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We show that nanomechanical vibrations in a magnetic shuttle device can be strongly affected by
external microwave irradiation through photo-assisted electronic spin-flip transitions. Mechanical
consequences of these spin flips are due to a spin-dependent magnetic force, which may lead to a
nanomechanical instability in the device. We derive a criterion for the instability to occur and analyze
different regimes of nanomechanical oscillations. Possible experimental realizations of the spin-mediated
photomechanical instability and detection of the device backaction are discussed.
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The electric charge of electrons injected by tunneling
into a nanodevice provides a means for coupling mechani-
cal deformations of the device to electronic degrees of
freedom. Different scenarios of nanoelectromechanical
(NEM) action, which provide a number of new nanodevice
functionalities, are based on a coupling via either the
injected electrical current or via charge accumulated in
the device (see, e.g., the reviews [1–3]). The electronic
spin, which is usually almost decoupled from the charge
degrees of freedom in bulk nonmagnetic metals, might also
contribute to the mechanics of nanometer-sized devices.
Reasons for this can be the amplified spin-orbit interaction
in low dimensional nonmagnetic conductors [4–6] or the
exchange interaction induced in magnetic NEM struc-
tures [7,8].
Microwave electromagnetic fields are in general not

expected to affect the mechanical operation of a nanodevice
very much. This is because of the considerable mismatch
between the vibration frequency of a typical nanomechan-
ical resonator (∼100 MHz) and the frequency of an
electromagnetic field in the microwave–far-infrared region
(0.1–1 THz). In this Letter, however, we show theoretically
that the electronic spin accumulated in a mechanical
resonator can mediate a strong coupling between a high-
frequency electromagnetic field and low-frequency
mechanical vibrations in a magnetic NEM system such
as the one sketched in Fig. 1(a). The device shown there
comprises a single-wall carbon nanotube (CNT) resonator
suspended between ferromagnetic source and drain electro-
des and a magnetic gate. The magnetization of the two
electrodes are assumed to be antiparallel, while the mag-
netization of the gate is taken to be antiparallel to that of the
source.
The inhomogeneous magnetic field created by the tip-

shaped gate gives rise to a Zeeman splitting of the CNT

electronic energy levels that varies with the deflection of
the CNT [see Figs. 1(a) and 1(b)] and hence corresponds to
a magnetic force that depends on the net spin accumulated
in the CNT. This is the mechanism for how spin couples to
the CNT vibrations. Turning to the mechanism for how spin
couples to the microwave field, we assume that the CNT is
connected to the electrodes by high-resistance tunnel
barriers and that it is short enough (≲1 μm) for the spatial
quantization of energy levels to be resolved and that we are
in the Coulomb blockade regime of transport at low
temperatures (∼1 K). This means that we can treat the
CNT as a quantum dot (QD) with a single electron energy

FIG. 1. (a) Sketch of a device with a suspended CNT resonator
in tunneling contact with two ferromagnetic electrodes (L,R) with
opposite magnetization directions. Flexural CNT vibrations are
actuated by a magnetic force caused by the Zeeman interaction
between the spin of CNT electrons and an inhomogeneous
magnetic field BzðzÞ from a magnetic gate (tip). (b) A microwave
field h cosðΩtÞ induces electron spin flips in the CNT, which are
resonant at u ¼ ur where the photon energy ℏΩ equals the
deflection-dependent Zeeman energy splitting gμBBzðuÞ. Since
the magnetic force is spin dependent, the spin in this way
mediates the photomechanical coupling discussed in the text.
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level, doubly degenerate due to the spin degree of freedom
at zero magnetic field but Zeeman split at finite fields. The
coupling of the microwave field to the electronic spin is
through photo-assisted spin-flip scattering, which becomes
resonant if the microwave photon energy equals the
Zeeman splitting [see Fig. 1(b)]. Each spin flip changes
the amount of spin accumulated in the CNT-QD in the
sense that the value of the spin projection on the axis
defined by the colinear magnetizations of electrodes and
gate is changed by one unit, effectively adding an “extra
spin” to the CNT resonator. Such photo-induced “spin
pumping” also changes the spin-dependent magnetic force
on the CNT. This, in qualitative terms, is how the electron
spin can mediate an interaction between nanomechanical
vibrations and a microwave field. To see what conse-
quences such a coupling may have, we will ask the question
whether the magnetic force does positive (amplification) or
negative (damping) work on the CNT resonator during one
oscillation period. The answer turns out to depend on the
“sign” of the extra spin, which in its turn depends on which
of the two oppositely magnetized electrodes is the source of
spin-polarized electrons injected into the CNT-QD. But this
can be changed by changing the polarity of the voltage bias
applied between the two ferromagnetic electrodes. Hence
we can be certain that for either positive or negative
polarity, energy will be pumped into the vibrations of
the CNT resonator giving rise to a mechanical instability
and to pronounced vibrations if the pumping can overcome
the dissipation in the mechanical subsystem.
In order to rigorously demonstrate the phenomenon that

