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Abstract

We describe the holographic correspondence between field theories and
string/M theory, focusing on the relation between compactifications of string/
M theory on Anti-de Sitter spaces and conformal field theories. We review
the background for this correspondence and discuss its motivations and the
evidence for its correctness. We describe the main results that have been
derived from the correspondence in the regime that the field theory is ap-
proximated by classical or semiclassical gravity. We focus on the case of the
N = 4 supersymmetric gauge theory in four dimensions. These lecture notes
are based on the Review written by O. Aharony, S. Gubser, J. Maldacena,
H. Ooguri and Y. Oz, [1].
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Large N Field Theories and Gravity 5

1 General introduction

These lecture notes are taken out of the review [1]. A more complete set of
references is given there.

Even though though string theory is normally used as a theory of quan-
tum gravity, it is not how string theory was originally discovered. String
theory was discovered in an attempt to describe the large number of mesons
and hadrons that were experimentally discovered in the 1960’s. The idea
was to view all these particles as different oscillation modes of a string. The
string idea described well some features of the hadron spectrum. For exam-
ple, the mass of the lightest hadron with a given spin obeys a relation like
m? ~ T'J? 4 const. This is explained simply by assuming that the mass and
angular momentum come from a rotating, relativistic string of tension T'. It
was later discovered that hadrons and mesons are actually made of quarks
and that they are described by QCD.

QCD is a gauge theory based on the group SU(3). This is sometimes
stated by saying that quarks have three colors. QCD is asymptotically free,
meaning that the effective coupling constant decreases as the energy in-
creases. At low energies QCD becomes strongly coupled and it is not easy
to perform calculations. One possible approach is to use numerical sim-
ulations on the lattice. This is at present the best available tool to do
calculations in QCD at low energies. It was suggested by ’t Hooft that the
theory might simplify when the number of colors N is large [7]. The hope
was that one could solve exactly the theory with N = oo, and then one
could do an expansion in 1/N = 1/3. Furthermore, as explained in the next
section, the diagrammatic expansion of the field theory suggests that the
large N theory is a free string theory and that the string coupling constant
is 1/N. If the case with N = 3 is similar to the case with N = oo then
this explains why the string model gave the correct relation between the
mass and the angular momentum. In this way the large N limit connects
gauge theories with string theories. The 't Hooft argument, reviewed be-
low, is very general, so it suggests that different kinds of gauge theories will
correspond to different string theories. In this review we will study this cor-
respondence between string theories and the large N limit of field theories.
We will see that the strings arising in the large N limit of field theories are
the same as the strings describing quantum gravity. Namely, string theory
in some backgrounds, including quantum gravity, is equivalent (dual) to a
field theory.

Strings are not consistent in four flat dimensions. Indeed, if one wants to
quantize a four dimensional string theory an anomaly appears that forces the
introduction of an extra field, sometimes called the “Liouville” field [8]. This
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field on the string worldsheet may be interpreted as an extra dimension, so
that the strings effectively move in five dimensions. One might qualitatively
think of this new field as the “thickness” of the string. If this is the case,
why do we say that the string moves in five dimensions? The reason is that,
like any string theory, this theory will contain gravity, and the gravitational
theory will live in as many dimensions as the number of fields we have on
the string. It is crucial then that the five dimensional geometry is curved,
so that it can correspond to a four dimensional field theory, as described in
detail below.

The argument that gauge theories are related to string theories in the
large N limit is very general and is valid for basically any gauge theory. In
particular we could consider a gauge theory where the coupling does not run
(as a function of the energy scale). Then, the theory is conformally invariant.
It is quite hard to find quantum field theories that are conformally invariant.
In supersymmetric theories it is sometimes possible to prove exact confor-
mal invariance. A simple example, which will be the main example in this
review, is the supersymmetric SU(N) (or U(N)) gauge theory in four dimen-
sions with four spinor supercharges (N = 4). Four is the maximal possible
number of supercharges for a field theory in four dimensions. Besides the
gauge fields (gluons) this theory contains also four fermions and six scalar
fields in the adjoint representation of the gauge group. The Lagrangian of
such theories is completely determined by supersymmetry. There is a global
SU(4) R-symmetry that rotates the six scalar fields and the four fermions.
The conformal group in four dimensions is SO(4,2), including the usual
Poincaré transformations as well as scale transformations and special con-
formal transformations (which include the inversion symmetry z# — z*/z?).
These symmetries of the field theory should be reflected in the dual string
theory. The simplest way for this to happen is if the five dimensional ge-
ometry has these symmetries. Locally there is only one space with SO(4, 2)
isometries: five dimensional Anti-de-Sitter space, or AdS5. Anti-de Sitter
space is the maximally symmetric solution of Einstein’s equations with a
negative cosmological constant. In this supersymmetric case we expect the
strings to also be supersymmetric. We said that superstrings move in ten
dimensions. Now that we have added one more dimension it is not surprising
any more to add five more to get to a ten dimensional space. Since the gauge
theory has an SU(4) ~ SO(6) global symmetry it is rather natural that the
extra five dimensional space should be a five sphere, S°. So, we conclude
that N' =4 U(N) Yang-Mills theory could be the same as ten dimensional
superstring theory on AdSs x S° [9]. Here we have presented a very heuristic
argument for this equivalence; later we will be more precise and give more
evidence for this correspondence.
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The relationship we described between gauge theories and string theory
on Anti-de-Sitter spaces was motivated by studies of D-branes and black
holes in strings theory. D-branes are solitons in string theory [10]. They
come in various dimensionalities. If they have zero spatial dimensions they
are like ordinary localized, particle-type soliton solutions, analogous to the
't Hooft-Polyakov [11, 12] monopole in gauge theories. These are called
D-zero-branes. If they have one extended dimension they are called D-one-
branes or D-strings. They are much heavier than ordinary fundamental
strings when the string coupling is small. In fact, the tension of all D-branes
is proportional to 1/gs, where g; is the string coupling constant. D-branes
are defined in string perturbation theory in a very simple way: they are
surfaces where open strings can end. These open strings have some massless
modes, which describe the oscillations of the branes, a gauge field living on
the brane, and their fermionic partners. If we have N coincident branes the
open strings can start and end on different branes, so they carry two indices
that run from one to N. This in turn implies that the low energy dynamics
is described by a U(N) gauge theory. D-p-branes are charged under p + 1-
form gauge potentials, in the same way that a O-brane (particle) can be
charged under a one-form gauge potential (as in electromagnetism). These
p + 1-form gauge potentials have p 4+ 2-form field strengths, and they are
part of the massless closed string modes, which belong to the supergravity
(SUGRA) multiplet containing the massless fields in flat space string theory
(before we put in any D-branes). If we now add D-branes they generate
a flux of the corresponding field strength, and this flux in turn contributes
to the stress energy tensor so the geometry becomes curved. Indeed it is
possible to find solutions of the supergravity equations carrying these fluxes.
Supergravity is the low-energy limit of string theory, and it is believed that
these solutions may be extended to solutions of the full string theory. These
solutions are very similar to extremal charged black hole solutions in general
relativity, except that in this case they are black branes with p extended
spatial dimensions. Like black holes they contain event horizons.

If we consider a set of NV coincident D-3-branes the near horizon geometry
turns out to be AdSs x S°. On the other hand, the low energy dynamics
on their worldvolume is governed by a U(N) gauge theory with N' = 4
supersymmetry [13]. These two pictures of D-branes are perturbatively valid
for different regimes in the space of possible coupling constants. Perturbative
field theory is valid when g;N is small, while the low-energy gravitational
description is perturbatively valid when the radius of curvature is much
larger than the string scale, which turns out to imply that g;/V should be very
large. As an object is brought closer and closer to the black brane horizon
its energy measured by an outside observer is redshifted, due to the large
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gravitational potential, and the energy seems to be very small. On the other
hand low energy excitations on the branes are governed by the Yang-Mills
theory. So, it becomes natural to conjecture that Yang-Mills theory at strong
coupling is describing the near horizon region of the black brane, whose
geometry is AdSs5 X S%. The first indications that this is the case came from
calculations of low energy graviton absorption cross sections [14, 15, 16]. It
was noticed there that the calculation done using gravity and the calculation
done using super Yang-Mills theory agreed. These calculations, in turn,
were inspired by similar calculations for coincident D1-D5 branes. In this
case the near horizon geometry involves AdS3 x S® and the low energy field
theory living on the D-branes is a 141 dimensional conformal field theory.
In this D1-D5 case there were numerous calculations that agreed between
the field theory and gravity. First black hole entropy for extremal black
holes was calculated in terms of the field theory in [17], and then agreement
was shown for near extremal black holes [18, 19] and for absorption cross
sections [20, 21, 22]. More generally, we will see that correlation functions
in the gauge theory can be calculated using the string theory (or gravity for
large gsN) description, by considering the propagation of particles between
different points in the boundary of AdS, the points where operators are
inserted [23, 24].

Supergravities on AdS spaces were studied very extensively, see [25, 26]
for reviews. See also [2, 3] for earlier hints of the correspondence.

One of the main points of these lectures will be that the strings coming
from gauge theories are very much like the ordinary superstrings that have
been studied during the last 20 years. The only particular feature is that
they are moving on a curved geometry (anti-de Sitter space) which has a
boundary at spatial infinity. The boundary is at an infinite spatial distance,
but a light ray can go to the boundary and come back in finite time. Massive
particles can never get to the boundary. The radius of curvature of Anti-de
Sitter space depends on N so that large N corresponds to a large radius
of curvature. Thus, by taking N to be large we can make the curvature
as small as we want. The theory in AdS includes gravity, since any string
theory includes gravity. So in the end we claim that there is an equivalence
between a gravitational theory and a field theory. However, the mapping
between the gravitational and field theory degrees of freedom is quite non-
trivial since the field theory lives in a lower dimension. In some sense the
field theory (or at least the set of local observables in the field theory) lives
on the boundary of spacetime. One could argue that in general any quan-
tum gravity theory in AdS defines a conformal field theory (CFT) “on the
boundary”. In some sense the situation is similar to the correspondence
between three dimensional Chern-Simons theory and a WZW model on the
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boundary [27]. This is a topological theory in three dimensions that induces
a normal (non-topological) field theory on the boundary. A theory which
includes gravity is in some sense topological since one is integrating over all
metrics and therefore the theory does not depend on the metric. Similarly,
in a quantum gravity theory we do not have any local observables. Notice
that when we say that the theory includes “gravity on AdS” we are consid-
ering any finite energy excitation, even black holes in AdS. So this is really
a sum over all spacetimes that are asymptotic to AdS at the boundary. This
is analogous to the usual flat space discussion of quantum gravity, where
asymptotic flatness is required, but the spacetime could have any topology
as long as it is asymptotically flat. The asymptotically AdS case as well as
the asymptotically flat cases are special in the sense that one can choose a
natural time and an associated Hamiltonian to define the quantum theory.
Since black holes might be present this time coordinate is not necessarily
globally well-defined, but it is certainly well-defined at infinity. If we assume
that the conjecture we made above is valid, then the U(N) Yang-Mills theory
gives a non-perturbative definition of string theory on AdS. And, by taking
the limit N — oo, we can extract the (ten dimensional string theory) flat
space physics, a procedure which is in principle (but not in detail) similar
to the one used in matrix theory [28].

The fact that the field theory lives in a lower dimensional space blends
in perfectly with some previous speculations about quantum gravity. It was
suggested [29, 30] that quantum gravity theories should be holographic, in
the sense that physics in some region can be described by a theory at the
boundary with no more than one degree of freedom per Planck area. This
“holographic” principle comes from thinking about the Bekenstein bound
which states that the maximum amount of entropy in some region is given
by the area of the region in Planck units [31]. The reason for this bound is
that otherwise black hole formation could violate the second law of thermo-
dynamics. We will see that the correspondence between field theories and
string theory on AdS space (including gravity) is a concrete realization of
this holographic principle.

Other reviews of this subject are [32, 33, 34, 35, 1].

2 The correspondence

In this section we will present an argument connecting type IIB string theory
compactified on AdSs x S5 to N = 4 super-Yang-Mills theory [9]. Let us
start with type IIB string theory in flat, ten dimensional Minkowski space.
Consider N parallel D3 branes that are sitting together or very close to each
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other (the precise meaning of “very close” will be defined below). The D3
branes are extended along a (3+ 1) dimensional plane in (9+ 1) dimensional
spacetime. String theory on this background contains two kinds of pertur-
bative excitations, closed strings and open strings. The closed strings are
the excitations of empty space and the open strings end on the D-branes and
describe excitations of the D-branes. If we consider the system at low ener-
gies, energies lower than the string scale 1/I;, then only the massless string
states can be excited, and we can write an effective Lagrangian describing
their interactions. The closed string massless states give a gravity supermul-
tiplet in ten dimensions, and their low-energy effective Lagrangian is that
of type IIB supergravity. The open string massless states give an N’ = 4
vector supermultiplet in (3 4+ 1) dimensions, and their low-energy effective
Lagrangian is that of N' =4 U(N) super-Yang-Mills theory [13, 36].
The complete effective action of the massless modes will have the form

S = Sbulk + Sbrane + Sint- (1)

Sbulk s the action of ten dimensional supergravity, plus some higher deriva-
tive corrections. Note that the Lagrangian (1) involves only the massless
fields but it takes into account the effects of integrating out the massive
fields. It is not renormalizable (even for the fields on the brane), and it
should only be understood as an effective description in the Wilsonian sense,
i.e. we integrate out all massive degrees of freedom but we do not integrate
out the massless ones. The brane action Sprane is defined on the (3 + 1)
dimensional brane worldvolume, and it contains the N' = 4 super-Yang-
Mills Lagrangian plus some higher derivative corrections, for example terms
of the form o/?Tr(F*). Finally, Sip; describes the interactions between the
brane modes and the bulk modes. The leading terms in this interaction
Lagrangian can be obtained by covariantizing the brane action, introducing
the background metric for the brane [37].

We can expand the bulk action as a free quadratic part describing the
propagation of free massless modes (including the graviton), plus some in-
teractions which are proportional to positive powers of the square root of
the Newton constant. Schematically we have

Stk ~ % / R ~ / (Oh)2 + K(OR)2h + - - -, @)

where we have written the metric as ¢ = n + xkh. We indicate explicitly
the dependence on the graviton, but the other terms in the Lagrangian,
involving other fields, can be expanded in a similar way. Similarly, the
interaction Lagrangian S;,: is proportional to positive powers of k. If we
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take the low energy limit, all interaction terms proportional to x drop out.
This is the well known fact that gravity becomes free at long distances (low
energies).

