

Institut für Theoretische Physik Universität Würzburg and The Abdus Salam International Centre for Theoretical Physics

M.N.Kiselev

Kondo Shuttling

Workshop on Quantum Pumping, Haifa, January 8, 2007

Single orbital level coupled to two leads

$$H = H_{leads} + H_{tun} + H_{dot}$$

$$H_{leads} = \sum_{k,\sigma\alpha=L,R} [\epsilon_k - \mu_\alpha] c^{\dagger}_{k,\sigma\alpha} c_{k,\sigma\alpha}$$

$$H_{tun} = \sum_{k,\sigma\alpha} [V_{\alpha}(t)c_{k,\sigma\alpha}^{\dagger}d_{\sigma} + H.c.]$$

$$H_{dot} = \sum_{\sigma} \varepsilon_0 d_{\sigma}^{\dagger} d_{\sigma} + U(n-N)^2$$

Tunneling width

$$\Gamma_{\alpha}(t) = \pi \rho |V_{\alpha}|^2(t)$$

Single orbital level coupled to two leads

Time-dependent Glazman-Raikh rotation

$$\begin{pmatrix} c_{k\sigma L} \\ c_{k\sigma R} \end{pmatrix} = U_t \begin{pmatrix} c_{k\sigma +} \\ c_{k\sigma -} \end{pmatrix} \qquad U_t = \begin{pmatrix} \cos \theta_t & -\sin \theta_t \\ \sin \theta_t & \cos \theta_t \end{pmatrix}$$
$$\tan \theta_t = \left| \frac{V_R(t)}{V_L(t)} \right| \qquad |V|^2(t) = |V_L|^2(t) + |V_R|^2(t)$$
$$H_{Berry} = \sum_{k,\sigma\gamma=\pm} \left(c_{k,\sigma+}^{\dagger} c_{k,\sigma-}^{\dagger} \right) \left[-iU_t^{-1} \frac{\partial U_t}{\partial t} \right] \begin{pmatrix} c_{k,\sigma+} \\ c_{k,\sigma-} \end{pmatrix}$$
$$a_t = \frac{d\theta_t}{dt} \begin{pmatrix} 0 & i \\ -i & 0 \end{pmatrix}$$
Tomosuke Aono, 200

Adiabatic current and pumped charge per cycle at T=0

$$I_{\sigma} = \frac{e}{2\pi} \left[-\frac{d\theta_{t}}{dt} \sin(2\theta_{t}) \sin(2\delta_{\sigma}(t)) + \frac{d\delta_{\sigma}}{dt} \cos(2\theta_{t}) \right]$$
Scattering phase shifts at the Fermi level in the leads

$$Q_{\sigma} = \oint dt I_{\sigma}(t) = \frac{e}{2\pi} \oint dt (1 - T_{\sigma}) \frac{d\Upsilon_{\sigma}}{dt}$$

$$T_{\sigma} = \sin^{2}(2\theta_{t}) \sin^{2} \delta_{\sigma}(t)$$

$$\Upsilon_{\sigma} = \arctan[\cos^{2}(2\theta_{t}) \tan \delta_{\sigma}(t)]$$

$$Q_{\sigma} = \frac{e}{2\pi} \oint (\cos(2\theta) d\delta_{\sigma} - \sin(2\theta) \sin(2\delta_{\sigma}) d\theta)$$
Adiabaticity $\hbar\Omega \ll \min[\Gamma(t)]$ M.Büttiker et al, 1994

Adiabatic pumping at the Kondo regime

$$\delta_{\sigma}
ightarrow rac{\pi}{2}$$

Nozieres Fermi Liquid regime

$$T_K = \sqrt{(\Gamma_L + \Gamma_R)U/\pi} \exp\left[-\frac{\pi U}{4(\Gamma_L + \Gamma_R)}\right]$$

Pumped charge $Q_c = Q_\uparrow + Q_\downarrow = 0$ Pumped spin

$$Q_s = Q_{\uparrow} - Q_{\downarrow} \neq 0$$

Kondo Pump = Resonance Spin Diode

What if $\Gamma(t)$ is due to a nanomechanics?

