_Y)\) which map initial objects to initial objects. Suppose that \(f_1^* \rightarrow f_0^*\) is a deflation and \(f_n^* \rightarrow f_{n-1}^*\) is the kernel of \(f_{n-1}^* \rightarrow f_{n-2}^*\). Then the morphism \(\sum_{0 \leq i \leq n} (-1)^i K_\bullet(f_i)\) from \(K_\bullet(X, \mathcal{E}_X)\) to \(K_\bullet(Y, \mathcal{E}_Y)\) is equal to zero.

Proof. The assertion follows from 2.1.3 by induction.

A more conceptual proof goes along the lines of the argument of 2.1.2. Namely, we assign to each right exact category \((C_Y, \mathcal{E}_Y)\) the right exact category \((C_{Y_n}, \mathcal{E}_{Y_n})\) whose objects are ‘exact’ sequences \(L = (L_n \rightarrow L_{n-1} \rightarrow \ldots \rightarrow L_1 \rightarrow L_0)\), where \(L_1 \rightarrow L_0\) is a deflation and \(L_n \rightarrow L_{n-1}\) is the kernel of \(L_{n-1} \rightarrow L_{n-2}\). This assignment defines an endofunctor \(P_n^*\) of the category \(\mathcal{E}_{sp}\) of right exact ‘spaces’ with initial objects, and maps \(L \mapsto L_i\) determine morphisms \(P_n^* \rightarrow \text{Id}_{\mathcal{E}_{sp}}\). The rest of the argument is left to the reader.

3.1. The Gabriel multiplication in right exact categories. Fix a right exact category \((C_X, \mathcal{E}_X)\) with initial objects. Let \(T\) and \(S\) be subcategories of the category \(C_X\). The Gabriel product \(S \cdot T\) is the full subcategory of \(C_X\) whose objects \(M\) fit into a conflation \(L \xrightarrow{g} M \xrightarrow{h} N\) such that \(L \in \text{Ob}S\) and \(N \in \text{Ob}T\).

3.1.1. Proposition. Let \((C_X, \mathcal{E}_X)\) be a right exact category with initial objects. For any subcategories \(A, B, D\) of the category \(C_X\), there is the inclusion

\[
A \cdot (B \cdot D) \subseteq (A \cdot B) \cdot D.
\]

Proof. An exercise on kernels and cartesian squares. ■

3.1.2. Corollary. Let \((C_X, \mathcal{E}_X)\) be an exact category. Then the Gabriel multiplication is associative.

Proof. Let \(A, B, D\) be subcategories of \(C_X\). By 3.1.1, we have the inclusion \(A \cdot (B \cdot D) \subseteq (A \cdot B) \cdot D\). The opposite inclusion holds by duality, because \((A \cdot B)^{\text{op}} = B^{\text{op}} \cdot A^{\text{op}}\). ■

3.2. The infinitesimal neighborhoods of a subcategory. Let \((C_X, \mathcal{E}_X)\) be a right exact category with initial objects. We denote by \(\emptyset_X\) the full subcategory of \(C_X\) generated by all initial objects of \(C_X\). For any subcategory \(B\) of \(C_X\), we define subcategories \(B(1)\) and \(B(n)\), \(0 \leq n \leq \infty\), by setting \(B(0) = \emptyset_X = B(0)\), \(B(1) = B = B(1)\), and

\[
\begin{align*}
B(n) &= B(n-1) \cdot B & \text{for } 2 \leq n < \infty; \\
B(n) &= B \cdot B(n-1) & \text{for } 2 \leq n < \infty;
\end{align*}
\]

and

\[
B(\infty) = \bigcup_{n \geq 1} B(n) = \bigcup_{n \geq 1} B(n),
\]

It follows that \(B(n) = B(n)\) for \(n \leq 2\) and, by 3.1.1, \(B(n) \subseteq B^{(n)}\) for \(3 \leq n \leq \infty\).

