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We discuss the manifestation of dynamical symmetries in quantum transport through nanostructures. The
dynamical symmetry SO(4) manifested in the singlet-triplet excitations is shown to be responsible for
several exotic effects in nano-devices: non-equilibrium Kondo effect in T-shape Double Quantum Dots,
phonon-induced Kondo effect in transition-metal-organic complexes, Kondo shuttling in Nano-Electro-
mechanical Single Electron Transistor. We consider the interplay between charge U(1) and spin SU(2)
fluctuations in the vicinity of Stoner instability point and a non-monotonic behavior of a Tunneling Density
of States in metallic quantum dots. The experiments showing important role of dynamical symmetries in
nanostructures are briefly reviewed.

1 Introduction

The single electron tunneling through the quantum dot is studied in many details during the recent decade.

Quantum dot [1, 2], being a little semiconductor box, can hold a small number of electrons. Quantum dots

are often called artificial atoms since their electronic properties resemble those of real atoms. A voltage

applied to one of the gate electrodes of semiconductor device controls the number of electrons in the dot.

If such number is small (about 10), the properties of the dot are similar to the properties of the atom with

few electrons. If the number of electrons is relatively large (about 100 and more), the statistics of levels in

such artificial atom is determined by the Random Matrix Theory [2]. The system of coupled quantum dots

is similar to an artificial molecule. Fabricating semiconductor devices with different geometries allows to

consider different symmetries associated with the artificial molecule structure. There are many interesting

effects already experimentally observed in quantum dots structures and many theoretical predictions which

still wait for the experimental confirmation.

Among many interesting phenomena behind the unusual transport properties of mesoscopic systems is

the Kondo effect in quantum dots, recently observed experimentally [3]. If the number of electrons trapped

within a dot is odd, the total spin of a dot S is necessarily nonzero and has a minimum value at S = 1/2.

Thus the system resembles a local spin interacting with electron seas associated with metallic reservoirs

(leads). The Kondo effect is a result of exchange interaction of itinerant electrons in leads with the local-

ized spin state in a dot. Being responsible for local spin polarization of the electron gas, the resonance

Kondo scattering becomes significant at low temperatures. The antiferromagnetic exchange interaction be-

tween itinerant electrons and local spins gives rise to possibility of simultaneous change of spin projection

both for electron and spin. As a result, the ”Kondo cloud” is formed out when the temperature goes to

zero. Formation of the ”Kondo cloud” or ”spin cloud” is due to the screening effects, associated with the
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processes when the free electron gas tends to screen the magnetic moments of the localized state. This

phenomenon is responsible for the non-monotonic temperature behavior of the resistivity of metals with

magnetic impurities at low temperatures (e.g. in many heavy fermion (HF) compounds). The inter-metallic

alloys and HF compounds usually contain rare-earth atoms, which makes it difficult to produce the sample

with adjustable parameters. In contrast, the modern nanoscience technologies allow one to produce the

highly controllable systems based on quantum dot devices and possessing many of properties of strongly

correlated electron systems.

Yet another interesting property of quantum dots is associated with the magnetic correlations between

electrons confined in this nano-scale object. The question whether the itinerant ferromagnetism may occur

in finite-size system in a presence of disorder attracts a lot of attention of theorists (see, e.g. [5]) and

experimentalists [6]. The simplest model of ferromagnetism in metallic systems was proposed by Stoner

long time ago [4]. The physical mechanism behind the instability is analogous to the familiar from atomic

physics Hund’s rule. The magnetic ordering in this model takes place when the increase of orbital energy

due to promotion of electrons to higher energy states is smaller than the energy gain due to the exchange

interaction. As soon as this happens, the system becomes unstable with respect to the transition to a

state with the nonzero total magnetization. In contrast to bulk magnetic system where both orbital and

exchange energies are self-averaging quantities, in a small (mesoscopic) systems they are sample specific.

Therefore, one may expect strong mesoscopic fluctuations in a metallic quantum dots in the vicinity of the

Stoner instability point. It is known, that in disordered metals the interaction between electrons in states

which are close in energy is enhanced due to increase return probability and may satisfy the instability

criterion for a weaker bare interaction. However, the question how the properties of isolated quantum dot

as well as transport properties are affected by the disorder remains open.