In order to see more clearly what happens in this low energy limit it is
convenient to keep the energy fixed and send I; — 0 (o’ — 0) keeping all
the dimensionless parameters fixed, including the string coupling constant
and N. In this limit the coupling k¥ ~ g;&/> — 0, so that the interaction
Lagrangian relating the bulk and the brane vanishes. In addition all the
higher derivative terms in the brane action vanish, leaving just the pure
N = 4 U(N) gauge theory in 3 + 1 dimensions, which is known to be a
conformal field theory. And, the supergravity theory in the bulk becomes
free. So, in this low energy limit we have two decoupled systems. On the
one hand we have free gravity in the bulk and on the other hand we have
the four dimensional gauge theory.

Next, we consider the same system from a different point of view. D-
branes are massive charged objects which act as a source for the various
supergravity fields. We can find a D3 brane solution [38] of supergravity, of
the form

ds? = ]"71/2(—alt2 + dx? + dzi + dz3) + fl/2(dr2 +r2dQ?) ,

F5 = (1 + *)dtdz dzodzadf ", (3)
R4
f:1+r_4’ R = 4ng,d?N .

Note that since g;; is non-constant, the energy E, of an object as measured
by an observer at a constant position r and the energy E measured by an
observer at infinity are related by the redshift factor

E=f"YE, . (4)

This means that the same object brought closer and closer to » = 0 would
appear to have lower and lower energy for the observer at infinity. Now
we take the low energy limit in the background described by equation (3).
There are two kinds of low energy excitations (from the point of view of
an observer at infinity). We can have massless particles propagating in
the bulk region with wavelengths that becomes very large, or we can have
any kind of excitation that we bring closer and closer to r = 0. In the
low energy limit these two types of excitations decouple from each other.
The bulk massless particles decouple from the near horizon region (around
r = 0) because the low energy absorption cross section goes like o ~ w3R®
[14, 15], where w is the energy. This can be understood from the fact that
in this limit the wavelength of the particle becomes much bigger than the
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typical gravitational size of the brane (which is of order R). Similarly, the
excitations that live very close to = 0 find it harder and harder to climb the
gravitational potential and escape to the asymptotic region. In conclusion,
the low energy theory consists of two decoupled pieces, one is free bulk
supergravity and the second is the near horizon region of the geometry. In
the near horizon region, r < R, we can approximate f ~ R*/r* and the
geometry becomes

T2

2
r
:ﬁ(

ds? —dt? + du? + do} + da3) + RQCi—Z + R?dQ3, (5)

which is the geometry of AdS5 x S°.

We see that both from the point of view of a field theory of open strings
living on the brane, and from the point of view of the supergravity descrip-
tion, we have two decoupled theories in the low-energy limit. In both cases
one of the decoupled systems is supergravity in flat space. So, it is natural
to identify the second system which appears in both descriptions. Thus,
we are led to the conjecture that N' = 4 U(N) super-Yang-Mills theory in
3 + 1 dimensions is the same as (or dual to) type IIB superstring theory on
AdSs x S° [9).

We could be a bit more precise about the near horizon limit and how it
is being taken. Suppose that we take o — 0, as we did when we discussed
the field theory living on the brane. We want to keep fixed the energies
of the objects in the throat (the near-horizon region) in string units, so
that we can consider arbitrary excited string states there. This implies that
V'E, ~ fixed. For small o (4) reduces to E ~ E,r/vc'. Since we want
to keep fixed the energy measured from infinity, which is the way energies
are measured in the field theory, we need to take r — 0 keeping 7/’ fixed.
It is then convenient to define a new variable U = r/co/, so that the metric
becomes

2

U du?
ds? = o W(_dtQ + dz? + da + dz3) + \/47T95NW + /Arg, NdQ2
S
(6)

This can also be seen by considering a D3 brane sitting at 7. This
corresponds to giving a vacuum expectation value to one of the scalars in
the Yang-Mills theory. When we take the o/ — 0 limit we want to keep
the mass of the “W-boson” fixed. This mass, which is the mass of the
string stretching between the branes sitting at ¥ = 0 and the one at 7,
is proportional to U = r/d, so this quantity should remain fixed in the
decoupling limit.
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A U(N) gauge theory is essentially equivalent to a free U(1) vector mul-
tiplet times an SU(N) gauge theory, up to some Zy identifications (which
affect only global issues). In the dual string theory all modes interact with
gravity, so there are no decoupled modes. Therefore, the bulk AdS theory is
describing the SU(N) part of the gauge theory. In fact we were not precise
when we said that there were two sets of excitations at low energies, the ex-
citations in the asymptotic flat space and the excitations in the near horizon
region. There are also some zero modes which live in the region connecting
the “throat” (the near horizon region) with the bulk, which correspond to
the U(1) degrees of freedom mentioned above. The U(1) vector supermul-
tiplet includes six scalars which are related to the center of mass motion of
all the branes [39]. From the AdS point of view these zero modes live at the
boundary, and it looks like we might or might not decide to include them in
the AdS theory. Depending on this choice we could have a correspondence to
an SU(N) or a U(N) theory. The U(1) center of mass degree of freedom is
related to the topological theory of B-fields on AdS [40]; if one imposes local
boundary conditions for these B-fields at the boundary of AdS one finds a
U(1) gauge field living at the boundary [41], as is familiar in Chern-Simons
theories [27, 42]. These modes living at the boundary are sometimes called
singletons (or doubletons) [43, 44, 45, 46, 47, 48, 49, 50, 51].

Anti-de-Sitter space has a large group of isometries, which is SO(4,2)
for the case at hand. This is the same group as the conformal group in
3 + 1 dimensions. Thus, the fact that the low-energy field theory on the
brane is conformal is reflected in the fact that the near horizon geometry is
Anti-de-Sitter space. We also have some supersymmetries. The number of
supersymmetries is twice that of the full solution (3) containing the asymp-
totic region [39]. This doubling of supersymmetries is viewed in the field
theory as a consequence of superconformal invariance, since the supercon-
formal algebra has twice as many fermionic generators as the corresponding
Poincare superalgebra. We also have an SO(6) symmetry which rotates the
S5. This can be identified with the SU(4)g R-symmetry group of the field
theory. In fact, the whole supergroup is the same for the N' = 4 field theory
and the AdS5 x S° geometry, so both sides of the conjecture have the same
spacetime symmetries. We will discuss in more detail the matching between
the two sides of the correspondence in section 3.

In the above derivation the field theory is naturally defined on R, but
we could also think of the conformal field theory as defined on S% x R by
redefining the Hamiltonian. Since the isometries of AdS are in one to one
correspondence with the generators of the conformal group of the field theory,
we can conclude that this new Hamiltonian (P + Kj) can be associated on
AdS to the generator of translations in global time. This formulation of the
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conjecture is more useful since in the global coordinates there is no horizon.
When we put the field theory on S2 the Coulomb branch is lifted and there is
a unique ground state. This is due to the fact that the scalars ¢! in the field
theory are conformally coupled, so there is a term of the form [ d*zTr(¢?)R
in the Lagrangian, where R is the curvature of the four-dimensional space
on which the theory is defined. Due to the positive curvature of S3 this leads
to a mass term for the scalars [24], lifting the moduli space.

The parameter N appears on the string theory side as the flux of the
five-form Ramond-Ramond field strength on the S°,

F5=N. (7)
g5
From the physics of D-branes we know that the Yang-Mills coupling is related
to the string coupling through [10, 52]
4 0 i
— i _

X
T=E—5—+—= + =, 8
g%,M 27 gs 27 ()

where we have also included the relationship of the 6 angle to the expectation
value of the RR scalar x. We have written the couplings in this fashion
because both the gauge theory and the string theory have an SL(2,7Z) self-
duality symmetry under which 7 — (a7 + b)/(ct + d) (where a,b,c,d are
integers with ad — bc = 1). In fact, SL(2,Z) is a conjectured strong-weak
coupling duality symmetry of type IIB string theory in flat space [53], and it
should also be a symmetry in the present context since all the fields that are
being turned on in the AdSs x S° background (the metric and the five form
field strength) are invariant under this symmetry. The connection between
the SL(2,7Z) duality symmetries of type IIB string theory and N' =4 SYM
was noted in [54, 55, 56]. The string theory seems to have a parameter
that does not appear in the gauge theory, namely ', which sets the string
tension and all other scales in the string theory. However, this is not really a
parameter in the theory if we do not compare it to other scales in the theory,
since only relative scales are meaningful. In fact, only the ratio of the radius
of curvature to o is a parameter, but not o/ and the radius of curvature
independently. Thus, o/ will disappear from any final physical quantity we
compute in this theory. It is sometimes convenient, especially when one is
doing gravity calculations, to set the radius of curvature to one. This can
be achieved by writing the metric as ds? = R2d5?, and rewriting everything
in terms of §. With these conventions Gy ~ 1/N? and o' ~ 1/4/gsN. This
implies that any quantity calculated purely in terms of the gravity solution,
without including stringy effects, will be independent of g; NV and will depend



Large N Field Theories and Gravity 15

only on N. o corrections to the gravity results give corrections which are
proportional to powers of 1/4/gsN.

Now, let us address the question of the validity of various approximations.
The analysis of loop diagrams in the field theory shows that we can trust
the perturbative analysis in the Yang-Mills theory when

2 R*

S

Note that we need g%,,N to be small and not just g2,,. On the other
hand, the classical gravity description becomes reliable when the radius of
curvature R of AdS and of §° becomes large compared to the string length,

4
If—4 ~gsN ~ gy N > 1. (10)
S
We see that the gravity regime (10) and the perturbative field theory regime
(9) are perfectly incompatible. In this fashion we avoid any obvious con-
tradiction due to the fact that the two theories look very different. This is
the reason that this correspondence is called a “duality”. The two theories
are conjectured to be exactly the same, but when one side is weakly coupled
the other is strongly coupled and vice versa. This makes the correspondence
both hard to prove and useful, as we can solve a strongly coupled gauge the-
ory via classical supergravity. Notice that in (9)(10) we implicitly assumed
that g; < 1. If g5 > 1 we can perform an SL(2,Z) duality transformation
and get conditions similar to (9)(10) but with gs — 1/gs. So, we cannot get
into the gravity regime (10) by taking N small (N = 1,2,..) and g, very
large, since in that case the D-string becomes light and renders the gravity
approximation invalid. Another way to see this is to note that the radius of
curvature in Planck units is R*/ lé ~ N. So, it is always necessary, but not
sufficient, to have large N in order to have a weakly coupled supergravity
description.
One might wonder why the above argument was not a proof rather than
a conjecture. It is not a proof because we did not treat the string theory non-
perturbatively (not even non-perturbatively in o'). We could also consider
different forms of the conjecture. In its weakest form the gravity description
would be valid for large g; N, but the full string theory on AdS might not
agree with the field theory. A not so weak form would say that the conjecture
is valid even for finite g;N, but only in the N — oo limit (so that the o
corrections would agree with the field theory, but the g corrections may
not). The strong form of the conjecture, which is the most interesting one
and which we will assume here, is that the two theories are exactly the same
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for all values of g; and N. In this conjecture the spacetime is only required
to be asymptotic to AdSs x S° as we approach the boundary. In the interior
we can have all kinds of processes; gravitons, highly excited fundamental
string states, D-branes, black holes, etc. Even the topology of spacetime can
change in the interior. The Yang-Mills theory is supposed to effectively sum
over all spacetimes which are asymptotic to AdSs x S°. This is completely
analogous to the usual conditions of asymptotic flatness. We can have black
holes and all kinds of topology changing processes, as long as spacetime
is asymptotically flat. In this case asymptotic flatness is replaced by the
asymptotic AdS behavior.

2.1 Brane probes and multicenter solutions

The moduli space of vacua of the N' = 4 U(N) gauge theory is (R®)V /Sy,
parametrizing the positions of the N branes in the six dimensional transverse
space. In the supergravity solution one can replace

N

N
o — _>§ S — 11

and still have a solution to the supergravity equations. We see that if |7] >
|7i| then the two solutions are basically the same, while when we go to r ~ r;
the solution starts looking like the solution of a single brane. Of course, we
cannot trust the supergravity solution for a single brane (since the curvature
in Planck units is proportional to a negative power of N). What we can do
is separate the N branes into groups of N; branes with g;/N; > 1 for all 4.
Then we can trust the gravity solution everywhere.

Another possibility is to separate just one brane (or a small number of
branes) from a group of N branes. Then we can view this brane as a D3-
brane in the AdSs background which is generated by the other branes (as
described above). A string stretching between the brane probe and the N
branes appears in the gravity description as a string stretching between the
D3-brane and the horizon of AdS. This seems a bit surprising at first since
the proper distance to the horizon is infinite. However, we get a finite result
for the energy of this state once we remember to include the redshift factor.
The D3-branes in AdS (like any D3-branes in string theory) are described at
low energies by the Born-Infeld action, which is the Yang-Mills action plus
some higher derivative corrections. This seems to contradict, at first sight,
the fact that the dual field theory (coming from the original branes) is just
the pure Yang-Mills theory. In order to understand this point more precisely
let us write explicitly the bosonic part of the Born-Infeld action for a D-3
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brane in AdS [37],

S S
5= (2m)3gsa’? /d =
\/ — det(nag + fOarOpT + 12f§ij0001007 + 2ma/\/fFop) — 1| ,
g0 N

(12)
where 6 are angular coordinates on the 5-sphere. We can easily check that
if we define a new coordinate U = r/d/, then all the o/ dependence drops out
of this action. Since U (which has dimensions of energy) corresponds to the
mass of the W bosons in this configuration, it is the natural way to express
the Higgs expectation value that breaks U(N + 1) to U(N) x U(1). In fact,
the action (12) is precisely the low-energy effective action in the field theory
for the massless U(1) degrees of freedom, that we obtain after integrating out
the massive degrees of freedom (W bosons). We can expand (12) in powers
of OU and we see that the quadratic term does not have any correction,
which is consistent with the non-renormalization theorem for N' = 4 super-
Yang-Mills [57]. The (8U)* term has only a one-loop correction, and this
is also consistent with another non-renormalization theorem [58]. This one-
loop correction can be evaluated explicitly in the gauge theory and the result
agrees with the supergravity result [59]. It is possible to argue, using broken
conformal invariance, that all terms in (12) are determined by the (0U)* term
[9]. Since the massive degrees of freedom that we are integrating out have a
mass proportional to U, the action (12) makes sense as long as the energies
involved are much smaller than U. In particular, we need OU/U < U.
Since (12) has the form L(g;N(0U)?/U*), the higher order terms in (12)
could become important in the supergravity regime, when g;N > 1. The
Born Infeld action (12), as always, makes sense only when the curvature of
the brane is small, but the deviations from a straight flat brane could be
large. In this regime we can keep the non-linear terms in (12) while we still
neglect the massive string modes and similar effects. Further gauge theory
calculations for effective actions of D-brane probes include [60, 61, 62].

