Institut für Theoretische Physik und Astrophysik

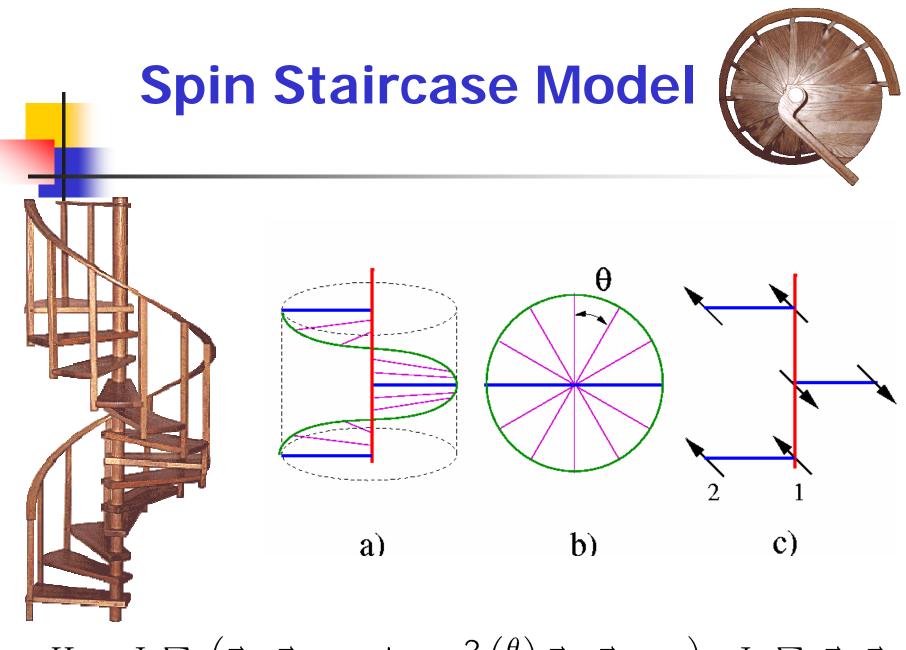
Universität Würzburg

M.N.Kiselev, D.N.Aristov¹ and K.Kikoin²

Spin Gap in a Spiral Staircase Model

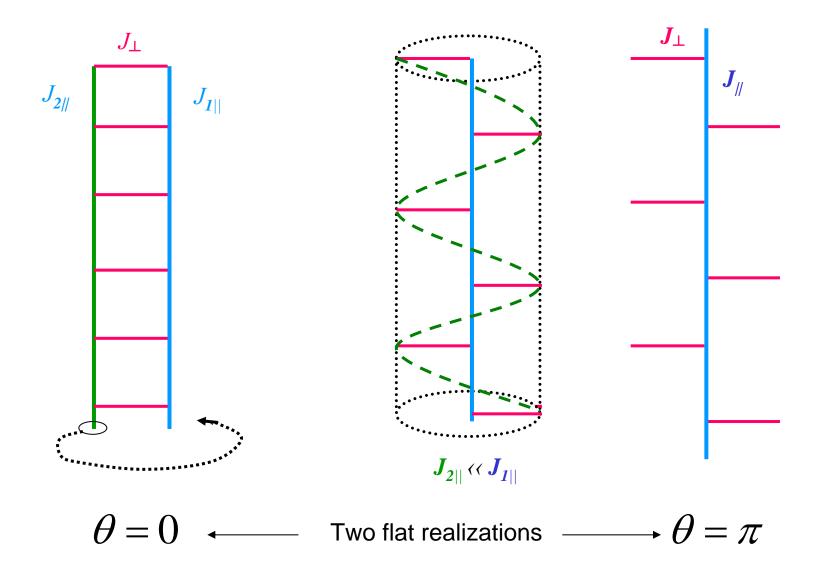
1. Max-Planck Institut für Festkörperforschung, Stuttgart, Germany

2. Ben-Gurion University of the Negev, Beer-Sheva, Israel

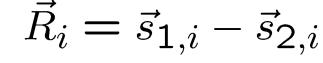


 $H = J_{\parallel} \sum_{i} \left(\vec{s}_{1,i} \vec{s}_{1,i+1} + \cos^2 \left(\frac{\theta}{2} \right) \vec{s}_{2,i} \vec{s}_{2,i+1} \right) - J_{\perp} \sum_{i} \vec{s}_{1i} \vec{s}_{2i}$

