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SUPPLEMENTAL MATERIALS

This Supplemental Materials contains additional information about the charge current beyond the linear response
theory and connections between the full fledged calculations performed using Kedlysh out-of-equilibrium approach
and the results derived by means of the transport integrals method.

I. ELECTRIC CURRENT BEYOND THE LINEAR RESPONSE

A. Coupling asymmetry

If the quantum impurity is coupled to the leads with arbitrary coupling, the new variables (a and b) entering the
FL Hamiltonian (6) [S1] are defined by Glazman-Raikh rotation [S2–S4] as follows:(
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, (S1)

where tanθ=|tR/tL| is given by the ratio of tunnel lead-dot matrix elements [S4] of the Hamiltonian (3). The
symmetric coupling corresponds to θ=π/4. We introduce the parameter C=cos 2θ=(ΓL−ΓR)/(ΓL+ ΓR) to charac-
terize the asymmetry of the dot-lead coupling; Γα=πνN |tα|2 is intrinsic total local level width associated with the
tunneling from/to the reservoirs (we assume that tunnel matrix elements are the same for all orbitals/flavours).

B. Phase shift

The phase shift expression in the presence of the finite voltage bias e∆V , finite temperature drop across the impurity
∆T is given by the equation [S5]:

δ(ε) = δ0 + α1ε+ α2ε
2 − N − 1

4
φ2 ×A, (S2)

where
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1
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3

2
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]
. (S3)

The FL identities α1 = (N − 1)φ1 and α2 = 1/4(N − 1)φ2 follow from the Kondo floating paradigm [S5–S7]. The
exact relation between α1 and α2 is given by the Bethe-Ansatz solution [S5, S7]:
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Here Γ(x) is the Euler’s gamma-function.

C. Elastic current

The elastic contribution to the charge current is performed by averaging the current with Hα of (6) which is
equivalent to use of the Landauer-Büttiker formula [S8] containing the energy dependent transmission coefficient
T (ε) computed with the scattering phase (S2, S3):

Iel =
Ne

h

∫
dεT (ε)∆f(ε), T (ε) =

(
1− C2

)
sin2[δ(ε)]. (S5)

Computing integrals with Fermi distribution function we obtain the elastic current:

Iel =
Ne

h

(
1− C2

) [
(T0 − sin 2δ0α2A)J0 − sin 2δ0α1J1 + (cos 2δ0α

2
1 + sin 2δ0α2)J2

]
, (S6)

where we use short-hand notations:

J0 = e∆V, J1 =
1

6

[
(πTL)2 − (πTR)2 − 3(e∆V )2C

]
,

J2 =
e∆V

6

[
(πTL)2(1− C) + (πTR)2(1 + C) +

1

2
(e∆V )2(1 + 3C2)

]
. (S7)
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D. Inelastic current

For computing the inelastic contribution to the current we use the general equation for the self-energies

Ση1,η2(t) =

(
φ1

πν2

)2 ∑
k1,k2,k3

Gη1,η2bb (k1, t)G
η2,η1
bb (k2,−t)Gη1,η2bb (k3, t) (S8)

expressed in terms of the fermionic Green’s functions (which replace (12) in [S1]):

G+−
bb (t) = −πν

2

[
TL(1 + C)e−iµLt

sinh(πTLt)
+
TR(1− C)e−iµRt

sinh(πTRt)

]
, (S9)

Gab/ba(t) = −πν
2

sin 2θ

[
TLe

−iµLt

sinh(πTLt)
− TRe

−iµRt

sinh(πTRt)

]
, (S10)

where µL = e∆V
2 (1 − C) and µR = − e∆V2 (1 + C). We also take into account the coefficient sin 2θ in front of the

definition of the total current in Eq. 6 and sin2 2θ in front of the inelastic current in Eq. 11 in [S1].
The inelastic current for symmetrical dot-lead coupling is given by the relation:

δIin =
N(N − 1)eπ

2h
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)2

2 cos 2δ0

(πν
2

)4

× {[L(TL, TR, z)− L(TL, TR, 0)]− [L(TR, TL,−z)− L(TR, TL, 0)]} ,

(S11)
where

L(x, y, z) =

∫ +∞−iγ

−∞−iγ

[
x4 e
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sinh4(πxt)
+ x3y

3 + 2eizt − e−2izt

sinh3(πxt) sinh(πyt)
+

3

2
x2y2 eizt − e−izt

sinh2(πxt) sinh2(πyt)

]
dt, (S12)

Here we denoted z=e∆V and introduced the point splitting parameter γ [S5, S9] to regularize the integrals (S12)
divergent at t=0. The parameter γ is chosen to satisfy the conditions γe∆V� 1, γT� 1 and TK/D�γTK� 1 [S5]

(D is a bandwidth of conduction band, T � TK , TK/D ∝
√

(ΓL + ΓR)/D exp[−c · U/(ΓL + ΓR)], c ∼ 1).
We show on Fig. S1 the thermo-voltage ∆V as a function of two temperatures TL and TR of the left-right leads

for three important cases discussed in the paper: i) m = 1 SU(2); ii) m = 1 SU(4) and iii) m = 2 SU(4). One can
see similarity of the plots i) and iii) describing the broken by potential scattering particle-hole symmetric regimes.
The density plot visualises the non-linearity of the thermo-voltage at low compared to TK temperatures.