Molecular Transistor

Nano-Pendulum

205nm

Au

Si

bias-tee

Vac

v

GND =

H.Park et al, Nature 2000

D.Sheible and R.Blick 2004

 $p < 10^{-3}$ mbar

NanoElectroMechanical Pump = Shuttle

Why do we look for the Kondo effect in nano-devices ?

- The Kondo effect makes it easier for states belonging to the two opposite electrodes to mix
- Reasonably high Kondo temperatures > 1 K
- SETs are highly controllable (by bias, magnetic field etc) devices

Keeping in mind Pumping ... I will speak about Shuttling.

How to make the Kondo effect work in the Nanoelectromechanical devices?

How is the KE influenced by the NEM?

 \cdot the nano-device changes its shape in the process of the tunneling

• the nano-devise is nano-machined by external periodic force

K.Kikoin, MK and M.R.Wegewijs, PRL 2006 MK, K.Kikoin, R.Shekhter and V.Vinokur, PRB 2006

Ferrocene

$Fe(C_5H_5)_2$

Cerocene

 $Ce(C_8H_8)_2$

Ce(COT)₂

COT = C8H8

Ytterbocene

Cp*₂Yb(bipy)

 $Cp^* = C5Me5$, bipy = (NC5H4)2]

Transition metals inside fullerens

Transport through molecular transistors

Q: Whether phonons support or destroy Kondo effect?

A: Usually they destroy it due to the energy transfer and the decoherence effects.

- Q: Can phonons assist a resonance tunneling?
- A: Yes, they can do it through dynamical symmetries.

Phonons + Kondo = "Phondo"

Effective model

$$H_{res} + H_{tun} = \sum_{k\sigma} \epsilon_k c^{\dagger}_{k\sigma} c_{k\sigma} + \hat{w}_Q \sum_{k\mu\sigma} \left(\tilde{d}^{\dagger}_{\mu\sigma} c_{k\sigma} + H.c. \right)$$

TMOC = Transition Metal + Organic Complex (cage)

Singlet Triplet

Assumption: even electron occupation number

Singlet is a ground state

SO(4) symmetry

$$H_{tun} = \hat{w}(Q) \sum_{k} \sum_{\Lambda \gamma \sigma}' [|\Lambda\rangle \langle \gamma | c_{k\sigma} + H.c.]$$

$$\frac{1}{\Lambda S^2} = \hat{I}_{\sigma} S + \hat{I}_{\sigma} S + \hat{I}_{\sigma} B + \hat{I}_{\sigma} B + \hat{I}_{\sigma} D^2$$

$$H_{eff} = H_{res} + \frac{1}{2}\Delta \mathbf{S}^2 + \hat{J}_S \mathbf{S} \cdot \mathbf{s} + \hat{J}_R \mathbf{R} \cdot \mathbf{s} + \frac{M}{2}P^2$$

Local phonon can be emitted or absorbed in a co-tunneling processes The main source of phonon emission/absorption is the tunneling rate Vibration assisted tunneling

$$H_{eff} = H_{res} + \frac{1}{2}\Delta \mathbf{S}^2 + \hat{J}_S \mathbf{S} \cdot \mathbf{s} + \hat{J}_R \mathbf{R} \cdot \mathbf{s} + \frac{\Omega}{2}P^2$$

 $\widehat{J}_S(Q) = J_S + j_S Q^2, \qquad \widehat{J}_R(Q) = J_R + j_R Q$

single phonon

two-phonon

 $j_S \ll j_R$

Phonon assisted processes

Single phonon processes

$$\gamma^{(1)} \sim j_R^2 \int \frac{d\epsilon}{2\pi} \int \frac{d\omega}{2\pi} \tanh\left(\frac{\epsilon}{2T}\right) Im \mathcal{G}^R(\epsilon) Re \bar{G}^R(\omega) Im D^R(\epsilon - \omega) \coth\left(\frac{\epsilon - \omega}{2T}\right)$$
$$\gamma^{(1)} = \gamma^{(2)} \sim \rho j_R^2 \log\left(\frac{D}{max[T, |\Delta - \Omega_0|]}\right)$$

$$\gamma^{(2)} \sim j_R^2 \int \frac{d\epsilon}{2\pi} \int \frac{d\omega}{2\pi} \tanh\left(\frac{\epsilon}{2T}\right) Im \mathcal{G}^R(\epsilon) Re \bar{G}^R(\omega) Im D^R(-\epsilon - \omega) \coth\left(\frac{\epsilon + \omega}{2T}\right)$$