2.2 The field < operator correspondence

A conformal field theory does not have asymptotic states or an S-matrix,
so the natural objects to consider are operators. For example, in NV =
4 super-Yang-Mills we have a deformation by a marginal operator which
changes the value of the coupling constant. Changing the coupling constant
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in the field theory is related by (8) to changing the coupling constant in the
string theory, which is then related to the expectation value of the dilaton.
The expectation value of the dilaton is set by the boundary condition for
the dilaton at infinity. So, changing the gauge theory coupling constant
corresponds to changing the boundary value of the dilaton. More precisely,
let us denote by O the corresponding operator. We can consider adding
the term [ d*z¢o(Z)O(ZF) to the Lagrangian (for simplicity we assume that
such a term was not present in the original Lagrangian, otherwise we consider
¢0(Z) to be the total coefficient of O(Z) in the Lagrangian). According to the
discussion above, it is natural to assume that this will change the boundary
condition of the dilaton at the boundary of AdS to ¢(Z, z)|,—0 = ¢o(Z), in
the coordinate system

—dt* + dz? + -+ - + dz3 + dz2?

2 _ p2
ds _RAdS 22

More precisely, as argued in [23, 24], it is natural to propose that

<ef d4$¢0(5)0(‘z)>cpT = Zstring [¢(f’ 2:)

= @750(5)]’ (13)
z=0

where the left-hand side is the generating function of correlation functions
in the field theory, i.e. ¢p is an arbitrary function and we can calculate
correlation functions of O by taking functional derivatives with respect to
¢o and then setting ¢y = 0. The right-hand side is the full partition function
of string theory with the boundary condition that the field ¢ has the value
¢o on the boundary of AdS. Notice that ¢ is a function of the four variables
parametrizing the boundary of AdSs.

A formula like (13) is valid in general, for any field ¢. Therefore, each
field propagating on AdS space is in a one to one correspondence with an
operator in the field theory. There is a relation between the mass of the field
¢ and the scaling dimension of the operator in the conformal field theory. Let
us describe this more generally in AdS;.1. The wave equation in Euclidean
space for a field of mass m has two independent solutions, which behave like
2472 and 22 for small z (close to the boundary of AdS), where

2
A:g+\/dz+R2m2. (14)

Therefore, in order to get consistent behavior for a massive field, the bound-
ary condition on the field in the right-hand side of (13) should in general be
changed to

BT, €) = et Po(2), (15)
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and eventually we would take the limit where e — 0. Since ¢ is dimensionless,
we see that ¢y has dimensions of [length]*~¢ which implies, through the left-
hand side of (13), that the associated operator O has dimension A (14). A
more detailed derivation of this relation will be given in section 4, where we
will verify that the two-point correlation function of the operator O behaves
as that of an operator of dimension A [23, 24]. A similar relation between
fields on AdS and operators in the field theory exists also for non-scalar
fields, including fermions and tensors on AdS space.

Correlation functions in the gauge theory can be computed from (13)
by differentiating with respect to ¢9. Each differentiation brings down an
insertion O, which sends a ¢ particle (a closed string state) into the bulk.
Feynman diagrams can be used to compute the interactions of particles in
the bulk. In the limit where classical supergravity is applicable, the only
diagrams that contribute are the tree-level diagrams of the gravity theory
(see for instance figure 1).

Figure 1: Correlation functions can be calculated (in the large g, limit) in terms
of supergravity Feynman diagrams. Here we see the leading contribution coming from
a disconnected diagram plus connected pieces involving interactions of the supergravity
fields in the bulk of AdS. At tree level, these diagrams and those related to them by
crossing are the only ones that contribute to the four-point function.

This method of defining the correlation functions of a field theory which
is dual to a gravity theory in the bulk of AdS space is quite general, and
it applies in principle to any theory of gravity [24]. Any local field theory
contains the stress tensor as an operator. Since the correspondence described
above matches the stress-energy tensor with the graviton, this implies that
the AdS theory includes gravity. It should be a well defined quantum theory
of gravity since we should be able to compute loop diagrams. String theory
provides such a theory. But if a new way of defining quantum gravity theories
comes along we could consider those gravity theories in AdS, and they should
correspond to some conformal field theory “on the boundary”. In particular,
we could consider backgrounds of string theory of the form AdSs x M® where
M? is any Einstein manifold [63, 64, 65]. Depending on the choice of M?® we
get different dual conformal field theories. Similarly, this discussion can be
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extended to any AdSg; space, corresponding to a conformal field theory in
d spacetime dimensions (for d > 1).

2.3 Holography

In this section we will describe how the AdS/CFT correspondence gives a
holographic description of physics in AdS spaces.

Let us start by explaining the Bekenstein bound, which states that the
maximum entropy in a region of space is Sy = Area/4Gy [31], where the
area is that of the boundary of the region. Suppose that we had a state with
more entropy than Sy,.., then we show that we could violate the second law
of thermodynamics. We can throw in some extra matter such that we form
a black hole. The entropy should not decrease. But if a black hole forms
inside the region its entropy is just the area of its horizon, which is smaller
than the area of the boundary of the region (which by our assumption is
smaller than the initial entropy). So, the second law has been violated.

Note that this bound implies that the number of degrees of freedom
inside some region grows as the area of the boundary of a region and not
like the volume of the region. In standard quantum field theories this is
certainly not possible. Attempting to understand this behavior leads to the
“holographic principle”, which states that in a quantum gravity theory all
physics within some volume can be described in terms of some theory on the
boundary which has less than one degree of freedom per Planck area [29, 30]
(so that its entropy satisfies the Bekenstein bound).

In the AdS/CFT correspondence we are describing physics in the bulk of
AdS space by a field theory of one less dimension (which can be thought of
as living on the boundary), so it looks like holography. However, it is hard
to check what the number of degrees of freedom per Planck area is, since
the theory, being conformal, has an infinite number of degrees of freedom,
and the area of the boundary of AdS space is also infinite. Thus, in order
to compare things properly we should introduce a cutoff on the number of
degrees of freedom in the field theory and see what it corresponds to in the
gravity theory. For this purpose let us write the metric of AdS as

2
1+ 7‘2 4
2 2 2 2 2 102
S + Q . 1
ds“ =R <1 7"2) dt +(1 T2)2(dr r°dQ°) (16)
In these coordinates the boundary of AdS is at r = 1. We saw above

that when we calculate correlation functions we have to specify boundary
conditions at » = 1 — ¢ and then take the limit of § — 0. It is clear by
studying the action of the conformal group on Poincaré coordinates that the
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radial position plays the role of some energy scale, since we approach the
boundary when we do a conformal transformation that localizes objects in
the CFT. So, the limit 6 — 0 corresponds to going to the UV of the field
theory. When we are close to the boundary we could also use the Poincaré
coordinates

—dt? + di?* + dz2*

2 2
ds* =R 2

: (17)

in which the boundary is at z = 0. If we consider a particle or wave prop-
agating in (17) or (16) we see that its motion is independent of R in the
supergravity approximation. Furthermore, if we are in Euclidean space and
we have a wave that has some spatial extent A\ in the ¥ directions, it will
also have an extent A in the z direction. This can be seen from (17) by
eliminating A through the change of variables x — Az, z — Az. This implies
that a cutoff at

z~0 (18)

corresponds to a UV cutoff in the field theory at distances ¢, with no factors
of R (¢ here is dimensionless, in the field theory it is measured in terms of
the radius of the §* or 2 that the theory lives on). Equation (18) is called
the UV-IR relation [66].

Consider the case of N' = 4 SYM on a three-sphere of radius one. We
can estimate the number of degrees of freedom in the field theory with a UV
cutoff §. We get

S~ N2%§73, (19)

since the number of cells into which we divide the three-sphere is of order
1/6%. In the gravity solution (16) the area in Planck units of the surface at
r=1-4, for § €1,is

Area  VgsR3673
4Gy~ 4Gy

~ N2573, (20)

Thus, we see that the AdS/CFT correspondence saturates the holographic
bound [66].

One could be a little suspicious of the statement that gravity in AdS
is holographic, since it does not seem to be saying much because in AdS
space the volume and the boundary area of a given region scale in the same
fashion as we increase the size of the region. In fact, any field theory
in AdS would be holographic in the sense that the number of degrees of
freedom within some (large enough) volume is proportional to the area (and
also to the volume). What makes this case different is that we have the
additional parameter R, and then we can take AdS spaces of different radii
(corresponding to different values of N in the SYM theory), and then we
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can ask whether the number of degrees of freedom goes like the volume or
the area, since these have a different dependence on R.

One might get confused by the fact that the surface r = 1 — § is really
nine dimensional as opposed to four dimensional. From the form of the full
metric on AdSs x S® we see that as we take 6 — 0 the physical size of four
of the dimensions of this nine dimensional space grow, while the other five,
the S®, remain constant. So, we see that the theory on this nine dimensional
surface becomes effectively four dimensional, since we need to multiply the
metric by a factor that goes to zero as we approach the boundary in order
to define a finite metric for the four dimensional gauge theory.

3 Tests of the AdS/CFT correspondence

In this section we review the direct tests of the AdS/CFT correspondence.
In section 2 we saw how string theory on AdS defines a partition function
which can be used to define a field theory. Here we will review the evidence
showing that this field theory is indeed the same as the conjectured dual
field theory. We will focus here only on tests of the correspondence between
the N =4 SU(N) SYM theory and the type IIB string theory compactified
on AdSs x S°; most of the tests described here can be generalized also to
cases in other dimensions and/or with less supersymmetry, which will be
described below.

As described in section 2, the AdS/CFT correspondence is a strong/weak
coupling duality. In the 't Hooft large N limit, it relates the region of weak
field theory coupling A = ¢g2,,N in the SYM theory to the region of high
curvature (in string units) in the string theory, and vice versa. Thus, a direct
comparison of correlation functions is generally not possible, since (with our
current knowledge) we can only compute most of them perturbatively in A
on the field theory side and perturbatively in 1/+/X on the string theory
side. For example, as described below, we can compute the equation of
state of the SYM theory and also the quark-anti-quark potential both for
small A and for large A, and we obtain different answers, which we do not
know how to compare since we can only compute them perturbatively on
both sides. A similar situation arises also in many field theory dualities that
were analyzed in the last few years (such as the electric/magnetic SL(2,7Z)
duality of the N' =4 SYM theory itself), and it was realized that there are
several properties of these theories which do not depend on the coupling, so
they can be compared to test the duality. These are:

e The global symmetries of the theory, which cannot change as we change
the coupling (except for extreme values of the coupling). As discussed
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in section 2, in the case of the AdS/CFT correspondence we have the
same supergroup SU(2,2|4) (whose bosonic subgroup is SO(4,2) x
SU(4)) as the global symmetry of both theories. Also, both theories
are believed to have a non-perturbative SL(2,Z) duality symmetry
acting on their coupling constant 7. These are the only symmetries of
the theory on R%. Additional Zy symmetries arise when the theories
are compactified on non-simply-connected manifolds, and these were
also successfully matched in [67, 40]'.

e Some correlation functions, which are usually related to anomalies, are
protected from any quantum corrections and do not depend on A. The
matching of these correlation functions will be described in section 3.2
below.

e The spectrum of chiral operators does not change as the coupling
varies, and it will be compared in section 3.1 below.

e The moduli space of the theory also does not depend on the cou-
pling. In the SU(N) field theory the moduli space is R6(N_1)/SN,
parametrized by the eigenvalues of six commuting traceless N x N
matrices. On the AdS side it is not clear exactly how to define the
moduli space. As described in section 2.1, there is a background of
string theory corresponding to any point in the field theory moduli
space, but it is not clear how to see that this is the exact moduli space
on the string theory side (especially since high curvatures arise for
generic points in the moduli space).

e The qualitative behavior of the theory upon deformations by relevant
or marginal operators also does not depend on the coupling (at least
for chiral operators whose dimension does not depend on the coupling,
and in the absence of phase transitions).

There are many more qualitative tests of the correspondence, such
as the existence of confinement for the finite temperature theory [68],
which we will not discuss in this section. We will also not discuss
here tests involving the behavior of the theory on its moduli space
[60, 69, 61].

'Unlike most of the other tests described here, this test actually tests the finite N
duality and not just the large IV limit.
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3.1 The spectrum of chiral primary operators
3.1.1 The field theory spectrum

The N = 4 supersymmetry algebra in d = 4 has four generators Q4 (and
their complex conjugates Qg44), where o is a Weyl-spinor index (in the 2
of the SO(3,1) Lorentz group) and A is an index in the 4 of the SU(4)r
R-symmetry group (lower indices A will be taken to transform in the 4
representation). They obey the algebra

{Q4:Qan} = 2(6")aaPuds, (21)
{Qa:QF} = {Qan, Qpp} = 0,

where o (i = 1,2,3) are the Pauli matrices and (0°)qq = —0aq (We use the
conventions of Wess and Bagger [70]).

N = 4 supersymmetry in four dimensions has a unique multiplet which
does not include spins greater than one, which is the vector multiplet. It
includes a vector field A, (u is a vector index of the SO(3, 1) Lorentz group),
four complex Weyl fermions \,4 (in the 4 of SU(4)g), and six real scalars
¢! (where I is an index in the 6 of SU(4)g). The classical action of the
supersymmetry generators on these fields is schematically given (for on-shell
fields) by

Qa6 ~ Xas,
{Qa, a8} ~ (0" )apFu + eapld’, ¢],
{Qa A5} ~ (0") 45 Dud’,
(@2t Aul ~ (0u)asXie,

(22)

with similar expressions for the action of the Q’s, where ¢#¥ are the gener-
ators of the Lorentz group in the spinor representation, D, is the covariant
derivative, the field strength F,, = [D,,D,], and we have suppressed the
SU(4) Clebsch-Gordan coefficients corresponding to the products 4 x 6 — 4,
4x4—1+15and 4 x4 — 6 in the first three lines of (22).