FROM LADDER TO BARBED WIRE



Spin Rotator Chain (SRC) Model $\theta = \pi$ $\vec{S}_i = \vec{s}_{1,i} + \vec{s}_{2,i}$ $\vec{R}_i = \vec{s}_{1,i} - \vec{s}_{2,i}$



 $H = J_{\parallel} \sum_{i} \vec{s}_{1,i} \vec{s}_{1,i+1} - J_{\perp} \sum_{i} \vec{s}_{1i} \vec{s}_{2i}$

 $H = \frac{J_{\parallel}}{4} \sum_{i} \left[\vec{S}_{i} \vec{S}_{i+1} + \vec{S}_{i} \vec{R}_{i+1} + (\vec{S} \leftrightarrow \vec{R}) \right] - \frac{J_{\perp}}{4} \sum_{i} \left(\vec{S}_{i}^{2} - \vec{R}_{i}^{2} \right)$

Isotropic and anisotropic Spin Staircases

Isotropic (Heisenberg) model

$$H = \sum_{i} \left[\frac{J_{\parallel}}{4} \left\{ \left(\vec{S}_{i} \vec{S}_{i+1} + \vec{R}_{i} \vec{R}_{i+1} \right) \left(1 + \cos^{2} \left(\frac{\theta}{2} \right) \right) + \sin^{2} \left(\frac{\theta}{2} \right) \left(\vec{S}_{i} \vec{R}_{i+1} + \vec{R}_{i} \vec{S}_{i+1} \right) \right\} - \frac{J_{\perp}}{4} \left(\vec{S}_{i}^{2} - \vec{R}_{i}^{2} \right) \right]$$

XXZ Spin Rotator Chain Model

$$H_{\parallel} = \frac{J_{\parallel}^{x}}{8} \sum_{i} \left[S_{i}^{+} S_{i+1}^{-} + S_{i}^{+} R_{i+1}^{-} + (S \leftrightarrow R) + h.c. \right] + \frac{J_{\parallel}^{z}}{4} \sum_{i} \left[S_{i}^{z} S_{i+1}^{z} + S_{i}^{z} R_{i+1}^{z} + (S^{z} \leftrightarrow R^{z}) \right], H_{\perp}^{i} = \frac{J_{\perp}^{x}}{8} \left((R_{i}^{x})^{2} + (R_{i}^{y})^{2} \right) + \frac{J_{\perp}^{z}}{4} (R_{i}^{z})^{2} - (\vec{R}_{i} \leftrightarrow \vec{S}_{i})$$

SO(4) group

 $[D_{\alpha\beta}D_{\mu\nu}] = (\delta_{\alpha\mu}D_{\beta\nu} - \delta_{\alpha\nu}D_{\beta\mu} - \delta_{\beta\mu}D_{\alpha\nu} + \delta_{\beta\nu}D_{\alpha\mu})$

$$D = -i \begin{pmatrix} 0 & L_3 & -L_2 & M_1 \\ & 0 & L_1 & M_2 \\ & & 0 & M_3 \\ & & & 0 \end{pmatrix}$$

 $[L_j, L_k] = ie_{jkl}L_l, \ [M_j, M_k] = ie_{jkl}L_l, \ [M_j, L_k] = ie_{jkl}M_l.$

o(4) algebra of Spin-Rotator

Permutations

$$\begin{bmatrix} S_j, S_k \end{bmatrix} = i\varepsilon_{jkl}S_l \quad \begin{bmatrix} R_j, R_k \end{bmatrix} = i\varepsilon_{jkl}S_l \quad \begin{bmatrix} S_j, R_k \end{bmatrix} = i\varepsilon_{jkl}R_l$$

Casimir Operators

$$\vec{S} \cdot \vec{R} = 0 \qquad S^2 + R^2 = 3$$

Jordan-Wigner Transformation (isolated rung)