We call the subcategory \(B^{(1)}\) the upper \(n^{th}\) infinitesimal neighborhood of \(B\) and the subcategory \(B^{(n+1)}\) the lower \(n^{th}\) infinitesimal neighborhood of \(B\). It follows that \(B^{(n+1)}\) is the strictly full subcategory of \(C_X\) generated by all \(M \in \text{Ob}C_X\) such that there exists a sequence of arrows

\[
M_0 \xrightarrow{j_1} M_1 \xrightarrow{j_2} \ldots \xrightarrow{j_n} M_n = M
\]
with the property: \(M_0 \in Ob\mathcal{B}\), and for each \(n \geq 1\), there exists a deflation \(M_i \xrightarrow{\epsilon_i} N_i\) with \(N_i \in Ob\mathcal{B}\) such that \(M_{i-1} \xrightarrow{\eta_{i-1}} M_i \xrightarrow{\epsilon_i} N_i\) is a conflation.

Similarly, \(\mathcal{B}_{(n+1)}\) is a strictly full subcategory of \(C_X\) generated by all \(M \in ObC_X\) such that there exists a sequence of deflations

\[
M = M_n \xrightarrow{\epsilon_n} \ldots \xrightarrow{\epsilon_2} M_1 \xrightarrow{\epsilon_1} M_0
\]
such that \(M_0\) and \(Ker(\epsilon_i)\) are objects of \(\mathcal{B}\) for \(1 \leq i \leq n\).

3.2.1. Note. It follows that \(\mathcal{B}^{(n)} \subseteq \mathcal{B}^{(n+1)}\) for all \(n \geq 0\), if \(\mathcal{B}\) contains an initial object of the category \(C_X\).

3.3. Fully exact subcategories of a right exact category. Fix a right exact category \((C_X, \mathcal{E}_X)\). A subcategory \(\mathcal{A}\) of \(C_X\) is a **fully exact subcategory** of \((C_X, \mathcal{E}_X)\) if \(\mathcal{A} \cdot \mathcal{A} = \mathcal{A}\).

3.3.1. Proposition. Let \((C_X, \mathcal{E}_X)\) be a right exact category with initial objects. For any subcategory \(\mathcal{B}\) of \(C_X\), the subcategory \(\mathcal{B}^{(\infty)}\) is the smallest fully exact subcategory of \((C_X, \mathcal{E}_X)\) containing \(\mathcal{B}\).

Proof. Let \(\mathcal{A}\) be a fully exact subcategory of the right exact category \((C_X, \mathcal{E}_X)\), i.e. \(\mathcal{A} = \mathcal{A} \cdot \mathcal{A}\). Then \(\mathcal{B}^{(\infty)} \subseteq \mathcal{A}\), iff \(\mathcal{B}\) is a subcategory of \(\mathcal{A}\).

On the other hand, it follows from 3.1.1 and the definition of the subcategories \(\mathcal{B}^{(n)}\) (see 3.2) that \(\mathcal{B}^{(n)} \cdot \mathcal{B}^{(m)} \subseteq \mathcal{B}^{(m+n)}\) for any nonnegative integers \(n\) and \(m\). In particular, \(\mathcal{B}^{(\infty)} = \mathcal{B}^{(\infty)} \cdot \mathcal{B}^{(\infty)}\), that is \(\mathcal{B}^{(\infty)}\) is a fully exact subcategory of \((C_X, \mathcal{E}_X)\) containing \(\mathcal{B}\). \(\blacksquare\)

3.4. Cofiltrations. Fix a right exact category \((C_X, \mathcal{E}_X)\) with initial objects. A **cofiltration of the length** \(n+1\) of an object \(M\) is a sequence of deflations

\[
M = M_n \xrightarrow{\epsilon_n} \ldots \xrightarrow{\epsilon_2} M_1 \xrightarrow{\epsilon_1} M_0.
\]

(1)

The cofiltration (1) is said to be **equivalent** to a cofiltration

\[
M = \widetilde{M}_m \xrightarrow{\epsilon_n} \ldots \xrightarrow{\epsilon_2} \widetilde{M}_1 \xrightarrow{\epsilon_1} \widetilde{M}_0
\]

if \(m = n\) and there exists a permutation \(\sigma\) of \(\{0, \ldots, n\}\) such that \(Ker(\epsilon_i) \simeq Ker(\epsilon_{\sigma(i)})\) for \(1 \leq i \leq n\) and \(M_0 \simeq \widetilde{M}_0\).