An N = 4 supersymmetric field theory is uniquely determined by spec-
ifying the gauge group, and its field content is a vector multiplet in the
adjoint of the gauge group. Such a field theory is equivalent to an N' = 2
theory with one hypermultiplet in the adjoint representation, or to an N’ =1
theory with three chiral multiplets ® in the adjoint representation (in the
3y/3 of the SU(3) x U(1)r C SU(4)g which is left unbroken by the choice
of a single N’ = 1 SUSY generator) and a superpotential of the form W oc
€k Tr(@®I®*). The interactions of the theory include a scalar potential
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proportional to 37, ; Tr([¢!, $7]2), such that the moduli space of the theory
is the space of commuting matrices ¢’ (I =1,---,6).

The spectrum of operators in this theory includes all the gauge invariant
quantities that can be formed from the fields described above. In this section
we will focus on local operators which involve fields taken at the same point
in space-time. For the SU(N) theory described above, properties of the
adjoint representation of SU(N) determine that such operators necessarily
involve a product of traces of products of fields (or the sum of such products).
It is natural to divide the operators into single-trace operators and multiple-
trace operators. In the 't Hooft large N limit correlation functions involving
multiple-trace operators are suppressed by powers of N compared to those
of single-trace operators involving the same fields. We will discuss here in
detail only the single-trace operators; the multiple-trace operators appear in
operator product expansions of products of single-trace operators.

It is natural to classify the operators in a conformal theory into pri-
mary operators and their descendants. In a superconformal theory it is also
natural to distinguish between chiral primary operators, which are in short
representations of the superconformal algebra and are annihilated by some
of the supercharges, and non-chiral primary operators. Representations of
the superconformal algebra are formed by starting with some state of lowest
dimension, which is annihilated by the operators S and K, and acting on it
with the operators @ and P,. The N’ = 4 supersymmetry algebra involves 16
real supercharges. A generic primary representation of the superconformal
algebra will thus include 2'¢ primaries of the conformal algebra, generated
by acting on the lowest state with products of different supercharges; acting
with additional supercharges always leads to descendants of the conformal
algebra (i.e. derivatives). Since the supercharges have helicities +1/2, the
primary fields in such representations will have a range of helicities between
A—4 (if the lowest dimension operator 9 has helicity A) and A+4 (acting with
more than 8 supercharges of the same helicity either annihilates the state or
leads to a conformal descendant). In non-generic representations of the su-
perconformal algebra a product of less than 16 different ()’s annihilates the
lowest dimension operator, and the range of helicities appearing is smaller.
In particular, in the small representations of the N' = 4 superconformal al-
gebra only up to 4 @’s of the same helicity acting on the lowest dimension
operator give a non-zero result, and the range of helicities is between A — 2
and A + 2. For the N/ = 4 supersymmetry algebra (not including the con-
formal algebra) it is known that medium representations, whose range of
helicities is 6, can also exist (they arise, for instance, on the moduli space
of the SU(N) N =4 SYM theory [71, 72, 73, 74, 75, 76, 77, 78]); it is not
clear if such medium representations of the superconformal algebra [79] can
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appear in physical theories or not (there are no known examples). More de-
tails on the structure of representations of the N’ = 4 superconformal algebra
may be found in [80, 81, 82, 83, 84, 85, 79] and references therein.

In the U(1) N =4 SYM theory (which is a free theory), the only gauge-
invariant “single trace” operators are the fields of the vector multiplet itself
(which are ¢!, A4, A4 and F,, = 0uAy))- These operators form an ultra-
short representation of the N' = 4 algebra whose range of helicities is from
(—1) to 1 (acting with more than two supercharges of the same helicity on
any of these states gives either zero or derivatives, which are descendants
of the conformal algebra). All other local gauge invariant operators in the
theory involve derivatives or products of these operators. This representation
is usually called the doubleton representation, and it does not appear in the
SU(N) SYM theory (though the representations which do appear can all be
formed by tensor products of the doubleton representation). In the context
of AdS space one can think of this multiplet as living purely on the boundary
of the space [86, 87, 88, 89, 90, 46, 91, 92, 93, 94, 95], as expected for the U(1)
part of the original U(N) gauge group of the D3-branes (see the discussion
in section 2).

There is no known simple systematic way to compute the full spectrum of
chiral primary operators of the N' =4 SU(N) SYM theory, so we will settle
for presenting the known chiral primary operators. The lowest component
of a superconformal-primary multiplet is characterized by the fact that it
cannot be written as a supercharge () acting on any other operator. Looking
at the action of the supersymmetry charges (22) suggests that generally
operators built from the fermions and the gauge fields will be descendants
(given by @ acting on some other fields), so one would expect the lowest
components of the chiral primary representations to be built only from the
scalar fields, and this turns out to be correct.

Let us analyze the behavior of operators of the form Qf1/2In =
Tr(gp'1 g2 - .- ¢I»). First we can ask if this operator can be written as {Q, %}
for any field 9. In the SUSY algebra (22) only commutators of ¢'’s appear
on the right-hand side, so we see that if some of the indices are antisymmetric
the field will be a descendant. Thus, only symmetric combinations of the
indices will be lowest components of primary multiplets. Next, we should
ask if the multiplet built on such an operator is a (short) chiral primary
multiplet or not. There are several different ways to answer this question.
One possibility is to use the relation between the dimension of chiral primary
operators and their R-symmetry representation [96, 97, 98, 99, 100], and to
check if this relation is obeyed in the free field theory, where [O71/2In] = p,
In this way we find that the representation is chiral primary if and only if the
indices form a symmetric traceless product of n 6’s (traceless representations
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are defined as those who give zero when any two indices are contracted). This
is a representation of weight (0,7,0) of SU(4)g; in this section we will refer
to SU(4) g representations either by their dimensions in boldface or by their
weights.

Another way to check this is to see if by acting with Q)’s on these operators
we get the most general possible states or not, namely if the representation
contains “null vectors” or not (it turns out that in all the relevant cases “null
vectors” appear already at the first level by acting with a single @), though
in principle there could be representations where “null vectors” appear only
at higher levels). Using the SUSY algebra (22) it is easy to see that for
symmetric traceless representations we get “null vectors” while for other
representations we do not. For instance, let us analyze in detail the case
n = 2. The symmetric product of two 6’s is given by 6 x 6 — 1 + 20'.
The field in the 1 representation is Tr(¢!¢!), for which [Q4, Tr(¢¢T)] ~
CATBTr(Aqp¢”) where CAIB is a Clebsch-Gordan coefficient for 4 x 6 — 4.
The right-hand side is in the 4 representation, which is the most general
representation that can appear in the product 4 x 1, so we find no null
vectors at this level. On the other hand, if we look at the symmetric traceless
product Tr(¢p¢7}) = Tr(¢?¢7) — %(5”’1‘1‘(¢K¢K) in the 20’ representation,
we find that {Q4, Tr(¢!¢"H)} ~ Tr(Aap¢X) with the right-hand side being
in the 20 representation (appearing in 4 x 6 — 4 + 20), while the left-hand
side could in principle be in the 4 x 20’ — 20 + 60. Since the 60 does
not appear on the right-hand side (it is a “null vector”) we identify that
the representation built on the 20’ is a short representation of the SUSY
algebra. By similar manipulations (see [24, 101, 81, 84] for more details)
one can verify that chiral primary representations correspond exactly to
symmetric traceless products of 6’s.

It is possible to analyze the chiral primary spectrum also by using N’ = 1
subalgebras of the A/ = 4 algebra. If we use an N/ = 1 subalgebra of the
N = 4 algebra, as described above, the operators O, include the chiral
operators of the form Tr(®*1®% ... &™) (in a representation of SU(3) which
is a symmetric product of 3’s), but for a particular choice of the N' = 1
subalgebra not all the operators O,, appear to be chiral (a short multiplet
of the N' = 4 algebra includes both short and long multiplets of the N =1
subalgebra).

The last issue we should discuss is what is the range of values of n. The
product of more than N commuting? N x N matrices can always be written
as a sum of products of traces of less than NV of the matrices, so it does not

2We can limit the discussion to commuting matrices since, as discussed above, commu-
tators always lead to descendants, and we can write any product of matrices as a product
of commuting matrices plus terms with commutators.
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form an independent operator. This means that for n > N we can express
the operator O12/» in terms of other operators, up to operators including
commutators which (as explained above) are descendants of the SUSY alge-
bra. Thus, we find that the short chiral primary representations are built on
the operators O, = OU1l2In} with n = 2,3,--- N, for which the indices
are in the symmetric traceless product of n 6’s (in a U(N) theory we would
find the same spectrum with the additional representation corresponding to
n = 1). The superconformal algebra determines the dimension of these fields
to be [O,] = n, which is the same as their value in the free field theory. We
argued above that these are the only short chiral primary representations in
the SU(N) gauge theory, but we will not attempt to rigorously prove this
here.

The full chiral primary representations are obtained by acting on the
fields O,, by the generators ) and P of the supersymmetry algebra. The
representation built on O, contains a total of 256 x -5n?(n? — 1) primary
states, of which half are bosonic and half are fermionic. Since these multiplets
are built on a field of helicity zero, they will contain primary fields of helicities
between (—2) and 2. The highest dimension primary field in the multiplet
is (generically) of the form Q*Q*0,,, and its dimension is n + 4. There is an
elegant way to write these multiplets as traces of products of “twisted chiral
N = 4 superfields” [101, 81]; see also [102] which checks some components
of these superfields against the couplings to supergravity modes predicted
on the basis of the DBI action for D3-branes in anti-de Sitter space [4].

It is easy to find the form of all the fields in such a multiplet by using the
algebra (22). For example, let us analyze here in detail the bosonic primary
fields of dimension n + 1 in the multiplet. To get a field of dimension n + 1
we need to act on O, with two supercharges (recall that [Q] = 1). If we
act with two supercharges Qﬁ of the same chirality, their Lorentz indices
can be either antisymmetrized or symmetrized. In the first case we get a
Lorentz scalar field in the (2,n — 2,0) representation of SU(4)g, which is of
the schematic form

eaﬁ{Qa, [Qﬂ, On]} ~ GQ’BTT()\aAA,BB¢J1 L. ¢Jn_2)+Tr([¢K1’¢K2]¢L1 . ¢Ln_1)'

(23)
Using an N/ = 1 subalgebra some of these operators may be written as
the lowest components of the chiral superfields Tr(W2®J1 ... ®Jn-2). In the
second case we get an anti-symmetric 2-form of the Lorentz group, in the
(0,n — 1,0) representation of SU(4)r, of the form

{Q1as[Qpy, Onl} ~ Tr((0")apFruv ¢ - - ¢™°71) + Tr(Aaargpd™* - -- ¢Kn(_2)).
24
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Both of these fields are complex, with the complex conjugate fields given by
the action of two Q’s. Acting with one @) and one Q on the state O, gives
a (real) Lorentz-vector field in the (1,n — 2, 1) representation of SU(4)g, of
the form

{Qar [Qa, On]} ~ Tr(AaaX§d™ - ¢772) + (0")aa Tr((Dpug”) 9™ - - ¢71).
(25)
At dimension n + 2 (acting with four supercharges) we find :

e A complex scalar field in the (0, n—2, 0) representation, given by Q*0,,
of the form Tr(Fﬁqull ceeplne2) o

e A real scalar field in the (2,n —4,2) representation, given by Q?Q%0,,
of the form eaﬂedﬂ’l‘r()\aAlAﬂAQS\dBIX?2¢Il ) LI

e A complex vector field in the (1,n — 4,1) representation, given by
Q3Q0,,, of the form Tr(FWD”quqsfl Iy 4

e An complex anti-symmetric 2-form field in the (2,n — 3,0) representa-
tion, given by Q?Q%0,,, of the form Tr(F,,[¢71, ¢72]¢p" - -+ pTn-2) 4. ..

e A symmetric tensor field in the (0,n — 2,0) representation, given by
Q*Q?Op, of the form Tr(Dy,¢' D,y " ¢™ --- pln-2) 4 ...

The spectrum of primary fields at dimension n + 3 is similar to that of
dimension n + 1 (the same fields appear but in smaller SU(4)g represen-
tations), and at dimension n + 4 there is a single primary field, which is a
real scalar in the (0,n — 4,0) representation, given by Q*Q*O,, of the form
Tr(Fg,¢"™ -+« ¢'=+)+- ... Note that fields with more than four F,,’s or more
than eight \’s are always descendants or non-chiral primaries.

For n = 2,3 the short multiplets are even shorter since some of the rep-
resentations appearing above vanish. In particular, for n = 2 the highest-
dimension primaries in the chiral primary multiplet have dimension n+2 = 4.
The n = 2 representation includes the currents of the superconformal alge-
bra. It includes a vector of dimension 3 in the 15 representation which is
the SU(4)g R-symmetry current, and a symmetric tensor field of dimension
4 which is the energy-momentum tensor (the other currents of the super-
conformal algebra are descendants of these). The m = 2 multiplet also
includes a complex scalar field which is an SU(4) g-singlet, whose real part
is the Lagrangian density coupling to ﬁ (of the form Tr(Flf,/) +---) and
whose imaginary part is the Lagrangian density coupling to 6 (of the form
Tr(F A F)). For later use we note that the chiral primary multiplets which
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contain scalars of dimension A < 4 are the n = 2 multiplet (which has a
scalar in the 20" of dimension 2, a complex scalar in the 10 of dimension 3,
and a complex scalar in the 1 of dimension 4), the n = 3 multiplet (which
contains a scalar in the 50 of dimension 3 and a complex scalar in the 45 of
dimension 4), and the n = 4 multiplet which contains a scalar in the 105 of
dimension 4.

3.1.2 The string theory spectrum and the matching

As discussed in section 2.2, fields on AdSj5 are in a one-to-one correspondence
with operators in the dual conformal field theory. Thus, the spectrum of
operators described in section 3.1.1 should agree with the spectrum of fields
of type IIB string theory on AdSs x S°. Fields on AdS naturally lie in the
same multiplets of the conformal group as primary operators; the second
Casimir of these representations is Co = A(A — 4) for a primary scalar field
of dimension A in the field theory, and Cy = m2R? for a field of mass m
on an AdSs space with a radius of curvature R. Single-trace operators in
the field theory may be identified with single-particle states in AdSs, while
multiple-trace operators correspond to multi-particle states.

Unfortunately, it is not known how to compute the full spectrum of type
IIB string theory on AdSs x S°. In fact, the only known states are the states
which arise from the dimensional reduction of the ten-dimensional type IIB
supergravity multiplet. These fields all have helicities between (—2) and 2,
S0 it is clear that they all lie in small multiplets of the superconformal alge-
bra, and we will describe below how they match with the small multiplets
of the field theory described above. String theory on AdSs x S° is expected
to have many additional states, with masses of the order of the string scale
1/1s or of the Planck scale 1/l,. Such states would correspond (using the
mass/dimension relation described above) to operators in the field theory
with dimensions of order A ~ (g;N)/* or A ~ N/ for large N, g,N. Pre-
sumably none of these states are in small multiplets of the superconformal
algebra (at least, this would be the prediction of the AdS/CFT correspon-
dence).