The main goal of this paper is to demonstrate the relevance of dynamical symmetries [7] on the trans-

port through the nanostructures and review last years progress in the analysis of the interplay between

symmetries and strong correlations at the nanoscale. We elaborate on the role of dynamical symmetries in

a special discipline of condensed matter physics, which enters under the name of correlated impurity prob-

lem. It is concerned with the physics which is exposed when the system is composed of strongly correlated

localized electrons on the one hand and itinerant electrons on the other hand. We will review the role of

dynamical symmetries and its manifestation in quantum dots, semiconducting nano-clusters and molecular

electronic devices. As it turns out, the concept of dynamical symmetries is meaningful also in systems out

of equilibrium, and the case of dynamical symmetries at finite frequencies will also be addressed.

The paper is organized as follows. In the Section 1 discuss how dynamical symmetries affect the

transport through the semiconductor few-electron quantum dots and the molecular transistors. Section 2 is

devoted to a description of magnetic instability in the metallic quantum dots. In conclusions the summary

of discussions will be given and the perspectives of future research will be discussed.

2 Kondo effect and dynamical symmetries

2.1 Double qantum dot

The first example of the manifestation of dynamical symmetries is the non-equilibrium Kondo effect pre-

dicted [8, 10] and observed [11] in nano-structures characterized by the interplay between singlet/triplet

excitations. An example of such system is a double quantum dot (Fig. 1, left panel). As was noticed in

Ref. [12], quantum dots with even N possess the dynamical symmetry SO(4) of spin rotator in the Kondo

tunneling regime, provided the low-energy part of excitation spectrum is formed by a singlet-triplet (ST)

pair, and all other excitations are separated from the ST manifold by a gap noticeably exceeding the tun-

neling rate Γ. A DQD with even N in a side-bound (T-shape) configuration where two wells are coupled

by the tunneling v and only one of them (say, l) is coupled to metallic leads (L, R) is a simplest system

satisfying this condition [12]. Such system was realized experimentally in Ref. [13]. Novel features in-

troduced by the dynamical symmetry in Kondo tunneling are connected with the fact that unlike the case
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of conventional SU(2) symmetry of spin vector S, the SO(4) group possesses two generators S and P.

The latter vector describes transitions between singlet and triplet states of spin manifold (this vector is

an analog of Runge-Lenz vector describing the hidden symmetry of hydrogen atom). As was shown in

Ref. [14], this vector alone is responsible for Kondo tunneling through quantum dot with even N induced

by external magnetic field. The Hamiltonian describing Kondo effect in DQD is given by
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Fig. 1 (Color online) Left panel: Double quantum dot in a side-bound configuration. Central panel: cotunneling

processes in biased DQD responsible for the resonance Kondo tunneling. Right panel: Typical shape of the differential

conductance as the function of source-drain bias eV . The asymmetry of the conductance peak is attributed to finite

repopulation of the triplet state for eV > Δ and also due to additional decoherence mechanisms associated with the

triplet-triplet relaxation [8]. Insert shows the RG equations for the coupling constants defined in (1). The solution of

the RG equation is given by (2).

Hint =
∑
αα′

[(JT
αα′S + JST

αα′P) · sαα′ + JS
αα′NSSnαα′ ] (1)

Here sαα′=
∑

kk′ c†kασ τ̂ ck′α′σ′ , nαα′=
∑

kk′ c†kασ 1̂ck′α′σ, τ̂ , 1̂ are the Pauli matrices and unity matrix

respectively. The constants JT , JST and JS stand for the interaction between the total spin of the dot S,

and the electrons in the leads α = L, R.

We deal with the case, which was not met in the previous studies of non-equilibrium Kondo tunneling.

The ground state of the system is singlet, and the Kondo tunneling in equilibrium is quenched at T ∼ Δ,

where Δ = ET − ES stands for the energy difference between the ground (singlet) and excited (triplet)

states. Thus, the elastic Kondo tunneling arises only provided TK � Δ in accordance with the theory

of two-impurity Kondo effect [12, 15]. However, the energy necessary for spin flip may be donated by

external electric field eV applied to the left lead, and in the opposite limit TK � Δ the elastic channel

emerges at eV ≈ Δ. The processes responsible for resonance Kondo cotunneling at finite bias are shown

in Fig. 1 (central panel).