The following assertion is a version (and a generalization) of Zassenhouse’s lemma.

3.4.1. Proposition. Let \((C_X, \mathcal{E}_X)\) have the following property:
(†) for any pair of deflations \(M_1 \leftarrow t_1 M \rightarrow t_2 M_2 \), there is a commutative square

\[
\begin{array}{ccc}
M & \xrightarrow{t_1} & M_1 \\
\downarrow t_2 & & \downarrow p_2 \\
M_2 & \xrightarrow{p_1} & M_3
\end{array}
\]

of deflations such that the unique morphism \(M \rightarrow M_1 \times_{M_2} M_2 \) is a deflation.

Then any two cofiltrations of an object \(M \) have equivalent refinements.

3.5. Devissage.

3.5.1. Proposition. (Devissage for \(K_0 \)). Let \(((X, \mathcal{E}_X), Y) \) be an infinitesimal ‘space’ such that \((X, \mathcal{E}_X) \) has the following property (which appeared in 3.4.1):

(†) for any pair of deflations \(M_1 \leftarrow t_1 M \rightarrow t_2 M_2 \), there is a commutative square

\[
\begin{array}{ccc}
M & \xrightarrow{t_1} & M_1 \\
\downarrow t_2 & & \downarrow p_2 \\
M_2 & \xrightarrow{p_1} & M_3
\end{array}
\]

of deflations such that the unique morphism \(M \rightarrow M_1 \times_{M_2} M_2 \) is a deflation.

Then the natural morphism

\[
K_0(Y, \mathcal{E}_Y) \longrightarrow K_0(X, \mathcal{E}_X)
\]

is an isomorphism.

3.5.2. The \(\partial' \)-functor \(K^\text{eq}_i \). Let \(\mathcal{E}_{\text{sp}}^{\text{es}} \) denote the left exact structure on the category \(\mathcal{E}_{\text{sp}}^{\text{X}} \) of \(\mathcal{E}_{\text{sp}} \) (cf. 3.9.4) induced by the (defined in 6.8.3.3) left exact structure \(\mathcal{E}_{\text{sp}}^{\text{es}} \) on the category \(\mathcal{E}_{\text{sp}} \) of right exact ‘spaces’. Let \(K^\text{eq}_i(X, \mathcal{E}_X) \) denote the \(i \)-th satellite of the functor \(K_0 \) with respect to the left exact structure \(\mathcal{E}_{\text{sp}}^{\text{es}} \).

3.5.3. Proposition. Let \(((X, \mathcal{E}_X), Y) \) be an infinitesimal ‘space’ such that the right exact ‘space’ \((X, \mathcal{E}_X) \) has the property (†) of 3.4.1, the category \(C_X \) has final objects, and all morphisms to final objects are deflations. Then the natural morphism

\[
K^\text{eq}_i(Y, \mathcal{E}_Y) \longrightarrow K^\text{eq}_i(X, \mathcal{E}_X)
\]

is an isomorphism for all \(i \geq 0 \).
Proof. The assertion follows from a general devissage theorem for universal \(\partial^* \)-functors whose zero component satisfy devissage property (like \(K_0 \), by 3.5.1). ■

4.1. Gabriel-Krull filtration. We recall the notion of the Gabriel filtration of an abelian category as it is presented in [R, 6.6]. Let \(C_X \) be an abelian category. The Gabriel filtration of \(X \) assigns to every cardinal \(\alpha \) a Serre subcategory \(C_{X,\alpha} \) of \(C_X \) which is constructed as follows:

Set \(C_{X,0} = \emptyset \).