we so far have only described qualitatively for our model
system, we assume that the dynamics of the CNT-QD
resonator is completely characterized by the amplitude of
its fundamental bending mode uðtÞ, whose time evolution
is governed by Newton’s equation for a harmonic oscillator
of eigenfrequency ω0,

m½üþ γ _uþ ω2
0u& ¼ FTrfρ̂ðn̂↓ − n̂↑Þgþ Feq

elast: ð1Þ

Here γ ¼ ω0=Q0 is a phenomenological damping rate, Q0

is the mechanical quality factor, andm is the effective mass
of the resonator. The first force term on the rhs, where
F ¼ ðgμB=2Þ∂BzðuÞ=∂uju¼0 and n̂σ ¼ d†σdσ is the density
operator for QD electrons with spin σ ¼ ↑;↓, is the
magnetic force induced by the interaction between the
QD spin and the gate-induced inhomogeneous magnetic
field BzðuÞ, which is assumed to have a linear dependence
on u in the region of interest. The second force term is the
elastic restoring force that compensates the magnetic force
in the absence of microwave irradiation introduced so that
the deflection coordinate u (along the z axis, see Fig. 1) is
measured from the midpoint of the (bent) resonator in this
static case. The trace in Eq. (1) is over the electronic
degrees of freedom. Consequently, ρ̂ is the electron density
matrix operator, which obeys the quantum Liouville-von
Neumann equation (ℏ ¼ 1)

i
dρ̂
dt

¼ ½Ĥd þ Ĥl þ Ĥt; ρ̂&: ð2Þ

Here Ĥd is the QD Hamiltonian,

Ĥd ¼ ε0ðn̂↑ þ n̂↓Þ þ
gμBBzðuÞ

2
ðn̂↑ − n̂↓Þ

þ gμBh
2

cosðΩtÞðd†↑d↓ þ d†↓d↑Þ −Ud†↑d
†
↓d↑d↓; ð3Þ

where ε0 is the energy of the QD level relative to the Fermi
energy in the leads, gμBBzðuÞ is the CNT’s deflection-
dependent Zeeman energy splitting, h is the amplitude of
the magnetic component of the external microwave field,
which oscillates with frequency Ω along the x axis [see
Fig. 1(a)], and U is the Coulomb (charging) energy cost for
double occupancy of the QD. Assuming that the variation
of the magnetic field Bz along the mechanical motion is
small compared to its value at the equilibrium position of
the dot, Δ ¼ gμBBzðu ¼ 0Þ, we retain only the linear term
in its Taylor expansion, gμBBzðuÞ ¼ Δþ 2Fu.
The second term in the commutator in Eq. (2) describes

noninteracting electrons in the electrodes (for now assumed
to be 100% spin polarized “half metals” [9]) while the third
term,

Ĥt ¼
X

k

T ½eieVt=2c†Lk↑d↑ þ e−ieVt=2c†Rk↓d↓& þ H:c:; ð4Þ

is a standard tunnel Hamiltonian. Here electron tunneling is
characterized by the overlap integral T , a bias voltage V is
applied between the electrodes, and c†jkσ are electron
creation operators acting in the left (j ¼ L) and right
(j ¼ R) electrodes. For simplicity, we take the amplitudes
for tunneling to the left and right to be the same [10]. The
magnetization in the source (left if V > 0) electrode and in
the magnetic tip are assumed to be antiparallel to each other
[11]. To investigate the parallel case, one has to reverse the
polarity of the bias voltage, V → −V, in Eq. (4), so that the
right electrode becomes the source.
By treating the tunnel Hamiltonian perturbatively and

using the reduced density matrix approach [12,13], one can
factorize the density operator, ρ̂ðtÞ ¼ ϱ̂dðtÞ ⊗ ρ̂l, into a
product of an equilibrium density operator for the leads at
temperature T, ρ̂l ¼ expð−Ĥl=kBTÞ, and a reduced density
operator for the QD states,