In conventional spin S = 1/2 quantum dots the Kondo regime out of equilibrium is affected by spin

relaxation and decoherence processes, which emerge at eV � TK (see, e.g., [16–19]). These processes

appear in the same order as Kondo co-tunneling itself, and one should use the non-equilibrium perturbation

theory (e.g., Keldysh technique) to take them into account in a proper way. In our case these effects

are expected to be weaker, because the nonzero spin state is involved in Kondo tunneling only as an

intermediate virtual state arising due to S/T transitions induced by the second term in the Hamiltonian

(1), which contains vector P. The effects of repopulation of triplet state by external bias eV have been

considered in details in [8]. It has been found that for 0 ≤ eV ≤ Δ the repopulation of the triplet

state is exponentially small. For large biases eV > Δ the effects of repopulation of the triplet state lead

to inelastic cotunneling and should be taken into account. These effects [8] result in strong anisotropy

of conductance line-shape (Fig. 1, right panel). The methods implemented for a weak-coupling Kondo

regime in [8] are not applicable for the quantitative and even qualitative description of nonequilibrium



effects (full nonlinearconductance etc) at large biases eV � Δ. The kinetic equation approach based on

Schwinger-Keldysh diagrammatics [9, 10] might be appropriate tool to describe the regime of strong out

of equilibrium in double quantum dots.

Having this in mind, we describe Kondo tunneling through DQD at finite eV ∼ Δ within the quasi-

equilibrium perturbation theory in a weak coupling regime (cf. the quasi-equilibrium approach to descrip-

tion of decoherence rate at large eV in Ref. [17]).

Using a Renormalization Group (RG) technique [8] (see also the insert in the right panel of Fig. 1)

based on semi-fermionic representation of SO(4) group generators [9,10,20] we find the following scaling

dependencies of the exchange integrals:

JT
α,α′ =

JT
0

1 − ρJT
0 ln(D/T )

, JST
α,α′ =

JST
0

1 − ρJT
0 ln(D/T )

, JS
LR = JS

0 − 3
4
ρ(JST

0 )2
ln(D/T )

1 − ρJT
0 ln(D/T )

.

(2)

Here α = L, α′ = L, R and ρ is the density of states at the Fermi level of the contacts characterized by ef-

fective bandwidth D. One should note that the Kondo temperature is determined by triplet-triplet processes

only in spite of the fact that the ground state is singlet. One finds from (2) that TK=Dexp[−1/(ρJT
0 )].

This temperature is noticeably smaller than the ”equilibrium” Kondo temperature TK0, which emerges in

tunneling through triplet channel in the ground state, namely TK ≈ T 2
K0/D. The reason for this differ-

ence is the reduction of usual parquet equations for TK to a simple ladder series. In this respect our case

differs also from conventional Kondo effect at strong bias [17], where the non-equilibrium Kondo temper-

ature T ∗ ≈ T 2
K0/eV arises. In our model the finite bias does not enter TK because of the compensation

eV ≈ Δ in spite of the fact that we take the argument ω = eV in our RG equations [8].

The differential conductance G(eV, T )/G0 ∼ |JST
LR |2 (cf. Ref. [21]) is the universal function of two

parameters T/TK and eV/TK , G0 = e2/πh̄:

G/G0 ∼ ln−2 (max[(eV − Δ), T ]/TK) (3)

The resonance tunneling ”flashes” at eV ∼ Δ and dies away out of this resonance (Fig. 1, right panel). The

decoherence effects for the finite bias processes have been studied in [8]. In [24] the gauge theory unifying

the decoherence processes associated with the fluctuations of the constraint and exchange integrals has

been constructed . It was shown that these processes do not suppress the Kondo effect in the weak coupling

regime and the non-equilibrium peak in differential conductance remains intact.

An interesting question which arises here is whether the non-equilibrium Kondo effect falls into the class

of strong-coupling regime. It has been extensively studied during the last few years (see discussion and

references in [18, 19]). The same question when addressed to systems characterized by hidden dynamical

symmetries allows a simple and straightforward answer: the strong coupling limit is not achievable in this

situation. There is always an energy scale determined by an external bias, decoherence effects associated

with AC or effects related to repopulation of the dot which prevent the system from both one-stage and

two-stage Kondo scenario [22, 23] and suppress the Kondo effect in the ground state.