If \(\alpha \) is not a limit cardinal, then \(C_{X,\alpha} \) is the smallest Serre subcategory of \(C_X \) containing all objects \(M \) such that the localization \(q^\alpha_{\alpha-1}(M) \) of \(M \) at \(C_{X,\alpha-1} \) has a finite length.

If \(\beta \) is a limit cardinal, then \(C_{X,\beta} \) is the smallest Serre subcategory containing all subcategories \(C_{X,\alpha} \) for \(\alpha < \beta \).

Let \(C_{X,\omega} \) denote the smallest Serre subcategory containing all the subcategories \(C_{X,\alpha} \). Clearly the quotient category \(C_X/C_{X,\omega} \) has no simple objects.

An object \(M \) is said to have the Gabriel-Krull dimension \(\beta \), if \(\beta \) is the smallest cardinal such that \(M \) belongs to \(C_{X,\beta} \).

The ‘space’ \(X \) has a Gabriel-Krull dimension if \(X = X_\omega \).

Every locally noetherian abelian category (e.g. the category of quasi-coherent sheaves on a noetherian scheme, or the category of left modules over a left noetherian associative algebra) has a Gabriel-Krull dimension.

It follows that for any limit ordinal \(\beta \), we have \(K_\bullet(X_\beta) = \bigcup_{\alpha < \beta} K_\bullet(X_\alpha) \).

Therefore, \(K_\bullet(X_\omega) = \bigcup_{\alpha \in \Omega \cap \mathbb{N}} K_\bullet(X_\alpha) \), where \(\Omega \cap \mathbb{N} \) denotes the set of non-limit ordinals.

4.2. Reduction via localization. If \(\alpha \) is a non-limit ordinal, we have the exact localization \(C_{X,\alpha} \twoheadrightarrow q^\alpha_{\alpha-1} \). Hence the corresponding long exact sequence

\[
\cdots \rightarrow K_{n+1}(X_\alpha^q) \xrightarrow{q^\alpha_{\alpha-1}} K_n(X_{\alpha-1}) \rightarrow K_n(X_\alpha) \rightarrow K_n(X_\alpha^q) \rightarrow K_{n-1}(X_\alpha) \rightarrow \cdots \rightarrow K_0(X_\alpha^q)
\]

(1)

of K-groups.
4.3. Reduction by devissage. Suppose that the category C_X is noetherian, i.e. all objects of C_X are noetherian. Then the quotient category $C_{X^\alpha} = C_{X_{\alpha}} / C_{X_{\alpha-1}}$ is noetherian. Notice that the Krull dimension of X^α_α equals to zero; hence all objects of the category $C_{X^\alpha_\alpha}$ have a finite length. Let $C_{X^\alpha_{\alpha'}}$ denote the full subcategory of $C_{X^\alpha_\alpha}$ generated by semisimple objects. By devissage, the natural morphism $K_\alpha(X^\alpha_{\alpha'}) \to K_\alpha(X^\alpha_\alpha)$ is an isomorphism. If C_Y is a svelte abelian category whose objects are semisimple of finite length, then $K_\alpha(Y) = \prod_{Q \in \text{Spec}(Y)} K_\alpha(\text{Sp}(D_Q))$, where D_Q is the residue skew field of the point Q of the spectrum of Y, which is the skew field $C_Y(M, M)^\alpha$ of the endomorphisms of the simple object M such that $Q = [M]$. In particular,

$$K_\alpha(X^\alpha_\alpha) = \prod_{Q \in \text{Spec}(X^\alpha_\alpha)} K_\alpha(\text{Sp}(D_Q))$$

for every non-limit ordinal α.