II. TRANSPORT INTEGRALS

We illustrate the application of the textbook [S10, S11] method of transport integrals to the thermoelectric
transport through the SU(N) quantum impurity assuming the symmetric dot-leads coupling for simplicity. The
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FIG. S1. (Color online) Density plot showing the thermo-voltage e∆V/TK obtained at the zero-current conditions as a
function of the temperatures of L/R contacts. Left panel: SU(2) PH-symmetric Kondo regime m = 1; central panel: SU(4)
PH-non-symmetric Kondo regime m = 1; right panel: SU(4) PH-symmetric Kondo regime m = 2; for all plots: δP =0.3,
γTK =0.001 and C = 0.
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charge and the heat currents in the linear response theory are connected by equations:(
Icharge
Iheat

)
=

(
L11 L12

L21 L22

)(
∆V
∆T

)
. (S13)

Differential conductance G(T ) and differential thermopower S(T ) are defined as follows:

G(T ) = lim
∆V→0

Icharge
∆V

∣∣∣∣
∆T=0

= L11, (S14)

S(T ) = − lim
∆T→0

∆V

∆T

∣∣∣∣
Icharge=0

= L12/L11. (S15)

The coefficients Lij are expressed in terms of the transport integrals (see e.g.[S11] for details of the derivation):

In(T ) =
1

h

∑
σ

∫
dε · εn

(
−∂f
∂ε

)
· Im [−πνTσ(ε)] . (S16)

Here L11 = e2I0, L12 = −eI1/(2T ) and Tσ is a diagonal part of a single-particle T-matrix defined by the Dyson
equation [S4]:

Gσk(ε) = G0
σk(ε) + G0

σk(ε)Tσ(ε)G0
σk(ε), (S17)

where G0
σk(ε) and Gσk(ε) are bare and full electron Green’s functions.

The full T-matrix consists of the elastic part

T elσ (ε) = − i

2πν

(
1− e2iδσ(ε)

)
, (S18)

and the inelastic part

T inσ (ε) = − i

2πν
(N − 1)e2iδ0φ2

1

[
ε2 + (πT )2

]
. (S19)

Here we used the FL Hamiltonian (6) of [S1] describing the SU(N) Kondo model at the strong coupling fixed point.
We compute the transport integrals by Taylor-expanding the T-matrix

− πνImTσ(ε) = A1 +A2ε+A3ε
2 + .... (S20)

where the coefficients A1, A2 and A3 are defined as follows:

A1 =

[
T0 +

(πT )2(N − 1)

2

(
φ2

1 cos 2δ0 − sin 2δ0
φ2

6

)]
, (S21)

A2 = α1 sin 2δ0, (S22)

A3 =

[
cos 2δ0

(
α2

1 +
(N − 1)φ2

1

2

)
+ sin 2δ0α2

]
. (S23)

The transport integrals for n = 0, 1, 2 are given by equations:

I0 =
N

h

[
A1 +

A3

3
(πT )2

]
, I1 =

NA2

3h
(πT )2, I2 =

N

h

[
A1

3
(πT )2 +

7A3

15
(πT )4

]
. (S24)

The transport coefficients: the electrical conductance G(T ), thermopower S(T ) and thermal conductance Ke(T )
read as:

G = e2I0, S = − 1

eT

I1

I0
, Ke =

1

T

[
I2 −

I2
1

I0

]
. (S25)

The electronic contribution to the thermoelectric figure of merit ZT and the normalized power factor PF are
expressed in terms of thermoelectric properties defined in Eq.(S25) via ZT = S2GT/Ke and PF = S2G/G0.
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[S6] P. Noziéres, J. Low Temp. Phys. 17 (1974).
[S7] C. Mora, Phys. Rev. B 80, 125304 (2009).
[S8] Y. M. Blanter and Y. V. Nazarov, Quantum Transport: Introduction to Nanoscience (Cambridge University Press,

Cambridge, 2009).
[S9] I. Affleck and A. W. W. Ludwig, Phys. Rev. B 48, 7297 (1993).

[S10] V. Zlatic and R. Monnier, Modern Theory of Thermoelectricity (Oxford University Press, 2014).
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