Two-component fermionic field

 $S^+ = a^{\dagger} + e^{i\pi a^{\dagger}a}b^{\dagger}, \ S^- = a + be^{-i\pi a^{\dagger}a}, \ S^z = a^{\dagger}a + b^{\dagger}b - 1$

$$R^+ = a^{\dagger} - e^{i\pi a^{\dagger}a}b^{\dagger}, \ R^- = a - be^{-i\pi a^{\dagger}a}, \ R^z = a^{\dagger}a - b^{\dagger}b$$

Commutation relations

 $[S^+, S^-] = 2S^z, \ \{S^+, S^-\} = 2 + 2(a^{\dagger}b + b^{\dagger}a), \ (S^z)^2 = 1 - (n_a - n_b)^2$ $[R^+, R^-] = 2S^z, \ [R^+, S^-] = 2R^z, \ (R^z)^2 = (n_a - n_b)^2$ $\{R^+, R^-\} = 2 - 2(a^{\dagger}b + b^{\dagger}a), \ \{R^+, S^-\} = -\{R^-, S^+\} = 2(a^{\dagger}b - b^{\dagger}a)$

Jordan-Wigner Transformation

(rotated basis)

$$f_{\uparrow} = (a-b)/\sqrt{2}, \quad f_{\downarrow}^{\dagger} = (a+b)/\sqrt{2}$$

SO(4) generators

$$S_{j}^{+} = \sqrt{2} \left(f_{\uparrow j}^{\dagger} (1 - n_{\downarrow j}) K_{j} + K_{j}^{\dagger} f_{\downarrow j} (1 - n_{\uparrow j}) \right),$$

$$S_{j}^{-} = \left(S_{j}^{+} \right)^{\dagger}, \quad S_{j}^{z} = n_{\uparrow j} - n_{\downarrow j},$$

$$R_{j}^{+} = \sqrt{2} \left(f_{\uparrow j}^{\dagger} n_{\downarrow j} K_{j} + K_{j}^{\dagger} f_{\downarrow j} n_{\uparrow j} \right),$$

$$R_{j}^{-} = \left(R_{j}^{+} \right)^{\dagger}, \quad R_{j}^{z} = f_{\uparrow j}^{\dagger} f_{\downarrow j}^{\dagger} + f_{\downarrow j} f_{\uparrow j},$$

String operator

 $K_j = \exp[i\pi \sum_{k < j,\sigma} n_{\sigma k}] = \prod_{k < j} (1 - 2n_{\uparrow k})(1 - 2n_{\downarrow k})$

Jordan-Wigner Transformation

(Hubbard Operators)

Transverse components

$$S_{j}^{+} = \sqrt{2} \left(X_{j}^{10} K_{j} + K_{j}^{\dagger} X_{j}^{0\overline{1}} \right), \quad S_{j}^{-} = \sqrt{2} \left(X_{j}^{\overline{1}0} K_{j} + K_{j}^{\dagger} X_{j}^{01} \right)$$
$$R_{j}^{+} = \sqrt{2} \left(X_{j}^{2\overline{1}} K_{j} - K_{j}^{\dagger} X_{j}^{12} \right), \quad R_{j}^{-} = -\sqrt{2} \left(X_{j}^{21} K_{j} - K_{j}^{\dagger} X_{j}^{\overline{1}2} \right)$$
$$\text{Longitudinal components}$$

$$S_j^z = X_j^{11} - X_j^{\overline{1}\overline{1}}, \quad R_j^z = X_j^{20} + X_j^{02}$$

String Operator

 $K_j = K_j^{c,d} = \exp\left(i\pi\sum_{k < j} (S_k^z)^2\right) = \exp\left(i\pi\sum_{k < j} \left(X_k^{11} + X_k^{\overline{1}\overline{1}}\right)\right) = \mathcal{K}_j \exp\left(i\pi\sum_{k < j} S_k^z\right)$

Counting degrees of freedom **3** generators, **1** Casimir operator SU(2)2S+1 components S = 1/2Spinless fermions (two component field) $SU(2) \otimes SU(2) = SO(4)$ 6 generators, 2 Casimir operators (1,0)S = 1/24-component field $(n_{\uparrow}, n_{\downarrow})$ two triplet (0,0)(1,1)singlet (0,1)**Projecting out singlet state** $\bar{S}_j^2 = 2[1 - n_{\uparrow j} n_{\downarrow j}]$ Hidden constraint – additional Hubbard interaction