2.2 Molecular transistor

Another example of manifestation of dynamical symmetries is given by a Transition-Metal Organic Com-

plexes (TMOC) with a transition metal ion secluded in a ligand cage [25,26]. The cage is in tunnel contact

with metallic reservoirs (surface, STM nanotip, or edges of metallic wire in electro-migration or break

junction geometry). The left panel of Fig. 2 illustrates this setup. We consider a TMOC with even electron

number N fixed by charge and energy quantization. Tunneling through single-molecule devices is a com-

plex phenomenon involving vibrational motion and many-particle processes in metallic leads. Vibrational

effects have been observed in the sequential [27–29] and strong tunneling regime [30–32]. Phonon satel-

lites coexist with resonance Kondo co-tunneling [30] in transport through transition-metal (TM) organic

complexes (TMOC). Kondo effect is a direct manifestation of strong correlation effects in tunneling [33].
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Fig. 2 (Color online) Left panel: Electrode tunnel-coupled to a Transition-Metal Organic Complex. Charging of the

complex by a tunnel process deforms the outer part of the ligand cage without strongly affecting the direct coordination-

sphere of the metal ion and thereby the ligand-field splitting. We assume that the extra electron is localized mainly

on the cage. Electrons tunnel onto the ion through the tails of the molecular state centered on the ion, which includes

admixtures of the outer shell electronic states. Therefore the main effect of the charging is the modulation of the tunnel
barrier between the ion-centered states and electrode. Right panel: Typical shape of the differential conductance as

the function of source-drain bias eV . The central peak corresponds to Zero-Bias Anomaly while the two finite bias

peaks are attributed to the non-equilibrium Kondo effect.

The ground state of TMOC is supposed to be a spin singlet, and the energy of the lowest triplet ex-

citation Δ exceeds Kondo temperature TK . The linear conductance is thus suppressed. To investigate

how intramolecular vibrations may induce transport through a Kondo effect, in the first place one should

incorporate a vibronic mode in a generic tunneling Hamiltonian

H = Hmol + Hres + Htun (4)

Here Hmol includes the 3d electron levels in a ligand field of the cage electrons, the molecular orbitals of

these ligands, as well as interactions within the 3d shell and within the cage. One should take into account

the three most relevant charge states including their dependence on the vibrational coordinate of the cage

Q:

Hmol = H
(N)
Q + H

(N+1)
Q + H

(N−1)
Q + Tn (5)

The last term Tn is the kinetic energy of the cage distortion. The eigenstates of H
(N±1)
Q are admixed to

those of H(N) by the tunneling Htun of electrons from the reservoir Hres.

The effective Hamiltonian accounting for dynamical SO(4) symmetry has the form

Heff = Hres +
1
2
ΔS2 + JT S · s + JST P · s + Tn (6)

The electron spin operator is given by the conventional expansion s = 1
2

∑
kk′

∑
σσ′ c†kστσσ′ck′σ′ where

τ is the Pauli vector. The exchange coupling constants JT,ST (Q) describe the Q-dependent resonance

scattering of the electrons in the leads on the S-T SO(4) multiplet. The main source of phonon emis-

sion/absorption in our case is the tunneling rate. Expanding JST (Q) = JST + jP Q in the quantized

displacement operator Q = (b† + b)/
√

2 and assuming that the optical phonon mode is approximated by

single Einstein phonon with frequency Ω we come to phonon assisted exchange Kondo Hamiltonian.

phys. stat. sol. (c) (2007) 5
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We calculate the phonon assisted Kondo-renormalization of the differential conductance dI/dV ∼ |γ|2
[25, 26] using the RG technique developed in [8]:

γ ∼ (jP )2ρ

⎡
⎢⎢⎣

log
(

D

max[T, |Δ − h̄Ω|]
)

1 − JT Aρ log
(

D

max[T, |Δ − h̄Ω|]
)

⎤
⎥⎥⎦ (7)

Here A∼1 is a constant determined by spin algebra, D is the effective width of the electron conduction

band and ρ is the density of states on the Fermi level. The Kondo temperature extracted from this equation

reads TK∼Dexp
(−1/(AρJT )

