Institut für Theoretische Physik und Astrophysik

Universität Würzburg

M.N.Kiselev

The Interplay of Spin and Charge Channels in Zero Dimensional Systems

In collaboration with Yuval Gefen, The Weizmann Institute of Science

What is to be discussed:

Zero-dimensional system

charge channel, conductance, susceptibility

MK, Yuval Gefen, PRL 2006 (in press), cond-mat/0504751

Outline

- Universal Hamiltonian
- Zero-Bias Anomaly and Coulomb Blockade
- Mesoscopic Stoner Instability
- Gauge fluctuations and transport properties
- TDoS, dynamic transverse susceptibility
- Key results, conclusions and perspectives

Addressed Questions

• Influence of zero-mode interaction in spin channel on Tunneling DoS and dynamic transverse & longitudinal susceptibilities in the Coulomb valley regime

• Role of transverse gauge fluctuations in the vicinity of the Stoner Instability

Metallic quantum dots: many-electron system

Random Matrix Theory

Wigner-Dyson statistics

Metallic Quantum Dot: Universal Hamiltonian

Metallic grain or small island of electron gas

Quantum Dot

Electron-electron interactions in isolated metallic grains

What is a zero-mode interaction?

Electron-electron interaction

$$H_{\rm int} = \frac{1}{2} \sum_{Q} V(Q) \rho(Q) \rho(-Q) \qquad \vec{Q} = \frac{2\pi}{L} \vec{n}$$

$$V(\mathbf{Q}, \omega_n) = \frac{V_0(\mathbf{Q})}{1 + V_0(\mathbf{Q}) \Pi(\mathbf{Q}, \omega_n)}$$
$$\Pi(\mathbf{Q}, \omega_n) = \nu_0 \frac{D\mathbf{Q}^2}{D\mathbf{Q}^2 + |\omega_n|}$$

Q=0 contribution = zero mode.

No screening!!!

$$H_{\text{int}} = \frac{1}{2}V(0)\left[\hat{n} - N\right]^2 \qquad \qquad V(0) = \frac{e^2}{C}$$

Nazarov (1989) Levitov, Shytov (1996) Kamenev, Gefen (1996) Zero-mode interaction requires a non-perturbative treatment at low temperatures!

Zero-bias anomaly in zero-dimensional systems

Mesoscopic Stoner Instability

Mesoscopic Stoner Instability

S=1/2

S=3/2

Mesoscopic Stoner Instability

NB: For Ising model mesoscopic and thermodynamic instability points coincide!

Spin Exchange. Master Equation (classical) Approach

Y.Alhassid and T.Rupp (2003, 2004)

Zero-mode interaction in the Charge and Spin channels

$$H_{0} = \sum_{\alpha} E_{\alpha} n_{\alpha} \qquad \qquad H_{\text{int}} = \frac{\hat{E}_{c} (\hat{n} - N)^{2} - J(\vec{S})^{2}}{H_{tun}} = \sum_{\mathbf{k},\sigma,\alpha} [V_{\mathbf{k}\alpha} c^{\dagger}_{\mathbf{k},\sigma} d_{\sigma\alpha} + h.c.]$$

Non-perturbative calculation of the electron Green's function

Zero-mode interaction in the Charge channel: U(1) symmetry **Basic ingredients of theory** $H_{\text{int}} = \frac{E_c (n - N)^2}{(n - N)^2} \qquad \mathcal{L} = \sum_{\alpha} \bar{\Psi}_{\alpha} [\partial_{\tau} + \mu] \Psi_{\alpha} - H_0 - H_{int}$ $\exp\left(-\int_{0}^{\beta} d\tau H_{C}\right) = \int D[\phi] \exp\left(-\int_{0}^{\beta} d\tau \left[\frac{\phi^{2}}{4E_{C}} + i\phi \left[\sum_{\alpha} n_{\alpha} - N_{0}\right]\right]\right)$ $W_c^{-1}(\tau)W_c(\tau) \qquad \qquad W_c^{-1}(\tau)W_c(\tau)$ Gauge transformation $\tilde{\Psi}_{\alpha} = W_c(\tau)\Psi_{\alpha}$ Initial condition $W_c(0) = 1$

Necessary to keep anti-periodic BC for Ψ_{α} Boundary condition $W_c(\beta) = 1$ Gauge equation $\partial_{\tau} W_c^{-1} + i\phi(\tau) W_c^{-1} = i W_c^{-1} \phi_0$

Zero-mode interaction in the Charge channel: U(1) symmetry

$$\partial_{\tau} W_c^{-1} + i\phi(\tau) W_c^{-1} = i W_c^{-1} \phi_0$$

Solution

$$W_c(\tau) = \exp\left(i\int_0^\tau \left[\phi(\tau') - \phi_0\right]d\tau'\right) \qquad \beta\phi_0 = \int_0^\beta \phi(\tau)d\tau$$

$$S_C(\tau) = T \sum_{n \neq 0} \frac{2E_c}{\omega_n^2} \left(1 - \cos(\omega_n \tau)\right) = E_c \left(|\tau| - \frac{\tau^2}{\beta}\right)$$