Hidden symmetries

Particle-hole transformation $f_{\uparrow} \rightarrow f_{\uparrow}^{\dagger}$, $f_{\downarrow} \rightarrow f_{\downarrow}^{\dagger}$

$$\overset{\text{means}}{\qquad} S^+ \to R^+, \ S^- \to R^-, \ S^z \to S^z, \ R^z \to R^z$$

Flavor transformation $f_{\uparrow} \rightarrow f_{\downarrow}$

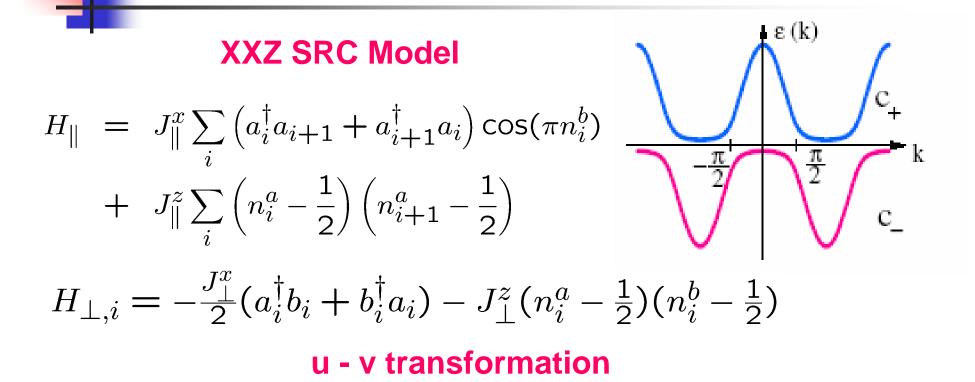
means $S^+ \to R^-, S^- \to R^+, S^z \to -S^z, R^z \to -R^z$

Particle-hole flavor transformation $f_{\uparrow} \rightarrow f_{\downarrow}^{\dagger}$, $f_{\downarrow} \rightarrow f_{\uparrow}^{\dagger}$

means $S^+ \to S^-, R^+ \to R^-, S^z \to -S^z, R^z \to -R^z$

and other discrete rotations...

Effective model



$$u_{\pm}^{2}(p) = \pm \varepsilon_{\pm}(p)/(\varepsilon_{+}(p) - \varepsilon_{-}(p)),$$

$$\varepsilon_{\pm}(p) = J_{\parallel}^{x} \cos p \pm [(J_{\parallel}^{x} \cos p)^{2} + (J_{\perp}^{x})^{2}]^{1/2}$$

Locality vs. Nonlocalality

How to deal with a kinematic factor $\cos(\pi n_b)$?

• Unitary transformation $\tilde{H} = U^{\dagger}HU$

$$U = \exp(i\pi \sum_{l,j>l} n_j^a n_l^b)$$
$$\tilde{H}^x_{\perp,i} = -\frac{1}{2} J^x_{\perp} \left(a_i^{\dagger} b_i e^{-i\pi \sum_{j$$

• g-ology

Kinematic term may be treated as a part of effective interaction.