Summation of "parquet" diagrams

$$\gamma_1 \sim j_R^2 \int \frac{d\epsilon}{2\pi} \coth\left(\frac{\epsilon}{2T}\right) \left[Re\left[\frac{\Pi(-\epsilon)}{1 - J_0^T \bar{\Pi}(-\epsilon)}\right]^R Im D^R(\epsilon) + ReD^R(-\epsilon) Im\left[\frac{\Pi_i(\epsilon)}{1 - J_0^T \bar{\Pi}(\epsilon)}\right]^R \right]$$

Single phonon processes

- Single phonon processes assist the Kondo tunneling
- Kondo temperature does not depend on the phonon coupling
- Differential conductance is logarithmically enhanced approaching the Kondo regime

Two-phonon processes

- Two-phonon processes also assist the Kondo tunneling, however
- Kondo temperature **depends** on the phonon coupling
- The two phonon scenario leads to much smaller Kondo temperatures

Differential Conductance

of the Kondo effect

A resonance condition

... narrows a group of the TMOC with "Phondo".

What happens if $T_K < |\Omega_0 - \Delta| \ll \Delta$?

Fine tuning tool is necessary to control the resonance

Magnetic Field Effects

Magnetic field as a fine tuning tool

M.Pustilnik, Y.Avishai, K.Kikoin, PRL 2000

Single-phonon processes in magnetic field

- messayes.
- Single-phonon processes assist the Kondo tunneling, however
- Kondo temperature depends on the phonon coupling
- Magnetic field provides a tool for the fine tuning of the TMOC

NEM-SET with center-of-mass motion = Mobile Kondo Impurity

Molecular Transistor

Nano-Pendulum

H.Park et al, Nature 2000

D.Sheible and R.Blick 2004

Odd-spin Kondo shuttle

Abrikosov-Suhl Resonance

$$G(T) = \frac{3\pi^2}{16} G_U \left\langle \frac{4\Gamma_L(t)\Gamma_R(t)}{(\Gamma_L(t) + \Gamma_R(t))^2} \frac{1}{[\ln(T/T_K(t))]^2} \right\rangle$$

$$T_K(t) = D(t) \exp\left[-\frac{\pi U}{8\Gamma_0 \cosh(2x(t)/\lambda_0)}\right]$$

$$\langle T_K \rangle = T_K^0 \langle \exp\left[\frac{\pi U}{4\Gamma_0} \frac{\sinh^2(x(t)/\lambda_0)}{1+2\sinh^2(x(t)/\lambda_0)}\right] \rangle$$

Time-dependent Kondo temperatures

Singlet shuttling: No Kondo effect

Triplet Kondo Shuttling

Perspectives

- NEM-SET between spin-polarized leads
- NEM spin manipulation
- Rotating pendulum
- Coupled NEM-SET devices (DQD, TQD)

Conclusions

Molecular Transistor

M

- Phonon emission/absorption induces the Kondo tunneling
- Dynamical symmetries allow Kondo effect in excited triplet state
- Decoherence due to vibration does not destroy the Kondo effect

Conclusions

Molecular Transistor

M

- Phonon emission/absorption induces the Kondo tunneling
- Dynamical symmetries allow Kondo effect in excited triplet state
- Decoherence due to vibration does not destroy the Kondo effect

Kondo shuttle

- Kondo shuttling allows the spin manipulation by NEM motion
- Kondo NEM-SET is a Mobile Quantum Impurity
- Dynamical symmetries influence the Kondo shuttling in S/T setups