ϱ̂d ¼ c0j0ih0jþ c2j↑↓ih↑↓jþ jσiϱσσ0 hσ0j: ð5Þ

In Eq. (5), jσi ¼ d†σj0i, j↑↓i ¼ d†↑d
†
↓j0i are singly and

doubly occupied electron states, ϱσσ0 ¼ hσjϱ̂djσ0i and c0, c2
are normalization constants. We consider a NEM system in
the strong Coulomb blockade regime, U ≫ jeV=2' ε0j,
for which double electron occupancy of the dot is for-
bidden, so that c2 ¼ 0. By averaging over the electronic
states in the leads, we get an equation for the matrix
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ϱ̂ ¼
!
ϱ↑↑ ϱ↑↓
ϱ↓↑ ϱ↓↓

"
ð6Þ

which characterizes the state of the singly occupied QD
level. This equation reads

_̂ϱ ¼ −
i
2
½ðΔþ 2FuÞσz þ νh cosðΩtÞσx; ϱ̂& −

Γ
2
L½ϱ̂&; ð7Þ

where

L½ϱ̂& ¼ 3

2
ϱ̂þ 1

2
σzϱ̂σz þ 2σκϱ̂σ−κ − ð1̂þ κσzÞ: ð8Þ

Here σx;y;z are the Pauli matrices, σ' ¼ ðσx ' iσyÞ=2,
νh ¼ gμBh, Γ ¼ 2πνjT j2 is the energy level width, and ν
is the density of states in the leads. In Eq. (8), κ ¼ signðeVÞ
determines the relative magnetization in the source and the
tip: κ ¼ þ1 stands for antiparallel, while κ ¼ −1 stands for
parallel alignment. The first term in Eq. (7) describes the
dynamical part of the time evolution of the electronic
subsystem, while the second term is a stochastic part
associated with tunneling processes from/to the leads.
We assume the condition of a large bias voltage,
jeVj ≫ ðkBT;Δ;Ω;ΓÞ.
Having in mind microwave-field intensities that can be

achieved experimentally in the THz frequency range, we
will consider a situation where νh ≪ Ω ∼ Δ. Under this
condition, one can apply the rotating wave approximation,
which makes it possible to remove the explicit time
dependence in Eq. (7) by a unitary transformation. As a
result, we may replace νh cosðΩtÞ by νh=2 and renormalize
ðΔþ 2FuÞ → ðΔ −Ωþ 2FuÞ in Eq. (7). We then evaluate
Eq. (7) under the assumption that the motion of the QD is
adiabatic (ω0 ≪ Γ), so that the characteristic times asso-
ciated with mechanical motion and electron tunneling are
well separated. It follows that the equation of motion (1) for
a small-amplitude microwave field, νh ≲ Γ, takes the form

üþ γ _uþ ω2
0u ¼ w2

1f1ðuÞ þ
w2
2

Γ
f2ðuÞ _u; ð9Þ

where (as before) u is the CNT’s deflection relative to its
equilibrium position in the absence of a microwave field,

w2
1 ¼

3Fν2h
4mΓ2

; w2
2 ¼

4F2ν2h
mΓ3

; ð10Þ

and

f1ðuÞ ¼
κ

1þ 4J2ðuÞ
; f2ðuÞ ¼ κJðuÞ 4J2ðuÞ þ 13

½1þ 4J2ðuÞ&3
;

ð11Þ

where JðuÞ ¼ ðΔ −Ωþ 2FuÞ=Γ. The function f1ðuÞ
describes a nonlinear force, while the function f2ðuÞ is a

nonlinear friction term. Both functions depend on the spin
accumulated on the QD due to photo-induced electronic
spin-flip transitions; hence, their values vary rapidly as the
deflection u of the CNT-QD resonator is close to satisfying
the resonance condition Jðu ¼ urÞ ¼ 0, where the rate of
spin-flip transitions is maximal.
Whether or not microwave induced spin-flip transitions

will contribute a “negative friction” ðf2 > 0Þ, possibly
leading to a nanomechanical instability, depends, as will be
shown by the stability analysis that follows, on whether
resonant spin-flip transitions occur for a deflection towards
(ur > 0) or away from (ur < 0) the magnetic gate.
Linearizing Eq. (9) assuming juj ≪ Maxfjurj;Γ=Fg

corresponds to expanding f1ðuÞ to first and f2ðuÞ to zeroth
order in u. Neglecting the former terms, which lead to a
small renormalization of the static shift and vibration
frequency of the resonator, we obtain an expression for
the imaginary part of the eigenfrequency,