5. First definitions of K-theory and G-theory of noncommutative schemes.

The purpose of this section is to sketch the first notions which allow extension of K-theory and G-theory to noncommutative schemes and more general locally affine ‘spaces’. We consider here only the class of so-called semiseparated locally affine ‘spaces’ and schemes which includes the main examples of noncommutative schemes and locally affine ‘spaces’, starting from quantum flag varieties and noncommutative Grassmannians. Commutative semiseparated schemes are schemes \mathcal{X} whose diagonal morphism $\mathcal{X} \to \mathcal{X} \times \mathcal{X}$ is affine. In particular, every separated scheme is semiseparated.

Semiseparated noncommutative (in particular, commutative) schemes and locally affine ‘spaces’ over an affine scheme are particularly convenient, because the category of quasi-coherent sheaves on them is described by a linear algebra data provided by flat descent.

5.1. Semiseparated schemes. Flat descent. We shall consider semiseparated schemes and more general locally affine ‘spaces’ over an affine scheme, $\mathcal{S} = \text{Sp}(R)$. These are pairs (X, f), where X is a ‘space’ and f a continuous morphism $X \to \mathcal{S}$ for which there exists a finite affine cover $\{U_i \to X | i \in J\}$ such that every morphism u_i is flat and affine. In this
case, the corresponding morphism

$$U_J = \prod_{i \in J} U_i \xrightarrow{u} X$$

is flat (faithfully flat) and affine. By the (dual version of) Beck’s theorem (Lecture 1, 2.3.1), there is a commutative diagram

$$\begin{array}{ccc}
C_X & \xrightarrow{\mathcal{G}_u} & \text{Comod} \\
\downarrow{u^*} & \nearrow{\tilde{u}^*} & \\
R_{fu} - \text{mod}
\end{array}$$

where the horizontal arrow is a category equivalence. Here we identify the category C_{U_J} with the category of R_{fu}-modules for a ring R_{fu} over R corresponding (by Beck’s theorem) to the affine morphism $U_J \xrightarrow{fu} \text{Sp}(R)$ — the monad \mathcal{F}_{fu} on $R - \text{mod}$ is isomorphic to the monad $R_{fu} \otimes_R -$ (see Lecture 1). Since the morphism u is affine, the associated comonad $\mathcal{G}_u = (\tilde{G}_u, \delta_u)$, that is the functor $\mathcal{G}_u = u^* u_*$, is continuous: the composition $u^* u_*$ is its right adjoint. Therefore, \mathcal{G}_u is isomorphic to the tensoring $\mathcal{M}_u \otimes_{R_{fu}} -$ by an R_{fu}-bimodule \mathcal{M}_{u} determined uniquely up to isomorphism. The comonad structure δ_u induces a map $\mathcal{M} \xrightarrow{\delta_u} \mathcal{M}_u \otimes_{R_{fu}} \mathcal{M}_u$ which turns \mathcal{M}_u into a coalgebra in the monoidal category of R_{fu}-bimodules. Thus, the category C_X is naturally equivalent to the category $(\mathcal{M}_u, \delta_u) - \text{Comod}$ of $(\mathcal{M}_u, \delta_u)$. Its objects are pairs $(V, V \xrightarrow{\zeta} \mathcal{M}_u \otimes_{R_{fu}} V)$, where V is a left R_{fu}-module, which satisfy the usual comodule conditions. The structure morphism $X \xrightarrow{f} \text{Sp}(R)$ is encoded in the structure object $\mathcal{O} = f^*(R)$, or, what is the same, a comodule structure $R_{fu} \xrightarrow{\zeta_{fu}} \mathcal{M}_u \otimes_{R_{fu}} R_{fu}$ on the left module R_{fu}, which we can replace, thanks to an isomorphism $\mathcal{M}_u \otimes_{R_{fu}} R_{fu} \simeq \mathcal{M}_u$, by a morphism $R_{fu} \xrightarrow{\zeta_{fu}} \mathcal{M}_u$ satisfying the natural associativity condition and whose composition with counit $\mathcal{M} \xrightarrow{\varepsilon_u} R_{fu}$ of the coalgebra $(\mathcal{M}_u, \delta_u)$ is the identical morphism.