Gauge invariance

Abelian theory results in Gaussian gauge factor

Zero-mode interaction in the Spin channel: SU(2) symmetry

Isotropic exchange
$$H_{\text{int}} = -J(\vec{S})^2 \qquad S^{\gamma} = \frac{1}{2} \sum_{\alpha,\sigma,\sigma'} \Psi_{\alpha\sigma}^{\gamma} \Psi_{\alpha\sigma'}$$
Gauge transformation $\tilde{\Psi} = W_s(\tau) \Psi$ Initial condition $W_s(0) = 1$
Boundary condition $W_s(0) = 1$
 $\partial_{\tau} W_s^{-1} + \vec{\sigma} \vec{\Phi} W_s^{-1} = W_s^{-1} \vec{\sigma} \vec{\Phi}_0$
Formal solution $W_s(\tau) = \left[\mathcal{T} \left\{ \exp\left(\int_0^{\tau} \vec{\Phi} \vec{\sigma} d\tau'\right) \right\} \exp\left(-\tau \vec{\Phi}_0 \vec{\sigma}\right) \right]_{\mu\nu}$
 $\left[\exp\left(-\beta \vec{\Phi}_0 \vec{\sigma}\right) \right]_{\alpha\gamma} = \left[\mathcal{T} \left\{ \exp\left(-\int_0^{\beta} \vec{\Phi}(\tau) \vec{\sigma} d\tau\right) \right\} \right]_{\alpha\gamma}$

Non-Abelian gauge theory

Zero-mode interaction in the Spin channel: SU(2) symmetry

Q: Is it possible to represent all effects of spin interaction as a gauge factor?

A: Yes

$$\tau_{i} \qquad \tau_{f} \qquad \mathcal{G}_{\alpha,\sigma}(\tau) = \mathcal{G}_{\alpha,\sigma}^{[0]}(\tau,\mu)e^{-S_{C}(\tau)}e^{-S_{s}(\tau)}$$

Kiselev, Gefen (2005)

Q: Does the gauge factor depend on the interaction and temperature only?

A: No. It is sensitive to Stoner Instability!

$$S_s = F(J, \Delta, |\tau| - \frac{\tau^2}{\beta})$$

From isotropic to anisotropic spin model

Transverse spin fluctuations in anisotropic spin system

$$\mathcal{G}_{\alpha,\sigma}(\tau) = \mathcal{G}_{\alpha,\sigma}^{[0]}(\tau,\mu) e^{-S_C(\tau)} e^{-S_{\parallel}(\tau)} F_{\perp}(\epsilon,J,\Delta,\tau)$$

Basic inequalities

$$E_c \gg T > \Delta > J > \varepsilon J$$

Strong coupling regime for the charge sector

Metallic regime for QD (winding numbers treatment)

Non-magnetic regime (above Stoner Instability point)

Easy axis anisotropy of spin interaction

Two-parametric expansion

$$A = \frac{\varepsilon}{T} \frac{J}{T} \qquad B = \frac{\varepsilon^2 J^2}{T \left(\Delta - \varepsilon J\right)}$$

$$2JS_z^2 \to \frac{J}{2}(1+2\epsilon) \to 2JS(S+1)$$

Gauge Factor is Gaussian!

Tunneling Density of States

Temperature T/V

Spin channel affects the charge transport

Molenkamp et al (2005)

Spin susceptibilities

$$\chi^{\gamma\gamma'}(\tau_i,\tau_f) = -\langle \bar{\Psi}_{\mu}(\tau_i)\sigma^{\gamma}_{\mu\nu}\Psi_{\nu}(\tau_i)\bar{\Psi}_{\nu}(\tau_f)\sigma^{\gamma'}_{\nu\mu}\Psi_{\mu}(\tau_f)\rangle$$

Longitudinal Susceptibility

$$zz = \frac{\chi_0}{1 - J\chi_0}$$
 Stoner

Instability

Static longitudinal susceptibility diverges at Stoner Instability point

χ

Response Functions

Only Charge channel matters

Open questions and perspectives

- Spin and Charge channels in the Coulomb peak regime
- Spin blockade and anti-blockade
- Spin-orbit interaction. Mechanisms of spin relaxation
- System of coupled grains in the vicinity of Stoner Instability Point
-

Conclusions

• Charge and Spin zero-mode interactions strongly affect an electron transport through metallic grain in Coulomb valley regime

• Transverse Spin fluctuations become important as one approaches the Stoner Instability Point

• Spin fluctuations result in non-monotonic behavior of TDoS and enhance dynamic transverse susceptibility