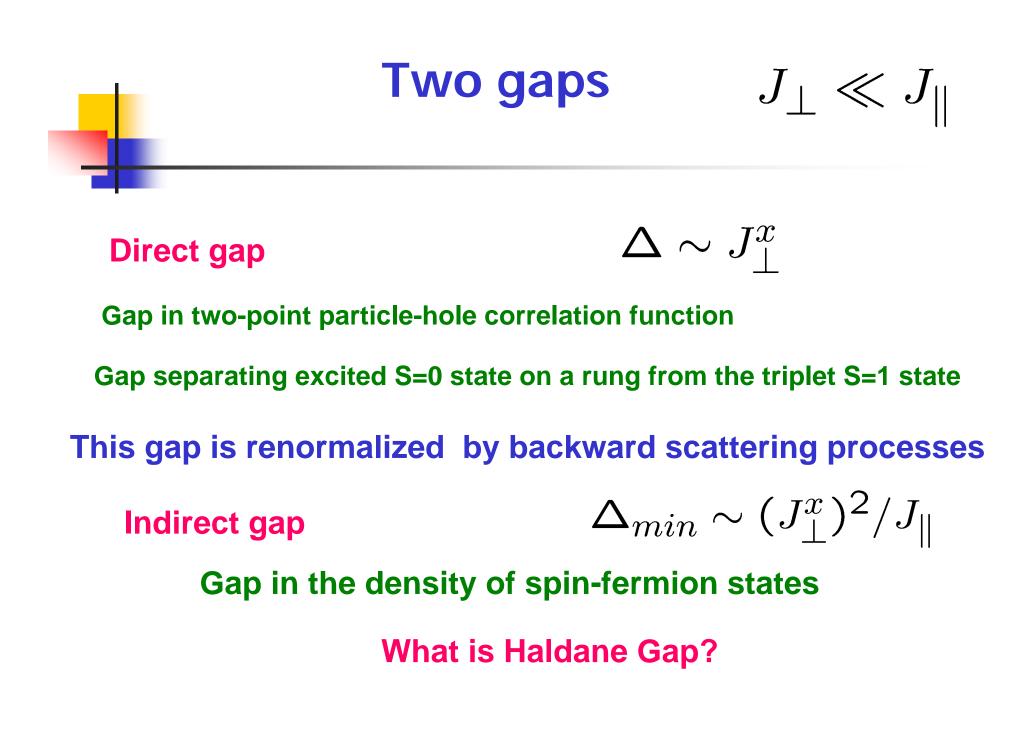
g-ology
$$J_{\perp} \ll J_{\parallel}$$

$$H_0 = \sum_{p,\lambda=\pm} \varepsilon_{\lambda}(p) c_{\lambda,p}^{\dagger} c_{\lambda,p}$$

$$H_{int}^{XY} = \frac{1}{2} \sum_{\{\mu,\nu,\alpha\}=\pm 1,q} g_{\mu\mu'}^{\nu\nu'}(q) \rho_{\mu\mu',\alpha}(q) \Lambda_{\nu\nu',\alpha'}(-q)$$

$$\rho_{\mu\mu',\alpha}(q) = \sum_{k} c^{\dagger}_{\alpha,\mu,k-q/2} c_{\alpha,\mu',k+q/2}$$

$$\Lambda_{\nu\nu',\alpha}(q) = -\alpha \sum_k k \ c^{\dagger}_{\alpha,\nu,k-q/2} c_{\alpha,\nu',k+q/2},$$



Bosonization

Continuum representation

$$s^{\pm}(x) \sim e^{\pm i\theta}(\cos(\pi x) + \cos(2\phi)),$$

 $s^{z}(x) \sim \pi^{-1}\partial_{x}\phi + \cos(\pi x + 2\phi)$

Hamiltonian

$$H = \int dx \left(\frac{\pi u K}{2} \Pi_a^2 + \frac{u}{2\pi K} (\partial_x \phi_a)^2 \right) + J_{\perp}^x \cos(\theta_a - \theta_b) + J_{\perp}^z \cos(2\phi_a) \cos(2\phi_b)$$

Spin Gap scaling $J_{\perp} \ll J_{\parallel}$

 $oldsymbol{J}_{/\!/}$

 $J^x_\perp \neq 0, \quad J^z_\perp = 0$ Easy plane model $\Delta \sim J_{\parallel} (J_{\perp}^x/J_{\parallel})^{2/3}$ $J^x_{\perp} = 0, \quad J^z_{\perp} \neq 0$ Easy axis model $\Delta \sim J_{\parallel} (J_{\perp}^z/J_{\parallel})^{2/3}$ Isotropic model $J_\perp^x = J_\perp^z = J_\perp$ $\Delta \sim J_{\parallel} (J_{\perp}/J_{\parallel})^{2/3}$

Spin Staircase Model with arbitrary twist

Two different Fermi velocities in uncoupled railings Two energy scales (gaps) in staircase model Two stage renormalization in continuum limit

Conclusions

 Spin Staircase Model describes spin systems intermediate between S=1 Spin chains and two-leg ladders

• Spin Gap is intrinsic property of the Spin Staircase Model

 Spin Staircase Model allows a mapping on two-component fermion interacting model, while four-fermion scattering can be treated both by renormalization group and bosonization approaches

• Spin Rotator Chain Model unlike conventional two-leg ladder model shows fractional scaling dependence of the spin gap as a function of the coupling along rung