)
. One concludes from these calculations that the single-phonon processes

are sufficient to compensate the energy of the S/T splitting and induce resonance tunneling through the

TMOC provided the local vibration mode with appropriate frequency satisfying the condition

|h̄Ω − Δ| ∼ TK (8)

exists in the cage. One can expect in this case a significant enhancement of the tunnel conductance already

at T > TK according to the law G/G0 ∼ ln−2(T/TK) [33], where G0 is the conductance at unitarity

limit T → 0. We emphasize that in spite of the fact that the Kondo effect exists in our case only under
phonon assistance (c.f. [34]), the Kondo temperature TK is the same as in the usual Kondo effect. Since

TK is high enough (∼ 10 K) in electro-migrated junction experiments with a TMOC deposited between

contacts [30, 31], the effect predicted in this work seems to be easily observable. The crucial point is the

existence of phonon satisfying condition (15) in a TMOC with the S/T multiplet as a lowest spin excitation.

One should note, however, that even if this condition is not exactly satisfied, one may tune the system by

applying the magnetic field. Then the triplet is split, and only the level ET,−1 = ET − EZ is involved

in the phonon induced Kondo tunneling (EZ is the Zeeman energy). In this case Δ in (15) is substituted

for ΔZ = Δ − EZ , and EZ may be tuned to satisfy the inequality (15). Thus the vibration gives rise to

a magnetic field induced Kondo effect at Zeeman energies which can be much smaller than Δ. The only

difference is that in this case the effective spin of the TMOC is one half instead of one [35].

The differential conductance as a function of the bias eV is shown in Fig. 2 (right panel). The central

peak is suppressed at eV ∼TK due to the decoherence effects associated with the electrical current across

the TMOC. The conductance grows again at eV →Δ, due to non-equilibrium effects occurring when the

resonance tunneling is restored at eV =Δ [8]. One of essential ingredients of our theory is that we use the

dynamical symmetry of the TMOC, which characterizes both the spin algebra of localized spin itself and

transitions between various levels of different spin multiplets [12].

2.3 Kondo shuttle

The Nano-Electromechanical (NEM) devices represent yet another class of nanostructures where the mani-

festations of dynamical symmetries can be seen in the transport experiments [36]. Building on the analogy

with shuttling experiments of [37, 38], we consider the device where an isolated nanomachined island

oscillates between two electrodes (Fig.3, left panel). We, however, are interested in a regime where the

applied voltage is low enough so that the field emission of many electrons, which was the main mechanism

of tunneling in those experiments, should be neglected. Note further that the characteristic de Broglie

wave length associated with the dot should be much shorter than typical displacements allowing thus for

a classical treatment of the mechanical motion of the nano-particle. The condition h̄Ω�TK , necessary to

eliminate decoherence effects, requires for e.g. planar quantum dots with the Kondo temperature TK∼100
mK, the condition Ω∼1 GHz for oscillation frequencies to hold; this frequency range is experimentally

feasible [37, 38]. The shuttling island then is to be considered as a ”mobile quantum impurity”, and trans-

port experiments will detect the influence of mechanical motion on a differential conductance. If the dot is

small enough, then the Coulomb blockade guarantees the single electron tunneling or cotunneling regime,

which is necessary for realization of Kondo effect [33, 39]. Cotunneling process is accompanied by the

6                                                 M. N. Kiselev: Dynamical symmetries and quantum transport through nanostructures

© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.pss-c.com



change of spin projection in the process of charging/discharging of the shuttle and therefore is closely

related to the spin/charge pumping problem [40].
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Fig. 3 (Color online) Left panel: Nanomechanical resonator with the odd number of electrons as a ”mobile quantum

impurity”. Right panel: Differential conductance of a Kondo shuttle Γ0/U=0.4. Solid line denotes G for the shuttle

ΓL=ΓR, A=λ0, dashed line: the static nano-island ΓL = ΓR, A=0, dotted line: ΓL/ΓR=0.5, A=0. Insert shows

the time oscillations of TK for small A=0.05λ0 (dotted line) and large A=2.5λ0 (solid line) shuttling amplitudes.