Thus, Beck’s theorem provides a description of the category of quasi-coherent sheaves on a semiseparated noncommutative (that is not necessarily commutative) scheme in terms of linear algebra.

5.2. The category of vector bundles. Fix a locally affine ‘space’ (X, f). We call an object \mathcal{M} of the category C_X a vector bundle if its inverse image, $u^*_f(\mathcal{M})$ is a projective ΓU_J-module of finite type, or, equivalently,
is a projective ΓU_i-module of finite type for each $i \in J$. We denote by $\mathcal{P}(X)$ the full subcategory of the category C_X whose objects are vector bundles on X.

5.3. The category of coherent objects. We call an object \mathcal{M} of the category C_X coherent if $u_i^*(\mathcal{M})$ is coherent for each $i \in J$. We denote by $\text{Coh}(X)$ the full subcategory of C_X generated by coherent objects.

5.3.1. Proposition. (a) The notions of a projective and coherent objects are well defined.

(b) $\text{Coh}(X)$ is a thick subcategory of C_X. In particular, it is an abelian category.

(c) $\mathcal{P}(X)$ an fully exact (i.e. closed under extensions) subcategory of C_X. In particular, $\mathcal{P}(X)$ is an exact category.

Proof. (a) Semiseparated finite covers form a filtered system: if $U_J \xrightarrow{u_J} X \xleftarrow{u_I} \tilde{U}_I$ are flat and affine, then all arrows in the cartesian square

$$
\begin{array}{ccc}
U_J \times_X \tilde{U}_I & \longrightarrow & \tilde{U}_I \\
\downarrow & & \downarrow \\
U_J & \longrightarrow & X
\end{array}
$$

are flat and affine. This follows from the categorical description of the cartesian product corresponding to direct image functors of $U_J \longrightarrow X$ and $\tilde{U} \longrightarrow X$.

(b) & (c). An exercise for the reader. ■

5.4. The category of locally affine semiseparated ‘spaces’. Let \mathcal{Laf}_S denote the subdiagram of the category $|\text{Cat}|_S$ of S-'spaces' whose objects are locally affine quasi-compact semiseparated S-'spaces' and morphisms are those morphisms $X \xrightarrow{f} Y$ of S-'spaces' which can be lifted to a morphism of semiseparated covers. More precisely, for any morphism $X \xrightarrow{f} Y$ of \mathcal{Laf}_S and any affine cover $U_Y \xrightarrow{\pi_Y} Y$, there is a commutative diagram

$$
\begin{array}{ccc}
U_X & \xrightarrow{f} & U_Y \\
\pi_X \downarrow & & \downarrow \pi_Y \\
X & \xrightarrow{f} & Y
\end{array}
$$

where the left vertical arrow is an affine cover of X.

One can see that \mathcal{Laf}_S is a subcategory of $|\text{Cat}|_S$.
For each object \((X, f)\) of \(\mathcal{L}_{aff_S}\), let \(X_P\) denote the ‘space’ defined by
\[C_{X_P} = \mathcal{P}(X) \] and \(X_\varepsilon\) the ‘space’ defined by
\[C_{X_\varepsilon} = \text{Coh}(X, f). \]

5.5. Proposition. The map \((X, f) \mapsto X_P\) is a functor from \(\mathcal{L}_{aff_S}\) to
the category \(\mathcal{E}_{sp}\) whose objects are ‘spaces’ represented by exact categories and
whose morphisms have ‘exact’ inverse image functors.

Proof. In fact, restricted to the affine schemes, the functor takes values
in the category \(\mathcal{E}_f\), because an inverse image of (automatically affine)
morphism between affine \(S\)-‘spaces’ maps conflations to conflations. The general
case follows from the affine case via affine covers, because the inverse image
functors of the covers are flat. ■

5.6. The functor \(K_\bullet\). We define the K-theory functor \(K_\bullet\) as the universal
\(\partial\)-functor from the category \(\mathcal{L}_{aff_S}\) semiseparated locally affine ‘spaces’
edowed with left exact structure induced by the functor from \(\mathcal{L}_{aff_S}\) to the
category of right exact ‘spaces’ which assigns to every locally affine semisep-
parated ‘space’ the right exact ‘space’ represented by the category of vector
bundles.