The spectrum of type IIB supergravity compactified on AdS5 x S° was
computed in [103]. The computation involves expanding the ten dimen-
sional fields in appropriate spherical harmonics on S°, plugging them into
the supergravity equations of motion, linearized around the AdS5 x S back-
ground, and diagonalizing the equations to give equations of motion for
free (massless or massive) fields®. For example, the ten dimensional dilaton

3The fields arising from different spherical harmonics are related by a “spectrum gen-
erating algebra”, see [104].



Large N Field Theories and Gravity 31

field 7 may be expanded as 7(z,y) = 352, 7F(x)Y*(y) where z is a coordi-
nate on AdSs, y is a coordinate on S°, and the Y* are the scalar spherical
harmonics on S°. These spherical harmonics are in representations corre-
sponding to symmetric traceless products of 6’s of SU(4)g; they may be
written as Y*(y) ~ yliy’ ... 4Tk where the y’, for I = 1,2,---,6 and with
> 1 (y")? = 1, are coordinates on S°. Thus, we find a field 7%(z) on AdS;
in each such (0, k£, 0) representation of SU(4)g, and the equations of motion
determine the mass of this field to be m? = k(k+4)/R?. A similar expansion
may be performed for all other fields.

If we organize the results of [103] into representations of the superconfor-
mal algebra [80], we find representations of the form described in the previous
section, which are built on a lowest dimension field which is a scalar in the
(0,m,0) representation of SU(4)g for n = 2,3,---,00. The lowest dimension
scalar field in each representation turns out to arise from a linear combina-
tion of spherical harmonic modes of the S® components of the graviton h2
(expanded around the AdSs x S° vacuum) and the 4-form field D gp.q, where
a,b,c,d are indices on S°. The scalar fields of dimension 7+ 1 correspond to
2-form fields By, with indices in the S°. The symmetric tensor fields arise
from the expansion of the AdSs-components of the graviton. The dilaton
fields described above are the complex scalar fields arising with dimension
n + 2 in the multiplet (as described in the previous subsection).

In particular, the n = 2 representation is called the supergraviton rep-
resentation, and it includes the field content of d = 5, NV = 8 gauged super-
gravity. The field/operator correspondence matches this representation to
the representation including the superconformal currents in the field theory.
It includes a massless graviton field, which (as expected) corresponds to the
energy-momentum tensor in the field theory, and massless SU(4)r gauge
fields which correspond to (or couple to) the global SU(4)g currents in the
field theory.

In the naive dimensional reduction of the type 1IB supergravity fields,
the n = 1 doubleton representation, corresponding to a free U(1) vector
multiplet in the dual theory, also appears. However, the modes of this mul-
tiplet are all pure gauge modes in the bulk of AdSs, and they may be set
to zero there. This is one of the reasons why it seems more natural to view
the corresponding gauge theory as an SU(N) gauge theory and not a U(N)
theory. It may be possible (and perhaps even natural) to add the doubleton
representation to the theory (even though it does not include modes which
propagate in the bulk of AdSs5, but instead it is equivalent to a topological
theory in the bulk) to obtain a theory which is dual to the U(N) gauge
theory, but this will not affect most of our discussion in this review so we
will ignore this possibility here.
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Comparing the results described above with the results of section 3.1.1,
we see that we find the same spectrum of chiral primary operators for n =
2,3, -+, N. The supergravity results cannot be trusted for masses above the
order of the string scale (which corresponds to n ~ (g;N)*/*) or the Planck
scale (which corresponds to n ~ N'/4), so the results agree within their range
of validity. The field theory results suggest that the exact spectrum of chiral
representations in type IIB string theory on AdSs x S° actually matches the
naive supergravity spectrum up to a mass scale m? ~ N2/R? ~ N 3/ QMI?
which is much higher than the string scale and the Planck scale, and that
there are no chiral fields above this scale. It is not known how to check this
prediction; tree-level string theory is certainly not enough for this since when
gs = 0 we must take NV = 0o to obtain a finite value of g;N. Thus, with our
current knowledge the matching of chiral primaries of the N’ = 4 SYM theory
with those of string theory on AdSs x S° tests the duality only in the large
N limit. In some generalizations of the AdS/CFT correspondence the string
coupling goes to zero at the boundary even for finite IV, and then classical
string theory should lead to exactly the same spectrum of chiral operators
as the field theory. This happens in particular for the near-horizon limit
of NS5-branes, in which case the exact spectrum was successfully compared
in [105]. In other instances of the AdS/CFT correspondence (such as the
ones discussed in [106, 107, 108]) there exist also additional chiral primary
multiplets with n of order NV, and these have been successfully matched with
wrapped branes on the string theory side.

The fact that there seem to be no non-chiral fields on AdS5 with a mass
below the string scale suggests that for large N and large g;/V, the dimension
of all non-chiral operators in the field theory, such as Tr(¢!$!), grows at least
as (gsN)Y* ~ (g%, N)*/*. The reason for this behavior on the field theory
side is not clear; it is a prediction of the AdS/CFT correspondence.

3.2 Matching of correlation functions and anomalies

The classical N' = 4 theory has a scale invariance symmetry and an SU(4)r
R-symmetry, and (unlike many other theories) these symmetries are exact
also in the full quantum theory. However, when the theory is coupled to
external gravitational or SU(4)r gauge fields, these symmetries are broken
by quantum effects. In field theory this breaking comes from one-loop dia-
grams and does not receive any further corrections; thus it can be computed
also in the strong coupling regime and compared with the results from string
theory on AdS space.

We will begin by discussing the anomaly associated with the SU(4)g
global currents. These currents are chiral since the fermions Ay 4 are in the
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4 representation while the fermions of the opposite chirality )_\aA are in the 4
representation. Thus, if we gauge the SU(4)g global symmetry, we will find
an Adler-Bell-Jackiw anomaly from the triangle diagram of three SU(4)g
currents, which is proportional to the number of charged fermions. In the
SU(N) gauge theory this number is N? — 1. The anomaly can be expressed
either in terms of the 3-point function of the SU(4)r global currents,

a b c _ N? -1 ; ubcTr [’75711(/&"_ /;(/)'YV(/Q_ ﬁ)yp(/é_ /%)]
<Jp($)‘]u(y)‘]p(z)>_ - 3276 id (x—y)4(y—z)4(z—x)4 )
(26)
where do%¢ = 2Tr(T*{T®,T¢}) and we take only the negative parity compo-
nent of the correlator, or in terms of the non-conservation of the SU(4)g
current when the theory is coupled to external SU(4)r gauge fields Fy,,

N2_1~abc;u/pa b e
3842 id® PO FL (27)
How can we see this effect in string theory on AdSs x S° ? One way to
see it is, of course, to use the general prescription of section 4 to compute the
3-point function (26), and indeed one finds [109, 110] the correct answer to
leading order in the large N limit (namely, one recovers the term proportional
to N?2). It is more illuminating, however, to consider directly the meaning
of the anomaly (27) from the point of view of the AdS theory [24]. In the
AdS theory we have gauge fields A, which couple, as explained above, to the
SU(4)r global currents Jj; of the gauge theory, but the anomaly means that
when we turn on non-zero field strengths for these fields the theory should
no longer be gauge invariant. This effect is precisely reproduced by a Chern-
Simons term which exists in the low-energy supergravity theory arising from
the compactification of type IIB supergravity on AdSs x S°, which is of the
form

(D"J7,)" =

iN?
9672
This term is gauge invariant up to total derivatives, which means that if we
take a gauge transformation Aj, — A, + (D, A)? for which A does not vanish

on the boundary of AdSs, the action will change by a boundary term of the
form

/ B(dec07 419, AL, A + - ), (28)
AdSs

iN?
ey d4 HVPUdabCAan F¢ . 29

38472 /6Ad55 e wr=po (29)
From this we can read off the anomaly in (D*J,) since, when we have a
coupling of the form [ d%AgJ;}, the change in the action under a gauge
transformation is given by [ d4:v(D“A)aJ;j =—/ d4:vAa(D“Jﬁ), and we find
exact agreement with (27) for large N.
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The other anomaly in the N' = 4 SYM theory is the conformal (or Weyl)
anomaly (see [111, 112] and references therein), indicating the breakdown of
conformal invariance when the theory is coupled to a curved external metric
(there is a similar breakdown of conformal invariance when the theory is
coupled to external SU(4)r gauge fields, which we will not discuss here).
The conformal anomaly is related to the 2-point and 3-point functions of
the energy-momentum tensor [113, 114, 115, 116]. In four dimensions, the
general form of the conformal anomaly is

(g™ Tyw) = —aEy — clu, (30)
where )
_ 2 2 2
Ey = ]_G?(R;Lupa - 4Ruu +R )’ 31
L= - (R? 2R? 1R2) o
7 T e S TR,
where R, , is the curvature tensor, R,, = Rﬁpu is the Riemann tensor,

and R = R/, is the scalar curvature. A free field computation in the SU(N)
N = 4 SYM theory leads to a = ¢ = (N2 — 1)/4. In supersymmetric
theories the supersymmetry algebra relates g*“T),, to derivatives of the R-
symmetry current, so it is protected from any quantum corrections. Thus,
the same result should be obtained in type IIB string theory on AdSs x
S5, and to leading order in the large N limit it should be obtained from
type IIB supergravity on AdSs x S°. This was indeed found to be true in
[117, 118, 119, 120]*, where the conformal anomaly was shown to arise from
subtleties in the regularization of the (divergent) supergravity action on AdS
space. The result of [117, 118, 119, 120] implies that a computation using
gravity on AdSs5 always gives rise to theories with a = ¢, so generalizations
of the AdS/CFT correspondence which have (for large N) a supergravity
approximation are limited to conformal theories which have a = ¢ in the
large N limit. Of course, if we do not require the string theory to have a
supergravity approximation then there is no such restriction.

For both of the anomalies we described the field theory and string theory
computations agree for the leading terms, which are of order N2. Thus, they
are successful tests of the duality in the large N limit. For other instances
of the AdS/CFT correspondence there are corrections to anomalies at order
1/N ~ gs(a!/R?)?; such corrections were discussed in [122] and successfully
compared in [123, 124, 125]°. It would be interesting to compare other

“A generalization with more varying fields may be found in [121].

5Computing such corrections tests the conjecture that the correspondence holds order
by order in 1/N; however, this is weaker than the statement that the correspondence holds
for finite N, since the 1/N expansion is not expected to converge.
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corrections to the large N result.

4 Correlation functions

A useful statement of the AdS/CFT correspondence is that the partition
function of string theory on AdSs x S5 should coincide with the partition
function of N/ = 4 super-Yang-Mills theory “on the boundary” of AdSs
[23, 24]. The basic idea was explained in section 2.2, but before summarizing
the actual calculations of Green’s functions, it seems worthwhile to motivate
the methodology from a somewhat different perspective.

Throughout this section, we approximate the string theory partition
function by e sUGRA_ where Isygra is the supergravity action evaluated
on AdSs x S5 (or on small deformations of this space). This approximation
amounts to ignoring all the stringy o' corrections that cure the divergences
of supergravity, and also all the loop corrections, which are controlled essen-
tially by the gravitational coupling & ~ gs:'2. On the gauge theory side, as
explained in section 2.2, this approximation amounts to taking both N and
g%y N large, and the basic relation becomes

—I ~ _ _ W
e 'SUGRA ~ Zstring = Zgauge =€ ’ (32)

where W is the generating functional for connected Green’s functions in
the gauge theory. At finite temperature, W = BF where 8 is the inverse
temperature and F' is the free energy of the gauge theory. When we apply
this relation to a Schwarzschild black hole in AdS5, which is thought to be
reflected in the gauge theory by a thermal state at the Hawking temperature
of the black hole, we arrive at the relation Isygra ~ BF. Calculating the
free energy of a black hole from the Euclidean supergravity action has a long
tradition in the supergravity literature [126], so the main claim that is being
made here is that the dual gauge theory provides a description of the state
of the black hole which is physically equivalent to the one in string theory.
We will discuss the finite temperature case further in section 6, and devote
the rest of this section to the partition function of the field theory on R*.
The main technical idea behind the bulk-boundary correspondence is
that the boundary values of string theory fields (in particular, supergrav-
ity fields) act as sources for gauge-invariant operators in the field theory.
From a D-brane perspective, we think of closed string states in the bulk as
sourcing gauge singlet operators on the brane which originate as composite
operators built from open strings. We will write the bulk fields generically as
¢(Z, z) (in the coordinate system (17)), with value ¢o (&) for z = e. The true
boundary of anti-de Sitter space is z = 0, and € # 0 serves as a cutoff which
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will eventually be removed. In the supergravity approximation, we think of
choosing the values ¢ arbitrarily and then extremizing the action Isygra[d]
in the region z > € subject to these boundary conditions. In short, we solve
the equations of motion in the bulk subject to Dirichlet boundary conditions
on the boundary, and evaluate the action on the solution. If there is more
than one solution, then we have more than one saddle point contributing to
the string theory partition function, and we must determine which is most
important. In this section, multiple saddle points will not be a problem. So,
we can write

Wauge[do] = — log <ef d's ¢0<w>0<w>> ~ extremum Isycrald] . (33)

CFT ol._ =do

That is, the generator of connected Green’s functions in the gauge theory,
in the large N, g% ,,N limit, is the on-shell supergravity action.

Note that in (33) we have not attempted to be prescient about inserting
factors of e. Instead our strategy will be to use (33) without modification to
compute two-point functions of @, and then perform a wave-function renor-
malization on either O or ¢ so that the final answer is independent of the
cutoff. This approach should be workable even in a space (with boundary)
which is not asymptotically anti-de Sitter, corresponding to a field theory
which does not have a conformal fixed point in the ultraviolet.

A remark is in order regarding the relation of (33) to the old approach
of extracting Green’s functions from an absorption cross-section [16]. In
absorption calculations one is keeping the whole D3-brane geometry, not
just the near-horizon AdSs x S° throat. The usual treatment is to split
the space into a near region (the throat) and a far region. The incoming
wave from asymptotically flat infinity can be regarded as fixing the value
of a supergravity field at the outer boundary of the near region. As usual,
the supergravity description is valid at large N and large 't Hooft coupling.
At small 't Hooft coupling, there is a different description of the process:
a cluster of D3-branes sits at some location in flat ten-dimensional space,
and the incoming wave impinges upon it. In the low-energy limit, the value
of the supergravity field which the D3-branes feel is the same as the value
in the curved space description at the boundary of the near horizon region.
Equation (33) is just a mathematical expression of the fact that the throat
geometry should respond identically to the perturbed supergravity fields as
the low-energy theory on the D3-branes.