The Hamiltonian of the shuttle H=H0+Htun is given by

H0 =
∑
k,α

εkσ,αc†kσ,αckσ,α +
∑
iσ

[εi − eEx]d†
iσdiσ + Un2

Htun =
∑

ikσ,α

T (i)
α (x)[c†kσ,αdiσ + H.c], (9)

where c†kσ , d†iσ create an electron in the lead α=L,R, or the dot level εi=1,2, respectively, n=
∑

iσd†iσdiσ ,

E is the electric field between the leads. The tunnelling matrix element T
(i)
L,R(x)= T

(i,0)
L,R exp[∓x(t)/λ0],

depends exponentially on the ratio of the time-dependent displacement x(t) (which is considered to be a

given harmonic function of the time) and the electronic tunneling length λ0.

We begin with the discussion of an odd N , S = 1/2, case. Then only the state with i=1 retains

in (9), and hereafter we omit this index. In order to find an analytic solution, we assume that if x(t)
varies adiabatically slow (on the scale of the tunneling recharging time), there is no charge shuttling due

to multiple recharging processes [41], but the Kondo resonance cotunneling occurs. The time-dependent

tunneling width is Γα(t) = 2πρ0|Tα(x(t))|2 [21], where ρ0 is the density of states at the leads Fermi

level. The adiabaticity condition reads: h̄Ω�TK �Γ, with Γ=min[
√

Γ2
L(t) + Γ2

R(t)]. We apply the

time-dependent Schrieffer-Wolff transformation and obtain the time-dependent Kondo Hamiltonian [21]

as

H = H0 +
∑

kασ,k′α′σ′
Jαα′(t)[�σσσ′ �S +

1
4
δσσ′ ]c†kσ,αck′σ′,α′ (10)

where Jα,α′(t)=
√

Γα(t)Γα′(t)/(πρ0Ed(t)) and �S= 1
2d†σ�σσσ′dσ′ . In the adiabatic regime the time can be

treated as an external parameter, and the renormalization group equations for the Hamiltonian (10) can be

solved the same manner as those for the equilibrium [21]. As a result, the Kondo temperature becomes

time oscillating:

TK(t) = D(t) exp
[
− πU

8Γ0 cosh(2x(t)/λ0)

]
. (11)
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Neglecting the weak time-dependence of the effective bandwidth D(t)≈D0, we arrive at the following

expression for the time-averaged Kondo temperature:

〈TK〉 = T 0
K

〈
exp

[
πU

4Γ0

sinh2(x(t)/λ0)
1 + 2 sinh2(x(t)/λ0)

] 〉
. (12)

Here 〈...〉 denotes averaging over the period of the mechanical oscillation. The time-dependence of the

Kondo temperatures results in a remarkable effect: the competition between Breit-Wigner (BW) resonance

responsible for the transparency of the nano-device and the Abrikosov-Suhl (AS) resonance related to the

quasi-particle Kondo peak occurring at the Fermi level of the leads. While BW resonance has a maximum

at the most symmetrical regime ΓL = ΓR corresponding to the central position of the island in its classical

trajectory, the sharpest AS resonance occurs at the turning points of the trajectory when the Kondo tem-

perature reaches its minimal value. In the weak coupling regime Tmax
K �T�D0 the zero bias anomaly

(ZBA) in the tunneling conductance is given by

G(T ) =
3π2

16
GU

〈
4ΓL(t)ΓR(t)

(ΓL(t) + ΓR(t))2
1

[ln(T/TK(t))]2

〉
. (13)

The two competing effects of BW and AS resonances lead to the effective enhancement of G at high

temperatures (see Fig.3, right panel):

δGK

G0
K

=
G(T ) − G0

K

G0
K

= 2
δTK

T 0
K

1
ln(T/T 0

K)
. (14)

Next we turn to the case of even N in the island. In this case one may refer to the excited-state Kondo
features [39], where the KR tunneling is possible only during the time intervals where

ΔST (t) = δ(t) − Jex(t) < TK(t). (15)

The level spacing δ(t)=ε2(t)−ε1(t) may reduce due to the tunneling-induced Friedel shift