5.7. The category \(\mathcal{L}_{aff_S}^f\). We denote this way the subcategory of the
category \(\mathcal{L}_{aff_S}\) of locally affine ‘spaces’ formed by flat morphisms.

5.7.1. Proposition. The map \((X, f) \mapsto X_P\) is a functor from \(\mathcal{L}_{aff_S}^f\) to
the category \(\mathcal{E}_{sp}^a\) whose objects are ‘spaces’ represented by abelian categories and
whose morphisms have exact inverse image functors.

Proof. An exercise for the reader. ■

5.8. The functor \(G_\bullet\). We endow the category \(\mathcal{L}_{aff_S}^f\) with the left exact
structure \(\mathcal{L}_{aff_S}^f\) induced by the standard left exact structure on \(\mathcal{E}_{sp}^a\) (inverse
morphisms of inflations are exact localizations) via the functor of 5.7.1.
We define the \(\partial\)-functor \(G_\bullet\) as the universal \(\partial\)-functor from the left exact
category \(\mathcal{L}_{aff_S}^f, \mathcal{L}_{aff_S}^f\), whose zero component assigns to every locally affine
semiseparated ‘space’ \((X, f)\) the \(K_0\)-group of the ‘space’ represented by the
category of coherent sheaves on \((X, f)\).

5.9. Proposition. Let \(i \mapsto (X_i, f_i)\) be a filtered projective system
of locally affine \(S\)-‘spaces’ such that the transition morphisms \((X_i, f_i) \to (X_j, f_j)\)
are affine, and let \((X, f) = \lim(X_i, f_i)\). Then

\[
K_\bullet(X, f) \cong \text{colim}(K_\bullet(X_i, f_i)).
\]

(2)
If in addition the transition morphisms are flat, then
\[G_\bullet(X, f) \cong \text{colim}(G_\bullet(X_i, f_i)). \tag{2'}. \]

Proof. It follows from the assumptions that a filtered projective system of locally affine \(\mathcal{S} \)-‘spaces’ and affine morphisms induces a filtered inductive system of the exact categories \(\mathcal{P}(X_i, f_i) \) of vector-bundles. Its colimit, \(\mathcal{P}(X, f) \) is an exact category whose conflations are images of conflations of \(\mathcal{P}(X_i, f_i) \). Whence the isomorphism (2).

If, in addition, the transition morphisms are flat, then the inverse image functors of the transition functors induce exact functors between categories of coherent objects. This implies the isomorphism (2’). ■

5.10. Regular locally affine ‘spaces’. For a locally affine \(\mathcal{S} \)-space \((X, f) \), we denote by \(\mathbb{H}(X, f) \) the full subcategory of the category \(\text{Coh}(X, f) \) which have a \(\mathcal{P}(X) \)-resolution.

5.10.1. Proposition. (a) \(\mathbb{H}(X, f) \) is a fully exact subcategory of the category \(\text{Coh}(X, f) \). In particular, it is an exact category.

(b) Set \(\mathbb{H}(X, f) = C_{\mathbb{H}} \). The embedding of categories \(\mathcal{P}(X, f) \hookrightarrow \mathbb{H}(X, f) \) induces an isomorphism \(K_\bullet(X, f) \overset{\text{def}}{=} K_\bullet(X_{\mathcal{P}}) \cong K_\bullet(X_{\mathbb{H}}) \).

Proof. (a) By a standard argument.

(b) The fact is a consequence of the Resolution Theorem. ■

5.10.2. Definition. A locally affine ‘space’ is called regular if \(\mathbb{H}(X, f) = \text{Coh}(X, f) \).

Thus, if \((X, f) \) is a regular locally affine ‘space’, then \(K_\bullet(X, f) = G_\bullet(X, f) \).