Following [23, 24], a number of papers—notably [127, 128, 109, 129, 110,
130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141]—have undertaken
the program of extracting explicit n-point correlation functions of gauge
singlet operators by developing both sides of (33) in a power series in ¢.
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Because the right-hand side is the extremization of a classical action, the
power series has a graphical representation in terms of tree-level Feynman
graphs for fields in the supergravity. There is one difference: in ordinary
Feynman graphs one assigns the wavefunctions of asymptotic states to the
external legs of the graph, but in the present case the external leg factors
reflect the boundary values ¢y. They are special limits of the usual gravity
propagators in the bulk, and are called bulk-to-boundary propagators. We
will encounter their explicit form in the next two sections.

4.1 Two-point functions

For two-point functions, only the part of the action which is quadratic in
the relevant field perturbation is needed. For massive scalar fields in AdSs,
this has the generic form

S=n [ Ea 5 [509) + fm*]. (34)

where 7 is some normalization which in principle follows from the ten-
dimensional origin of the action. The bulk-to-boundary propagator is a
particular solution of the equation of motion, (0 —m?2)¢ = 0, which has
special asymptotic properties. We will start by considering the momentum
space propagator, which is useful for computing the two-point function and
also in situations where the bulk geometry loses conformal invariance; then,
we will discuss the position space propagator, which has proven more con-
venient for the study of higher point correlators in the conformal case. We
will always work in Euclidean space®. A coordinate system in the bulk of
AdS5 such that

2
ds? = é%—(dﬁ? +dz?) (35)

provides manifest Euclidean symmetry on the directions parametrized by
Z. To avoid divergences associated with the small z region of integration in
(34), we will employ an explicit cutoff, z > e.

A complete set of solutions for the linearized equation of motion,
(@ —m?)¢ = 0, is given by ¢ = ePZZ(pz), where the function Z(u) satisfies
the radial equation

1
mmﬁ%—ﬁ—memmzo. (36)

5The results may be analytically continued to give the correlation functions of the field
theory on Minkowskian R4, which corresponds to the Poincaré coordinates of AdS space.
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There are two independent solutions to (36), namely Z(u) = u?Ix_2(u) and
Z(u) = u2Ka_5(u), where I, and K, are Bessel functions and

A=2++V4+m2R?. (37)

The second solution is selected by the requirement of regularity in the inte-
rior: Ian_o(u) increases exponentially as u — oo and does not lead to a finite
action configuration. Imposing the boundary condition ¢(Z,z) = ¢o(Z) =
e7% at z = ¢, we find the bulk-to-boundary propagator

2 N = Ko7 ) = PEEA 2(07) iz
B(&,2) = Kp(T, 2) = (77K a2 (pe) : (38)

To compute a two-point function of the operator O for which ¢q is a source,
we write

W [¢0 = Aleiﬁ'w + AQei(f-w]

(0PO(9) =

OA10A2
A1=X2=0
= (leading analytic terms in (ep)?)
B T(3—A), . ZTA_ZL (39)
_ . 2A-8 ot T Ay p
ne (2A 4)I‘(A—1)5 (p—i—(j)(Q

+ (higher order terms in (ep)?),
_peasA-4 T(A+D) 1
A (A -2)|Z7—g*2

Several explanatory remarks are in order:

e To establish the second equality in (39) we have used (38), substituted
in (34), performed the integral and expanded in €. The leading analytic
terms give rise to contact terms in position space, and the higher order
terms are unimportant in the limit where we remove the cutoff. Only
the leading nonanalytic term is essential. We have given the expression
for generic real values of A. Expanding around integer A > 2 one
obtains finite expressions involving log ep.

e The Fourier transforms used to obtain the last line are singular, but
they can be defined for generic complex A by analytic continuation
and for positive integer A by expanding around a pole and dropping
divergent terms, in the spirit of differential regularization [142]. The
result is a pure power law dependence on the separation |Z — |, as
required by conformal invariance.
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e We have assumed a coupling [d*z ¢(Z,z = €)O(&) to compute the
Green’s functions. The explicit powers of the cutoff in the final position
space answer can be eliminated by absorbing a factor of ¢2~* into the
definition of . From here on we will take that convention, which
amounts to inserting a factor of ¢*~2 on the right-hand side of (38).
In fact, precise matchings between the normalizations in field theory
and in string theory for all the chiral primary operators have not been
worked out. In part this is due to the difficulty of determining the
coupling of bulk fields to field theory operators (or in stringy terms,
the coupling of closed string states to composite open string operators
on the brane). See [15] for an early approach to this problem. For
the dilaton, the graviton, and their superpartners (including gauge
fields in AdSs), the couplings can be worked out explicitly. In some
of these cases all normalizations have been worked out unambiguously
and checked against field theory predictions (see for example [23, 109,
134]).

e The mass-dimension relation (37) holds even for string states that are
not included in the Kaluza-Klein supergravity reduction: the mass and
the dimension are just different expressions of the second Casimir of
SO(4,2). For instance, excited string states, with m ~ 1/v/a/, are
expected to correspond to operators with dimension A ~ (g3-,,N)/*4.
The remarkable fact is that all the string theory modes with m ~ 1/R
(which is to say, all closed string states which arise from massless ten
dimensional fields) fall in short multiplets of the supergroup SU(2, 2[4).
All other states have a much larger mass. The operators in short multi-
plets have algebraically protected dimensions. The obvious conclusion
is that all operators whose dimensions are not algebraically protected
have large dimension in the strong 't Hooft coupling, large N limit
to which supergravity applies. This is no longer true for theories of
reduced supersymmetry: the supergroup gets smaller, but the Kaluza-
Klein states are roughly as numerous as before, and some of them
escape the short multiplets and live in long multiplets of the smaller
supergroups. They still have a mass on the order of 1/R, and typically
correspond to dimensions which are finite (in the large g%,,N limit)
but irrational.

Correlation functions of non-scalar operators have been widely studied
following [24]; the literature includes [143, 144, 145, 146, 147, 148, 149, 150,
151, 152, 153]. For N' = 4 super-Yang-Mills theory, all correlation functions
of fields in chiral multiplets should follow by application of supersymmetries
once those of the chiral primary fields are known, so in this case it should be
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enough to study the scalars. It is worthwhile to note however that the mass-
dimension formula changes for particles with spin. In fact the definition of
mass has some convention-dependence. Conventions seem fairly uniform in
the literature, and a table of mass-dimension relations in AdS;y; with unit
radius was made in [154] from the various sources cited above (see also [101]):

o scalars: Ay = 1(d+Vd? +4m?),
e spinors: A = 1(d+ 2[m)),
vectors: Ay = S(d £ +/(d —2)Z + dm2),

pforms: A =1(d+\/(d—2p)?+4m?),

first-order (d/2)-forms (d even): A = 3(d + 2|m|),

spin-3/2: A = 1(d + 2|m|),
e massless spin-2: A =d.

In the case of fields with second order lagrangians, we have not attempted
to pick which of AL is the physical dimension. Usually the choice A = A
is clear from the unitarity bound, but in some cases (notably m? = 15/4
in AdSs) there is a genuine ambiguity. In practice this ambiguity is usually
resolved by appealing to some special algebraic property of the relevant fields,
such as transformation under supersymmetry or a global bosonic symmetry.

For brevity we will omit a further discussion of higher spins, and instead
refer the reader to the (extensive) literature.

4.2 Three-point functions

Working with bulk-to-boundary propagators in the momentum representa-
tion is convenient for two-point functions, but for higher point functions
position space is preferred because the full conformal invariance is more
obvious. (However, for non-conformal examples of the bulk-boundary cor-
respondence, the momentum representation seems uniformly more conve-
nient). The boundary behavior of position space bulk-to-boundary propa-
gators is specified in a slightly more subtle way: following [109] we require

KA(Z,2;,9) = 222642 —7) as z—0. (40)

Here ¢ is the point on the boundary where we insert the operator, and (%, z)
is a point in the bulk. The unique regular Ka solving the equation of motion
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and satisfying (40) is

r'(A) z A
(A - 2) E @ g)?) : (41)

—

KA(:E’ Z3 y)

At a fixed cutoff, z = ¢, the bulk-to-boundary propagator Ka(Z,¢€;7) is a
continuous function which approximates e*~2§%(Z — 7) better and better as
e — 0. Thus at any finite €, the Fourier transform of (41) only approx-
imately coincides with (38) (modified by the factor of ¢*~2 as explained
after (39)). This apparently innocuous subtlety turned out to be important
for two-point functions, as discovered in [109]. A correct prescription is to
specify boundary conditions at finite z = ¢, cut off all bulk integrals at that
boundary, and only afterwards take ¢ — 0. That is what we have done
in (39). Calculating two-point functions directly using the position-space
propagators (40), but cutting the bulk integrals off again at e, and finally
taking the same € — 0 answer, one arrives at a different answer. This is not
surprising since the z = € boundary conditions were not used consistently.
The authors of [109] checked that using the cutoff consistently (i.e. with
the momentum space propagators) gave two-point functions (O(Z1)O(Z2))
a normalization such that Ward identities involving the three-point func-
tion (O(Z1)O(Z2)Ju(Z3)), where J, is a conserved current, were obeyed.
Two-point functions are uniquely difficult because of the poor convergence
properties of the integrals over z. The integrals involved in three-point func-
tions are sufficiently benign that one can ignore the issue of how to impose
the cutoff.

If one has a Euclidean bulk action for three scalar fields ¢1, ¢2, and ¢3,
of the form

S = / &z /g lzé(aqsi)? +5mid; + Apidads| (42)

i

and if the ¢; couple to operators in the field theory by interaction terms
[ d*z $;0;, then the calculation of (01 O203) reduces, via (33), to the eval-
uation of the graph shown in figure 2. That is,

(O1(21)O2(F2) O3(%3)) = —A/d% VIKA, (7 71) K, (75 T2) Kay (73 T3)

/\al
- |;Z-'1 _ j;'2|A1+A2—A3|fl — j-'3|A1+A3—A2|;Z"2 _ ;Z-'3|A2+A3—A1 ?
(43)
for some constant a;. The dependence on the Z; is dictated by the conformal
invariance, but the only way to compute a4 is by performing the integral over
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3

Figure 2: The Feynman graph for the three-point function as computed in supergravity.
The legs correspond to factors of Ka,, and the cubic vertex to a factor of A. The position
of the vertex is integrated over AdSs.

z. The result [109] is

T [3(A1+ 85— 8g)| T [3(A1 + A5 — 29)| T [5(Az + A5 — A1)]
214T (A1 — 2)T(A, — 2)[ (A5 — 2) '
T [3(A1+ 00+ 45) 2] .

a; = —

(44)
In principle one could also have couplings of the form ¢ 3¢20¢3. This leads
only to a modification of the constant a;.

The main technical difficulty with three-point functions is that one must
figure out the cubic couplings of supergravity fields. Because of the dif-
ficulties in writing down a covariant action for type IIB supergravity in
ten dimensions (see however [155, 156, 157]), it is most straightforward to
read off these “cubic couplings” from quadratic terms in the equations of
motion. In flat ten-dimensional space these terms can be read off directly
from the original type IIB supergravity papers [158, 159]. For AdSs x S°,
one must instead expand in fluctuations around the background metric and
five-form field strength. The old literature [103] only dealt with the lin-
earized equations of motion; for 3-point functions it is necessary to go to
one higher order of perturbation theory. This was done for a restricted set
of fields in [132]. The fields considered were those dual to operators of the
form Tr¢{/1¢72 ... ¢7¢) in field theory, where the parentheses indicate a sym-
metrized traceless product. These operators are the chiral primaries of the
gauge theory: all other single trace operators of protected dimension descend
from these by commuting with supersymmetry generators. Only the metric
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and the five-form are involved in the dual supergravity fields, and we are
interested only in modes which are scalars in AdSs. The result of [132] is
that the equations of motion for the scalar modes §; dual to

o' =Cj,. 5, Trgtr .. 970 (45)
follow from an action of the form
4N? 5 Ar (wl)2 ~\2 =2
S = Gy /d x\/g{ I R\ R (e

I

(46)
Gnwitwkw
+ Z 17273 3 S1,SI,SI3 ( -

11,1213

Derivative couplings of the form §05035 are expected a priori to enter into
(46), but an appropriate field redefinition eliminates them. The notation
in (45) and (46) requires some explanation. I is an index which runs over
the weight vectors of all possible representations constructed as symmetric
traceless products of the 6 of SU(4)g. These are the representations whose
Young diagrams are B E - 651... J, 18 a basis transformation ma-
trix, chosen so that CJ JZC}L.. 5 = 817, As commented in the previous
section, there is generally a normalization ambiguity on how supergravity
fields couple to operators in the gauge theory. We have taken the coupling
to be [ d*z 570!, and the normalization ambiguity is represented by the “leg
factors” w!. It is the combination s = w!3! rather than &' itself which has
a definite relation to supergravity fields. We refer the reader to [132] for
explicit expressions for A; and the symmetric tensor Gy, r,7,. To get rid of
factors of w!, we introduce operators O = w!O!. One can choose w! so

that a two-point function computation along the lines of section 4.1 leads to

6.[1]2

(O™ (&)0"(0) = S5; -

(47)
With this choice, the three-point function, as calculated using (43), is

(01 (7)) 0" (25) O™ (a3)) =
1 VAN A (CTi el Cls) (48)

N |.’I_;'1 _ £2|A1+A27A3|§;'1 _ 53‘3|A1+A37A2|j‘2 _ .’fg, Ao+Az—A7

where we have defined

I plapls\ _ oI I I3
<C c=c )_CJI...JiKl...KjCJI...JiLl...LkCKl...Kle...Lk . (49)
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Remarkably, (48) is the same result one obtains from free field theory by
Wick contracting all the ¢” fields in the three operators. This suggests that
there is a non-renormalization theorem for this correlation function, but
such a theorem has not yet been proven (see however comments at the end
of section 3.2). It is worth emphasizing that the normalization ambiguity
in the bulk-boundary coupling is circumvented essentially by considering
invariant ratios of three-point functions and two-point functions, into which
the “leg factors” w! do not enter. This is the same strategy as was pursued
in comparing matrix models of quantum gravity to Liouville theory.