εi(t) = ε0i −
∑

α=L,R

|T (i)
α (t)|2Re

∫
ρ0dε

εi − εα
, (16)

provided T
(2)
α >T

(1)
α , which is usually the case [39]. This effect is maximal near the turning points of

shuttle motion. Thus, if the condition (15) is valid for the certain time intervals during the oscillation cycle,

the Kondo tunneling is possible for a part of this cycle, where the shuttle is close to one of the leads. It

should be emphasized that in this regime only the weak-coupling Kondo effect may be observed at T�TK ,

whereas at T→0 the triplet state is quenched and the dot behaves as a zero spin nano-particle [23]. The

full scale Kondo effect may arise only if the variation of |T (i)
α (t)|2 induces the crossover from a singlet to a

triplet ground state of a shuttle. The singlet/triplet crossover induced by the variation of gate voltages was

observed on a static planar dot [42]. Unlike conventional level crossing, this crossover does not violate

adiabaticity because it conserves the SO(4) symmetry of singlet/triplet manifold [12, 39].

3 Stoner instability and dynamical symmetries

As one decreases the effective dimensionality of a conductor, the role of electron-electron interactions —

notably in the charge and spin channels — is enhanced. In one-dimension (d=1) these two channels, re-

sponsible for a widely ranged spectrum of effects, often decouple. It is of obvious interest to study the

counterpart of this physics in d=0 quantum dots (QDs). An easily accessible scheme is the ”Universal

Hamiltonian” [2,43] where, in addition to the (impurity and geometry dependent) single-particle Hamilto-

nian, only zero-mode interactions (charge and spin (exchange) in our case) are included. The former leads
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to the phenomenon of the Coulomb blockade, while the latter leads to the Stoner instability [4] which is

modified in mesoscopic systems [43]. Attention has been given to the intriguing interplay between the

charge U(1) [46] and the spin SU(2) [47, 48] channels. This is manifest, e.g., in the suppression of cer-

tain Coulomb peaks due to ”spin-blockade” [44]. In a recent theoretical study [45] the effect of the the

spin channel on Coulomb peaks has been analyzed employing a master equation in the classical limit.

Notwithstanding the success of this approach, quantum effects are expected to play an important role. A

full fledged quantum mechanical analysis of the charge-spin interplay in zero dimensions is thus called

for [47, 48].

Our QD of linear size L is in the ”metallic regime” (either diffusive (� � L) or ballistic-chaotic (� ≈
L)). The Thouless energy and the mean level-spacing satisfy g ≡ ETh/Δ � 1. We consider the following

terms of the Universal Hamiltonian:

H =
∑
α,σ

εαa†
α,σaα,σ + HC + HS . (17)

The spin (σ) degenerate levels of the single-particle Hamiltonian obey the Wigner-Dyson statistics. For

simplicity we confine ourselves to the Gaussian Unitary Ensemble (GUE) case. The charging interaction

HC = Ec (n̂ − N0)
2

accounts for the Coulomb blockade. Here n̂ is the number operator; N0 represents

the positive background charge and is tuned to the Coulomb valley regime. The term

HS = −J

⎡
⎣(∑

α

Sz
α

)2

+ γ

⎧⎨
⎩

(∑
α

Sx
α

)2

+

(∑
α

Sy
α

)2
⎫⎬
⎭

⎤
⎦

represents spin, �Sσσ′ = 1
2

∑
αa†

α,σ�σσσ′ aα,σ′ , interactions within the dot. Below we allow for an easy axis

anisotropy, γ=J⊥/J<1, reducing the original SU(2) symmetry to SO(2). There are several possible

sources for such an anisotropy: geometrical, molecular anisotropy etc. The degree of anisotropy can

be controlled by introducing magnetic impurities into the system, or by applying anisotropic mechanical

pressure [49].

Fig. 4 (Color online) Left panel: Spin of the ground state Sg as a function of the spin exchange coupling. The inset

shows spin configurations for the S = 0, 1, 2 states. Right panel: The spin normalized tunneling density of states

shown as function of the energy Ec/T = 10. Dashed curve: J = 0. Solid curve: J/Δ = 0.92, J/T = 0.1,

γ = 0.93. Left inset shows the QD setup. Right inset shows the spin rotation on the Bloch sphere.