Im½ω& ¼ ðγ − γhÞ=2; ð12Þ

where γh ∝ f2ð0Þ and

γh ¼ κðΔ − ΩÞw2
2Γ2 4ðΔ −ΩÞ2 þ 13Γ2

½4ðΔ −ΩÞ2 þ Γ2&3
ð13Þ

is the microwave-induced “friction” coefficient. We note
that the amplitude of the mechanical oscillations increases
with time if γh > γ, corresponding to a mechanical
“shuttling” instability. To determine the instability cri-
terion, we neglect the intrinsic friction (γ ¼ 0) of the
mechanical subsystem. Then, for antiparallel magnetiza-
tion between tip and source (κ ¼ þ1), shuttling occurs
when the microwave frequency is lower than the Zeeman
energy splitting, Ω < Δ. Therefore, whether an instability
occurs or not depends on whether the deflection ur ¼
ðΩ − ΔÞ=2F that corresponds to resonant spin-flip tran-
sitions is in the direction of the magnetic gate (ur > 0) or
away from it (ur < 0). The latter case gives rise to an
instability, while the former leads to additional damping
and stability. The corresponding criterion for parallel
magnetizations (κ ¼ −1) can be found from Eq. (13) in
a similar manner.
The instability threshold for CNT oscillations is con-

ditioned by the equality of the microwave field-dependent
contribution to the quality factor, Qh ¼ ω0=γh, and the
intrinsic mechanical quality factor Q0. This criterion
determines the critical value for the amplitude of the
microwave field. Estimating Qh by using the maximum
value of the increment (jΔ −Ωj ∼ Γ) given by Eq. (13), we
find that

Q−1
h ∼

1

ω0

w2
2

Γ
∼ u20

F2

Γ2

ν2h
Γ2

; ð14Þ
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where u0 ¼ ð2mω0Þ−1=2 ≃ 2 pm (see, e.g., [14]) is the
amplitude of the CNT’s zero-point oscillation. Using the
realistic values 1 T for the magnetic field Bzð0Þ and
5 × 106 T=m for the field gradient ∂Bzð0Þ=∂z [15,16],
while taking the CNT quality factor Q0 and the tunnel
coupling Γ to be 106 [17] and 1 × 109 s−1 [10], respec-
tively, one then finds a lower bound of h ∼ 1 mT for the
magnetic amplitude of the microwave field.
A partial rather than complete spin polarization of the

leads would not qualitatively change the threshold for
shuttling since it only produces quantitative changes
in the leads’ densities of state and modifies Γ↑;↓

LðRÞ. As a
result, direct electron transfer processes between
the left and right electrodes without spin-flips become
possible, hence reducing the spin-flip rate. The magnitude
of the field induced friction is proportional to the
degree of spin polarization η ¼ jΓ↑ − Γ↓j=ðΓ↑ þ Γ↓Þ,
where Γ↑ð↓Þ ¼ Γ↑ð↓Þ

L ¼ Γ↓ð↑Þ
R . Therefore, for partially

polarized leads (η < 1) the rate at which the oscillation
amplitude grows if the shuttle instability criterion is met
decreases with η as γh ∝ ηð1þ ηÞ and vanishes in the
limit η → 0.
If there is a shuttle instability the amplitude of the

resonator vibrations increases with time and we have to
consider the full nonlinear version of the equation of
motion (9). In this case, we use the Krylov-Bogoliubov
(KB) method [18] for our analysis. The KB ansatz is based
on the assumption that the CNT displacement takes the
form uðtÞ ¼ AðtÞ sin (ω0tþ ψðtÞ), where both the ampli-
tude AðtÞ and the phase ψðtÞ are slowly varying functions
of time and the CNT mechanical energy is mω2

0A
2=2.

Substituting into Eq. (9), multiplying by _uðtÞ, and averag-
ing over one oscillation period, we get an equation for the
rate of change of AðtÞ,

dA2

dt
¼ ω0(W1ðAÞ −W0ðAÞ);

W1ðAÞ ¼ −
A2

π

!
u0

2Fνh
Γ2

"
2
Z

2π

0
cos2ðψÞf2½A sinðψÞ&dψ ;