4.3 Four-point functions

The calculation of four-point functions is difficult because there are several
graphs which contribute, and some of them inevitably involve bulk-to-bulk
propagators of fields with spin. The computation of four-point functions of
the operators Oy and O¢ dual to the dilaton and the axion was completed
n [160]. See also [128, 133, 135, 136, 161, 162, 139, 137, 163, 5] for earlier
contributions. One of the main technical results, further developed in [164],
is that diagrams involving an internal propagator can be reduced by inte-
gration over one of the bulk vertices to a sum of quartic graphs expressible
in terms of the functions

Dy as030,(Z1, T2, T3, Ta) /d5$fHKA Z, 2 %),

KA(& 29) = (mf

The integration is over the bulk point (#,z). There are two independent
conformally invariant combinations of the Z;:

22 =9 N B

s — 1 35135524 t— T19T34 — L14T23 (51)
= == = =

2 B3, + 7,753 T19T34 + L1433

One can write the connected four-point function as

4
o i . . 6 1 64 72
(O4(21)Oc (F2)Op(3)Oc (£4)) = (§> lmm <% - 1) Daass + 5 xj‘; 3D3355
16 72, 1 46 40 8 »
+ ?ﬁ—Dz%z‘) — 14D 444 — e —5—D3344 — 07, —5Daoas — 350, ——D1144 + 6475, D455
Ii3 8 13 13

(52)



Large N Field Theories and Gravity 45

13

27

Figure 3: A nearly degenerate quartic graph contributing to the four-point function in
the limit |13, |T24| < |F12]-

An interesting limit of (52) is to take two pairs of points close together.
Following [160], let us take the pairs (#1,Z3) and (Z2,%4) close together
while holding #; and #3 a fixed distance apart. Then the existence of an
OPE expansion implies that

(08,(31)08,(@) 0, @) 0, @) = 3 2 TIOn NI gy
24

n,m T3

at least as an asymptotic series, and hopefully even with a finite radius of
convergence for 13 and Zo4. The operators O,, are the ones that appear in
the OPE of O; with O3, and the operators O,, are the ones that appear in the
OPE of Oy with O4. Oy and O¢ are descendants of chiral primaries, and so
have protected dimensions. The product of descendants of chiral fields is not
itself necessarily the descendent of a chiral field: an appropriately normal
ordered product : Oz, : is expected to have an unprotected dimension
of the form 8 + O(1/N?). This is the natural result from the field theory
point of view because there are O(N?) degrees of freedom contributing to
each factor, and the commutation relations between them are non-trivial
only a fraction 1/N2 of the time. From the supergravity point of view, a
composite operator like : O30y : corresponds to a two-particle bulk state,
and the O(1/N?) = O(k?/R®) correction to the mass is interpreted as the
correction to the mass of the two-particle state from gravitational binding
energy. Roughly one is thinking of graviton exchange between the legs of
figure 3 that are nearly coincident.

If (53) is expanded in inverse powers of N, then the O(1/N?) correction to
A, and A,,, shows up to leading order as a term proportional to a logarithm
of some combination of the separations Z;;. Logarithms also appear in the
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expansion of (52) in the |Z13],|T24] < |Z12| limit in which (53) applies: the

leading log in this limit is (512)16 log (flsz”). This is the correct form to
12
be interpreted in terms of the propagation of a two-particle state dual to an

operator whose dimension is slightly different from 8.

5 Wilson loops

In this section we consider Wilson loop operators in the gauge theory. The
Wilson loop operator

W(C) = Tr [P exp (z 7£ A)] (54)

depends on a loop C embedded in four dimensional space, and it involves the
path-ordered integral of the gauge connection along the contour. The trace is
taken over some representation of the gauge group; we will discuss here only
the case of the fundamental representation (see [165] for a discussion of other
representations). From the expectation value of the Wilson loop operator
(W(C)) we can calculate the quark-antiquark potential. For this purpose
we consider a rectangular loop with sides of length 7" and L in Euclidean
space. Then, viewing T as the time direction, it is clear that for large T the
expectation value will behave as e 7¥ where E is the lowest possible energy
of the quark-anti-quark configuration. Thus, we have

(W) ~ e V) (55)

where V(L) is the quark anti-quark potential. For large N and large g2 ,,N,
the AdS/CFT correspondence maps the computation of (W) in the CFT
into a problem of finding a minimum surface in AdS [166, 167].

5.1 Wilson loops and minimum surfaces

In QCD, we expect the Wilson loop to be related to the string running
from the quark to the antiquark. We expect this string to be analogous
to the string in our configuration, which is a superstring which lives in ten
dimensions, and which can stretch between two points on the boundary of
AdS. In order to motivate this prescription let us consider the following
situation. We start with the gauge group U(N + 1), and we break it to
U(N) x U(1) by giving an expectation value to one of the scalars. This
corresponds, as discussed in section 2, to having a D3 brane sitting at some
radial position U in AdS, and at a point on S°. The off-diagonal states,
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transforming in the N of U(N), get a mass proportional to U, m = U/2x.
So, from the point of view of the U(N) gauge theory, we can view these
states as massive quarks, which act as a source for the various U(N) fields.
Since they are charged they will act as a source for the vector fields. In order
to get a non-dynamical source (an “external quark” with no fluctuations of
its own, which will correspond precisely to the Wilson loop operator) we
need to take m — oo, which means U should also go to infinity. Thus, the
string should end on the boundary of AdS space.

These stretched strings will also act as a source for the scalar fields.
The coupling to the scalar fields can be seen qualitatively by viewing the
quarks as strings stretching between the N branes and the single separated
brane. These strings will pull the N branes and will cause a deformation
of the branes, which is described by the scalar fields. A more formal ar-
gument for this coupling is that these states are BPS, and the coupling
to the scalar (Higgs) fields is determined by supersymmetry. Finally, one
can see this coupling explicitly by writing the full U(N + 1) Lagrangian,
putting in the Higgs expectation value and calculating the equation of mo-
tion for the massive fields [166]. The precise definition of the Wilson loop
operator corresponding to the superstring will actually include also the field
theory fermions, which will imply some particular boundary conditions for
the worldsheet fermions at the boundary of AdS. However, this will not
affect the leading order computations we describe here.

So, the final conclusion is that the stretched strings couple to the operator

W(C) = T [P exp ( ]{ (1A, + 9I¢I\/ﬁ)d7)] , (56)

where z#(7) is any parametrization of the loop and 6! (I = 1,---,6) is
a unit vector in R® (the point on S® where the string is sitting). This is
the expression when the signature of R* is Euclidean. In the Minkowski
signature case, the phase factor associated to the trajectory of the quark has
an extra factor “” in front of 67 7.

Generalizing the prescription of section 4 for computing correlation func-
tions, the discussion above implies that in order to compute the expectation
value of the operator (56) in N' = 4 SYM we should consider the string
theory partition function on AdSs x S°, with the condition that we have
a string worldsheet ending on the loop C, as in figure 4 [167, 166]. In the
supergravity regime, when g; N is large, the leading contribution to this par-
tition function will come from the area of the string worldsheet. This area is

"The difference in the factor of ¢ between the Euclidean and the Minkowski cases can
be traced to the analytic continuation of v#2. A detailed derivation of (56) can be found
in [168].
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measured with the AdS metric, and it is generally not the same as the area
enclosed by the loop C in four dimensions.

|

Figure 4: The Wilson loop operator creates a string worldsheet ending on the corre-
sponding loop on the boundary of AdS.

The area as defined above is divergent. The divergence arises from the
fact that the string worldsheet is going all the way to the boundary of AdS.
If we evaluate the area up to some radial distance U = r, we see that for
large r it diverges as 7|C|, where |C| is the length of the loop in the field the-
ory [166, 167]. On the other hand, the perturbative computation in the field
theory shows that (W), for W given by (56), is finite, as it should be since
a divergence in the Wilson loop would have implied a mass renormalization
of the BPS particle. The apparent discrepancy between the divergence of
the area of the minimum surface in AdS and the finiteness of the field the-
ory computation can be reconciled by noting that the appropriate action for
the string worldsheet is not the area itself but its Legendre transform with
respect to the string coordinates corresponding to @/ and the radial coor-
dinate u [168]. This is because these string coordinates obey the Neumann
boundary conditions rather than the Dirichlet conditions. When the loop is
smooth, the Legendre transformation simply subtracts the divergent term
7|C|, leaving the resulting action finite.

As an example let us consider a circular Wilson loop. Take C to be a circle
of radius a on the boundary, and let us work in the Poincaré coordinates. We
could find the surface that minimizes the area by solving the Euler-Lagrange
equations. However, in this case it is easier to use conformal invariance. Note
that there is a conformal transformation in the field theory that maps a line
to a circle. In the case of the line, the minimum area surface is clearly a plane
that intersects the boundary and goes all the way to the horizon (which is
just a point on the boundary in the Euclidean case). Using the conformal
transformation to map the line to a circle we obtain the minimal surface we
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want. It is, using the coordinates (17) for AdSs,
T =+Va?— 2%(¢1 cos O + ea sinb), (57)

where €7, €3 are two orthonormal vectors in four dimensions (which define
the orientation of the circle) and 0 < z < a. We can calculate the area of
this surface in AdS, and we get a contribution to the action

dza a
2%
27ra ~ ond! / / 6 ), (58)

where we have regularized the area by putting a an IR cutoff at z = € in
AdS, which is equivalent to a UV cutoff in the field theory [66]. Subtracting
the divergent term we get

S~

(W) ~e™5 ~ e/ = gVimasN, (59)

This is independent of a as required by conformal invariance.

We could similarly consider a “magnetic” Wilson loop, which is also
called a ’t Hooft loop [169]. This case is related by electric-magnetic duality
to the previous case. Since we identify the electric-magnetic duality with the
SL(2,7) duality of type IIB string theory, we should consider in this case a
D-string worldsheet instead of a fundamental string worldsheet. We get the
same result as in (59) but with g; — 1/gs.

Using (55) it is possible to compute the quark-antiquark potential in the
supergravity approximation [167, 166]. In this case we consider a configura-
tion which is invariant under (Euclidean) time translations. We take both
particles to have the same scalar charge, which means that the two ends
of the string are at the same point in S° (one could consider also the more
general case with a string ending at different points on S [166]). We put the
quark at z = —L/2 and the anti-quark at z = L/2. Here “quark” means an
infinitely massive W-boson connecting the N branes with one brane which
is (infinitely) far away. The classical action for a string worldsheet is

S = / drdo[det (Garn 0. X M5XN), (60)

2mal!

where Gy is the Euclidean AdSs x S® metric. Note that the factors of
o' cancel out in (60), as they should. Since we are interested in a static
configuration we take 7 =%, 0 = z, and then the action becomes

2 ,L/2 2
S = E/ de_ (61)
2 —LJ2 Z
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We need to solve the Euler-Lagrange equations for this action. Since the
action does not depend on x explicitly the solution satisfies

1

——————— = constant. 62
224/(02)? + 1 nean (62)

Defining zp to be the maximum value of z(z), which by symmetry occurs at
z = 0, we find that the solution is®

1 dny
=2 g 63
0 / B (63)

where zj is determined by the condition

I 1 dun? 53/2

o [ Y2 (64)
2 0 1—y4 r'(1/4)
The qualitative form of the solution is shown in figure 5(b). Notice that the
string quickly approaches z = L/2 for small z (close to the boundary),

g—HINZ?’, z—0. (65)
Now we compute the total energy of the configuration. We just plug in the
solution (63) in (61), subtract the infinity as explained above (which can be
interpreted as the energy of two separated massive quarks, as in figure 5(a)),
and we find

am* (293 N)'/?

B=V(I) = -=—£ 5

(66)

We see that the energy goes as 1/L, a fact which is determined by conformal
invariance. Note that the energy is proportional to (g% ulN )1/ 2 as opposed
to g2 ,,N which is the perturbative result. This indicates some screening
of the charges at strong coupling. The above calculation makes sense for
all distances L when g;N is large, independently of the value of gs. Some
subleading corrections coming from quantum fluctuations of the worldsheet
were calculated in [170, 171, 172].

In a similar fashion we could compute the potential between two magnetic
monopoles in terms of a D-string worldsheet, and the result will be the same
as (66) but with gyar — 47/gym. One can also calculate the interaction
between a magnetic monopole and a quark. In this case the fundamental
string (ending on the quark) will attach to the D-string (ending on the

8 All integrals in this section can be calculated in terms of elliptic or Beta functions.
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N 7+
U=
L
N 4+
d
—>
u=0 U
(@ (b)

Figure 5: (a) Initial configuration corresponding to two massive quarks before we turn on
their coupling to the U(N) gauge theory. (b) Configuration after we consider the coupling
to the U(N) gauge theory. This configuration minimizes the action. The quark-antiquark
energy is given by the difference of the total length of the strings in (a) and (b).

monopole), and they will connect to form a (1,1) string which will go into
the horizon. The resulting potential is a complicated function of gy s [173],
but in the limit that gy s is small (but still with g2 ,, N large) we get that the
monopole-quark potential is just 1/4 of the quark-quark potential. This can
be understood from the fact that when g is small the D-string is very rigid
and the fundamental string will end almost perpendicularly on the D-string.
Therefore, the solution for the fundamental string will be half of the solution
we had above, leading to a factor of 1/4 in the potential. Calculations of
Wilson loops in the Higgs phase were done in [174].

Another interesting case one can study analytically is a surface near a
cusp on R%. In this case, the perturbative computation in the gauge theory
shows a logarithmic divergence with a coefficient depending on the angle at
the cusp. The area of the minimum surface also contains a logarithmic diver-
gence depending on the angle [168]. Other aspects of the gravity calculation
of Wilson loops were discussed in [175, 176, 177, 178, 179].