We recall that beyond the thermodynamic Stoner instability point, Jth = Δ (see Fig. 4, left panel),

the spontaneous magnetization is an extensive quantity. At smaller values of the exchange coupling,
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Jmesoscopic < J < Jth, finite magnetization shows up (see the inset on the left panel of Fig.4), which, for

finite systems, does not scale linearly with the size of the latter [43]. Its non-self-averaging nature gives

rise [5] to strong sample-specific mesoscopic fluctuations.

The full fledged quantum mechanical analysis of the interplay between charge U(1) and transverse

SO(2) fluctuations is given in [47, 48]. Skipping the details of the field-theoretical treatment of the Uni-

versal Hamiltonian based on 0 + 1 functional bosonization approach, I present below the key prediction

for the Tunneling density of states.

The conductance gT is related to the TDoS ν through

gT =
e

h̄

∫
dεν(ε)Γ(ε)

(
−∂fF

∂ε

)

where fF is the Fermi distribution function at the contact and Γ is the golden rule dot-lead broadening.

The TDoS is written in terms of the QD electrons Green’s Function averaged by both charge and spin

fluctuations and given by [50]

ν(ε) = − 1
π

cosh
( ε

2T

) ∫ ∞

−∞

∑
σ

〈Gσ

(
1

2T
+ it

)
〉k,meiεtdt. (18)

where 〈...〉k,m denotes a summation over all winding numbers for Coulomb and longitudinal zero-modes

[51]. Examples for the temperature and energy dependence of the TDoS (for various γ) are depicted in

Fig. 4 (right panel). The energy dependent TDoS shows an intriguing non-monotonic behavior at energies

comparable to the charging energy Ec. This behavior, absent for J = 0, is due to the contribution of the

transverse spin susceptibility (see [47, 48] for detail). The oscillating (in real time) factor in the dynamic

transverse susceptibility describes Bloch precessions in an anisotropic easy axis spin model (see Fig.4,

right panel inset). The oscillations are amplified in the vicinity of the Stoner Instability point, and signals

the effect of collective spin excitations (incipient ordered phase). One of possible experimental realizations

of predicted effect is transport measurements in magnetic QD [6].

We have found [47,48] that (i) As the spin modes renormalize the Coulomb blockade (CB), they modify

the tunneling density of states (TDoS) – hence the differential conductance – of the dot (Fig. 4, right panel).

For an Ising-like spin anisotropy the longitudinal mode partially suppresses the CB. Quantum fluctuations,

manifest through the transverse SO(2) modes, act qualitatively in the same way, but as one approaches

the Stoner instability (from the disordered phase) their effect reverses its sign, giving rise to suppression

of the conductance (i.e., enhancement of the CB). This results in a non-monotonic behavior of the TDoS ;

(ii) The longitudinal spin susceptibility diverges at the thermodynamic Stoner instability point, while the
transverse susceptibility is enhanced by gauge fluctuations (but remains finite).

4 Conclusions

Today, the concept of dynamical symmetry is ubiquitous in many branches of modern physics, such as

quantum field theory, nuclear physics, quantum optics and condensed matter physics in low dimensions.

Quantum dots are especially suitable objects for the group theoretical approach because the fully discrete

spectrum of low-lying excitations in these systems often may be characterized by the definite dynamical

symmetry, and the interaction with the metallic reservoir of metallic electrons in the leads provides a

powerful tool of symmetry breaking.

In this review we concentrated on the spin excitations in quantum dots. We discussed the quantum

transport through the Single Electron Transistor, molecular electronic devices and nanoelectromechanical

shuttles. Many interesting properties, like thermoelectric transport through few-electron quantum dots [52]

or magnetic control on the Kondo oscillations [53] has not been discussed in this review due to the space

limitations for the publication.
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Another promising class of nanoobject for applications of the ideas of dynamical symmetries which

has not been considered in this paper is spin ladders and spin chains. Such kind of quasi-1D structures

can be fabricated as an array of artificial atoms or nano-crystals. In this case the role of object with

definite dynamical symmetry is played by a single rung or pair of neighboring rungs bound by diagonal

bonds, whereas the longitudinal modes violate this symmetry. The application of of dynamical symmetry

approaches in this field are seldom enough as yet [54]- [60], but the field seems to be really wide.

At the end, I hope to convince the reader of the beauty and relevance of dynamical symmetries in the

transport through the nanostructures and to stress its relation with experiments.
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