5.10.3. Remark. If \((X, f) \) is an affine \(\mathcal{S} \)-space, then the regularity coincides with the usual notion of regularity of rings (\(\mathcal{S} \) is assumed to be affine). Similarly, if \((X, f) \) is an \(\mathcal{S} \)-space’ corresponding to a commutative scheme.

The notion of \(\mathbb{H}(X, f) \) is local in the following sense:

5.10.4. Proposition. Let \((X, f) \) be a locally affine \(\mathcal{S} \)-‘space’. The following conditions on an object \(\mathcal{M} \) of \(C_X \) are equivalent:

(a) \(\mathcal{M} \) belongs to \(\mathbb{H}(X, f) \);

(b) \(u_i^*(\mathcal{M}) \) belongs to \(\mathbb{H}(U_i, f u_i) \) for some finite cover \(\{ U_i \overset{u_i}{\longrightarrow} X \mid i \in J \} \) of \((X, f) \) and for all \(i \in J \);
(c) $u_i^*(M)$ belongs to $\mathbb{H}(U_i, fu_i)$ for some finite cover $\{U_i \rightarrow X \mid i \in J\}$ of (X, f) and for all $i \in J$.

Proof. Obviously, $(c) \Rightarrow (b)$. In the rest of the argument, one can assume that the covers consist of one flat affine morphism. The assertion follows from the fact that such covers form a filtered system. Details are left as an exercise. □

5.10.5. Examples. The quantum flag varieties and the corresponding twisted quantum D-schemes [LR] are examples of regular schemes. Noncommutative Grassmannians [KR1], [KR3] are examples of regular locally affine ‘spaces’ which are not schemes.

In a sense, the standard K-theory based on the category of vector bundles, or G-theory based on the category of all coherent sheaves, do not give much valuable information from the point of view of representation theory. For instance, if \mathfrak{g} is a finite-dimensional Lie algebra over a field k, then $K_*(U(\mathfrak{g})) \simeq K_*(k)$ and, similarly, $K_*(A_n(k)) \simeq K_*(k)$, where $A_n(k)$ is the n-th Weyl algebra over k. This indicates that one should study K-theory of other subcategories of the category of $U(\mathfrak{g})$-modules. The subcategory which received most of attention in seventies and the beginning of eighties was the category $\mathcal{O} = \mathcal{O}(\mathfrak{g})$ of representations of a semi-simple (or reductive) Lie algebra \mathfrak{g} introduced by I.M. Gelfand and his collaborators. The highlight of its study was Kazhdan-Lusztig conjecture and, the most important, its prove, which led to the reformulation of the representation theory of reductive algebraic groups in terms of D-modules and D-schemes making it a part of noncommutative algebraic geometry, even before this branch of mathematics emerged.

The main basic fact which allowed to reduce the problems of representation theory to the study of D-modules on flag varieties is the Beilinson-Bernstein localization theorem which says that the global section functor induces an equivalence between the category of D-modules on the flag variety of a reductive Lie algebra \mathfrak{g} over a field of zero characteristic and the category of $U(\mathfrak{g})$-modules with trivial central character (and its twisted version). Harish-Chandra modules and their different generalizations turned out to be holonomic D-modules. As a result, holonomic modules on flag varieties became the main object of study in representation theory of reductive algebraic groups.
On the other hand, the notions of quantum flag variety and the appropriate categories of twisted D-modules were introduced in [LR]. And it was established a quantum version of Beilinson-Bernstein localization theorem [LR], [T], which reduces the study of representations of the quantized enveloping algebra $U_q(g)$ to the study of twisted D-modules on quantum flag variety, like in the classical case. The notion of a holonomic D-module is extended to the setting of noncommutative algebraic geometry [R5]. In particular, there exists a notion of a quantum holonomic D-module.

All initial ingredients are present and the area of research is wide open.
References