5.2 Other branes ending on the boundary

We could also consider other branes that are ending at the boundary [180].
The simplest example would be a zero-brane (i.e. a particle) of mass m.
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In Euclidean space a zero-brane describes a one dimensional trajectory in
anti-de-Sitter space which ends at two points on the boundary. Therefore,
it is associated with the insertion of two local operators at the two points
where the trajectory ends. In the supergravity approximation the zero-brane
follows a geodesic. Geodesics in the hyperbolic plane (Euclidean AdS) are
semicircles. If we compute the action we get

a adz
S— /d — 9 R/ _ ez 67
m s m Sy s (67)

where we took the distance between the two points at the boundary to be
L = 2qa and regulated the result. We find a logarithmic divergence when
e — 0, proportional to log(e/a). If we subtract the logarithmic divergence
we get a residual dependence on a. Naively we might have thought that (as
in the previous subsection) the answer had to be independent of a due to
conformal invariance. In fact, the dependence on a is very important, since
it leads to a result of the form

1

=S emeRloga ~
a2mRi’

e (68)

which is precisely the result we expect for the two-point function of an op-
erator of dimension A = mR. This is precisely the large mR limit of the
formula (14), so we reproduce in the supergravity limit the 2-point function
described in section 4. In general, this sort of logarithmic divergence arises
when the brane worldvolume is odd dimensional [180], and it implies that
the expectation value of the corresponding operator depends on the overall
scale. In particular one could consider the “Wilson surfaces” that arise in
the six dimensional N' = (2,0) theory. In that case one has to consider a
two-brane, with a three dimensional worldvolume, ending on a two dimen-
sional surface on the boundary of AdS7. Again, one gets a logarithmic term,
which is proportional to the rigid string action of the two dimensional surface
living on the string in the N = (2,0) field theory [181, 180].

One can also compute correlation functions involving more than one Wil-
son loop. To leading order in N this will be just the product of the expec-
tation values of each Wilson loop. On general grounds one expects that
the subleading corrections are given by surfaces that end on more than one
loop. One limiting case is when the surfaces look similar to the zeroth order
surfaces but with additional thin tubes connecting them. These thin tubes
are nothing else than massless particles being exchanged between the two
string worldsheets [165, 181].
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6 Theories at finite temperature

As discussed in section 3, the quantities that can be most successfully com-
pared between gauge theory and string theory are those with some pro-
tection from supersymmetry and/or conformal invariance — for instance,
dimensions of chiral primary operators. Finite temperature breaks both
supersymmetry and conformal invariance, and the insights we gain from ex-
amining the 7" > 0 physics will be of a more qualitative nature. They are no
less interesting for that: we shall see in section 6.1 how the entropy of near-
extremal D3-branes comes out identical to the free field theory prediction
up to a factor of a power of 4/3; then in section 6.2 we explain how a phase
transition studied by Hawking and Page in the context of quantum gravity
is mapped into a confinement-deconfinement transition in the gauge theory.

6.1 Construction

The gravity solution describing the gauge theory at finite temperature can
be obtained by starting from the general black three-brane solution and
taking the decoupling limit of section 2 keeping the energy density above
extremality finite. The resulting metric can be written as

a?

ds®> = R? |u*(—hdt* + dz? + dz3 + dz3) + 2 + d02
(69)
ut
h =1- —2 ) ug = 7TT.
u

It will often be useful to Wick rotate by setting tg = it, and use the rela-
tion between the finite temperature theory and the Euclidean theory with a
compact time direction.

The first computation which indicated that finite-temperature U(N)
Yang-Mills theory might be a good description of the microstates of N co-
incident D3-branes was the calculation of the entropy [182, 183]. On the
supergravity side, the entropy of near-extremal D3-branes is just the usual
Bekenstein-Hawking result, S = A/4Gy, and it is expected to be a reli-
able guide to the entropy of the gauge theory at large N and large g%, N.
There is no problem on the gauge theory side in working at large N, but
large g2 ,,N at finite temperature is difficult indeed. The analysis of [182]
was limited to a free field computation in the field theory, but nevertheless
the two results for the entropy agreed up to a factor of a power of 4/3. In
the canonical ensemble, where temperature and volume are the independent
variables, one identifies the field theory volume with the world-volume of the
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D3-branes, and one sets the field theory temperature equal to the Hawking
temperature in supergravity. The result is

? 2 4
Fsygra = —§N VT, (70

4
Fsyu = §FSUGRA .

The supergravity result is at leading order in I;/R, and it would acquire
corrections suppressed by powers of TR if we had considered the full D3-
brane metric rather than the near-horizon limit, (69). These corrections do
not have an interpretation in the context of CFT because they involve R as
an intrinsic scale. Two equivalent methods to evaluate Fsygra are a) to use
F = FE—TS together with standard expressions for the Bekenstein-Hawking
entropy, the Hawking temperature, and the ADM mass; and b) to consider
the gravitational action of the Euclidean solution, with a periodicity in the
Euclidean time direction (related to the temperature) which eliminates a
conical deficit angle at the horizon.’

The 4/3 factor is a long-standing puzzle into which we still have only
qualitative insight. The gauge theory computation was performed at zero
't Hooft coupling, whereas the supergravity is supposed to be valid at strong
't Hooft coupling, and unlike in the 1+1-dimensional case where the entropy
is essentially fixed by the central charge, there is no non-renormalization
theorem for the coefficient of T# in the free energy. Indeed, it was suggested
in [184] that the leading term in the 1/N expansion of F' has the form

2
F = —f(g}nN) G NV, (71)
where f(g%,,N) is a function which smoothly interpolates between a weak
coupling limit of 1 and a strong coupling limit of 3/4. It was pointed out
early [185] that the quartic potential g2 ,,Tr[¢!, $7]? in the N' = 4 Yang-
Mills action might be expected to freeze out more and more degrees of free-
dom as the coupling was increased, which would suggest that f(g2,,N) is
monotone decreasing. An argument has been given [186], based on the non-
renormalization of the two-point function of the stress tensor, that f(g%,,N)
should remain finite at strong coupling.

9The result of [182], Ssyar = (4/3)'/*Ssvcra, differs superficially from (70), but it
is only because the authors worked in the microcanonical ensemble: rather than identi-
fying the Hawking temperature with the field theory temperature, the ADM mass above
extremality was identified with the field theory energy.
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The leading corrections to the limiting value of f(g2-,,N) at strong and
weak coupling were computed in [184] and [187], respectively. The results
are

3
f(g%MN)zl—ﬁg%MN—i—... for small g2, N,

72)
3 45 ¢(3) (
-t =} ... for 1 2 N.

1 + 39 (g%,MN)3/2 + or large gy,

f (Q%MN ) =
The weak coupling result is a straightforward although somewhat tedious
application of the diagrammatic methods of perturbative finite-temperature
field theory. The constant term is from one loop, and the leading correction
is from two loops. The strong coupling result follows from considering the
leading o corrections to the supergravity action. The relevant one involves a
particular contraction of four powers of the Weyl tensor. It is important now
to work with the Euclidean solution, and one restricts attention further to the
near-horizon limit. The Weyl curvature comes from the non-compact part of
the metric, which is no longer AdSs but rather the AdS-Schwarzschild solu-
tion which we will discuss in more detail in section 6.2. The action including
the o corrections no longer has the Einstein-Hilbert form, and correspond-
ingly the Bekenstein-Hawking prescription no longer agrees with the free
energy computed as SI where I is the Euclidean action. In keeping with the
basic prescription for computing Green’s functions, where a free energy in
field theory is equated (in the appropriate limit) with a supergravity action,
the relation I = SF is regarded as the correct one. (See [188].) It has been
conjectured that the interpolating function f(g2,,N) is not smooth, but ex-
hibits some phase transition at a finite value of the ’t Hooft coupling. We
regard this as an unsettled question. The arguments in [189, 190] seem as
yet incomplete. In particular, they rely on analyticity properties of the per-
turbation expansion which do not seem to be proven for finite temperature
field theories.

6.2 Thermal phase transition

The holographic prescription of [23, 24], applied at large N and g2 ,,N where
loop and stringy corrections are negligible, involves extremizing the super-
gravity action subject to particular asymptotic boundary conditions. We
can think of this as the saddle point approximation to the path integral
over supergravity fields. That path integral is ill-defined because of the
non-renormalizable nature of supergravity. String amplitudes (when we can
calculate them) render on-shell quantities well-defined. Despite the concep-
tual difficulties we can use some simple intuition about path integrals to



56 J. Maldacena

illustrate an important point about the AdS/CFT correspondence: namely,
there can be more than one saddle point in the range of integration, and
when there is we should sum e /sUGrA gver the classical configurations to
obtain the saddle-point approximation to the gauge theory partition func-
tion. Multiple classical configurations are possible because of the general
feature of boundary value problems in differential equations: there can be
multiple solutions to the classical equations satisfying the same asymptotic
boundary conditions. The solution which globally minimizes Isygra is the
one that dominates the path integral.

When there are two or more solutions competing to minimize Isygra,
there can be a phase transition between them. An example of this was stud-
ied in [191] long before the AdS/CFT correspondence, and subsequently
resurrected, generalized, and reinterpreted in [24, 68] as a confinement-
deconfinement transition in the gauge theory. Since the qualitative features
are independent of the dimension, we will restrict our attention to AdSs. It
is worth noting however that if the AdSs geometry is part of a string com-
pactification, it doesn’t matter what the internal manifold is except insofar
as it fixes the cosmological constant, or equivalently the radius R of anti-de
Sitter space.

There is an embedding of the Schwarzschild black hole solution into anti-
de Sitter space which extremizes the action

1 12
I=— 5 = .
167TG5/dx\/§<R+R2> (73)

Explicitly, the metric is

ds® = fdt* + %er +1r?dQ3,
2 (74)

The radial variable r is restricted to r > r1, where r, is the largest root of
f = 0. The Euclidean time is periodically identified, ¢t ~ ¢ + 3, in order to
eliminate the conical singularity at » = r,.. This requires

27I'R2’I"+

=7 75
B 2r2 + R? (75)

Topologically, this space is S% x B2, and the boundary is $2 x S' (which is
the relevant space for the field theory on S with finite temperature). We

will call this space X5. Another space with the same boundary which is
also a local extremum of (73) is given by the metric in (74) with y4 = 0
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and again with periodic time. This space, which we will call X, is not
only metrically distinct from the first (being locally conformally flat), but
also topologically B* x S! rather than S3 x B2. Because the S' factor is
not simply connected, there are two possible spin structures on X;, corre-
sponding to thermal (anti-periodic) or supersymmetric (periodic) boundary
conditions on fermions. In contrast, X, is simply connected and hence ad-
mits a unique spin structure, corresponding to thermal boundary conditions.
For the purpose of computing the twisted partition function, Tr(—1)% e BH.
in a saddle-point approximation, only X; contributes. But, X; and X5 make
separate saddle-point contributions to the usual thermal partition function,
Tre=PH | and the more important one is the one with the smaller Euclidean
action.

Actually, both I(X;) and I(X3) are infinite, so to compute I(Xs)—1I(X1)
a regulation scheme must be adopted. The one used in [68, 184] is to cut
off both X; and X, at a definite coordinate radius r = Ry. For X, the
elimination of the conical deficit angle at the horizon fixes the period of
Euclidean time; but for X;, the period is arbitrary. In order to make the
comparison of I(X;) and I(X5) meaningful, we fix the period of Euclidean
time on X7 so that the proper circumference of the S; at r = Ry is the same
as the proper length on X5 of an orbit of the Killing vector d/0t, also at
r = Ry. In the limit Ry — oo, one finds

mr3 (R? —r?)

I(X2) — I(Xy) = iGs(? ¥ RY) (76)
where again 7 is the largest root of f = 0. The fact that (76) (or more
precisely its AdS, analog) can change its sign was interpreted in [191] as
indicating a phase transition between a black hole in AdS and a thermal gas
of particles in AdS (which is the natural interpretation of the space X1). The
black hole is the thermodynamically favored state when the horizon radius r
exceeds the radius of curvature R of AdS. In the gauge theory we interpret
this transition as a confinement-deconfinement transition. Since the theory
is conformally invariant, the transition temperature must be proportional to
the inverse radius of the space S3 which the field theory lives on. Similar
transitions, and also local thermodynamic instability due to negative specific
heats, have been studied in the context of spinning branes and charged black
holes in [192, 193, 194, 195, 196, 197, 198]. Most of these works are best
understood on the CFT side as explorations of exotic thermal phenomena, in
finite-temperature gauge theories. Connections with Higgsed states in gauge
theory are clearer in [199, 200]. The relevance to confinement is explored in
[197]. See also [201, 202, 203, 204] for other interesting contributions to the
finite temperature literature.
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Deconfinement at high temperature can be characterized by a sponta-
neous breaking of the center of the gauge group. In our case the gauge group
is SU(N) and its center is Zy. The order parameter for the breaking of the
center is the expectation value of the Polyakov (temporal) loop (W (C)).
The boundary of the spaces X1, X, is S x S', and the path C wraps around
the circle. An element of the center g € Zx acts on the Polyakov loop by
(W(C)) — g(W(C)). The expectation value of the Polyakov loop measures
the change of the free energy of the system F(T) induced by the presence
of the external charge ¢, (W(C)) ~ exp (—F,(T)/T). In a confining phase
F,(T) is infinite and therefore (W (C)) = 0. In the deconfined phase Fy(T')
is finite and therefore (W(C)) # 0.

As discussed in section 5, in order to compute (W (C)) we have to evaluate
the partition function of strings with a worldsheet D that is bounded by the
loop C. Consider first the low temperature phase. The relevant space is X3
which, as discussed above, has the topology B* x S'. The contour C wraps
the circle and is not homotopic to zero in X;. Therefore C' is not a boundary
of any D, which immediately implies that (W (C)) = 0. This is the expected
behavior at low temperatures (compared to the inverse radius of the S3),
where the center of the gauge group is not broken.

For the high temperature phase the relevant space is X9, which has the
topology S x B2. The contour C is now a boundary of a string worldsheet
D = B? (times a point in $3). This seems to be in agreement with the
fact that in the high temperature phase (W (C)) # 0 and the center of the
gauge group is broken. It was pointed out in [68] that there is a subtlety
with this argument, since the center should not be broken in finite volume
(53), but only in the infinite volume limit (R®). Indeed, the solution X
is not unique and we can add to it an expectation value for the integral
of the NS-NS 2-form field B on B?, with vanishing field strength. This is
an angular parameter ¢ with period 27, which contributes 77 to the string
worldsheet action. The string theory partition function includes now an
integral over all values of 9, making (W (C)) = 0 on S3. In contrast, on
R® one integrates over the local fluctuations of 1 but not over its vacuum
expectation value. Now (W (C)) # 0 and depends on the value of ¢ € U(1),
which may be understood as the dependence on the center Zy in the large
N limit. Explicit computations of Polyakov loops at finite temperature were
done in [205, 6].

In [68] the Euclidean black hole solution (74) was suggested to be holo-
graphically dual to a theory related to pure QCD in three dimensions. In the
large volume limit the solution corresponds to the N' = 4 gauge theory on
R® x S* with thermal boundary conditions, and when the S! is made small
(corresponding to high temperature 7T') the theory at distances larger than
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1/T effectively reduces to pure Yang-Mills on R®. Some of the non-trivial
successes of this approach to QCD are summarized in [1].
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