ð15Þ

where W1ðAÞ is proportional to the work done on the
NEM system by the magnetic force during one oscillation
period and W0ðAÞ ¼ A2=Q0 is proportional to the energy
dissipated due to intrinsic friction during the same time; the
solution W1ðAÞ ¼ W0ðAÞ yielding a stationary solution. In
Fig. 2, the ratio W1ðAÞ=W0ðAÞ is plotted as a function
of A for three different microwave intensities (νh), corre-
sponding to three different regimes. Regime (i) occurs
at low microwave intensities when the work done by the
magnetic force is smaller than the dissipated energy
(W1=W0 < 1) for any oscillation amplitudes and hence
the only stationary solution is static, A ¼ 0. Regime
(ii) arises at intermediate radiation intensities where

dA2=dt ¼ 0 for three different amplitudes, each corre-
sponding to a stationary solution. Two of these
solutions, one static and one with finite oscillation ampli-
tude, are stable while the third (finite amplitude) solution is
unstable. Note that if the NEM system is initially static, it
will remain so in this regime. The third regime (iii) emerges
at high intensities of the microwave radiation where the
intrinsic mechanical dissipation overcomes the work per-
formed by magnetic forces only at a certain finite mechani-
cal vibration amplitude Alim, which defines the amplitude
of the CNT self-sustained oscillations. Together, the inten-
sity regimes (i)–(iii) determine a so-called hard instability
scenario [19], which results in a hysteretic behavior of the
system characteristics as a function of the microwave field
intensity νh.
The self-sustained oscillations, being due to electronic

spin-flip transitions, will generate a correction δI ∝ A2
lim to

the electrical current through the NEM system, which can
be detected. An estimation using the system parameters
given in Fig. 2 shows that jδIj ∼ 10–100 pA. Alternatively,
the CNT bending vibrations can be detected by using

FIG. 2. Ratio between work done on the NEM system
by the magnetic force (∝ W1) and energy dissipated due to
intrinsic friction (∝ W0) plotted as a function of CNT oscillation
amplitude A for Γ ¼ 0.6 × 109 s−1, Δ − Ω ¼ Γ, u0 ¼ 2 pm,
∂Bz=∂z ¼ 5 × 106 T=m, Q0 ¼ 106, and three different micro-
wave field intensities νh. If W1=W0 < 1 for some A, then A
decreases with time according to Eq. (15), while if W1=W0 > 1,
A increases with time. If W1=W0 ¼ 1 (black horizontal help
line) for some finite amplitude, then Eq. (15) has a nontrivial
(A ≠ 0) stationary solution for that amplitude. The red (bottom)
curve (νh ¼ 0.4Γ) describes the behavior of the NEM system
below the instability threshold and illustrates the text’s regime (i),
which has no nontrivial stationary solution. The green (middle)
curve (νh ¼ 0.6Γ) corresponds to regime (ii), where the mechani-
cal system is characterized by two nontrivial stationary solutions.
The blue (top) curve (νh ¼ 1.0Γ) corresponds to regime (iii), with
a single nontrivial stationary solution to Eq. (15) for A ¼ Alim. In
this regime, a mechanical instability leads to self-sustained
resonator oscillations of amplitude Alim [20].
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standard methods such as the rectification technique of
Ref. [14] or the scanning force microscopy technique
of Ref. [21].
In conclusion, we have suggested a new spin-mediated

photomechanical mechanism for coupling electronic and
mechanical degrees of freedom in a nanoelectromechanical
(NEM) device comprising a carbon nanotube (CNT)
resonator suspended between two magnetic electrodes
and under the influence of an inhomogeneous magnetic
field from a nearby tip-shaped magnetic gate. The predicted
strong effect of microwave radiation on the nanomechanics
of the device is based on two features: (i) the resonant
nature of the microwave-induced electronic spin-flip tran-
sitions in the CNT resonator, and (ii) a latent nanomechan-
ical instability of the resonator caused by a spin-dependent
magnetic force that pumps energy into its vibrations. The
instability occurs if the pumping rate [see Eq. (14)] exceeds
the dissipation rate, set by the quality factor Q0 of the
resonator. We find that this criterion leads to a lower bound
of about 1 mT for the amplitude of the magnetic component
(h) of the microwave field.
The predicted photo-induced mechanical instability

develops into pronounced vibrations of the CNT resonator.
These are accompanied by temporal oscillations of the spin
accumulated in the CNT and related significant effects on
the spin-dependent electrical current through the device
corresponding to a highly efficient (up to 100%) photo-
electric transduction effect. The results obtained for the
studied CNT-based magnetic NEM device provide a basis
for pursuing further spintronics applications, including but
not limited to spin-current rectifiers (filters, splitters,
ratchets, etc.), and as elements of ac and dc circuits and
devices with controllable (nonlinear) damping.

We acknowledge fruitful discussions with A. Hüttel and
S. Ludwig. This work was partially supported by the
Swedish Research Council (VR).
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